铜基催化剂的制备与表征及其纤维催化加氢性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是最丰富的生物质资源之一,纤维素的转化主要集中在酸水解和贵金属催化加氢,但酸水解容易产生环境问题,贵金属价格昂贵。因此寻找廉价的非贵金属催化剂绿色转化纤维素成为研究重点。过渡金属铜基催化剂是一种廉价的加氢催化剂,但其用于催化纤维素加氢反应方面鲜见报道。本论文以纤维素为原料,使用Cu基催化剂进行催化加氢反应,采用环境友好的方式转化纤维素。
     本课题以碳酸钠为沉淀剂,采用共沉淀法制备了Cu体系和Ni体系多元氧化物催化剂,采用化学吸附水解法制备了碱土金属氧化物负载CuO催化剂。着重研究了具有不同阴离子的铈盐(Ce(SO4)2、Ce(NO3)3)、CuO摩尔含量和Zn/Ce比例对CuO/ZnO/CeO2催化剂产物的影响。通过XRD、SEM、BET、TG、XPS、EDX以及TPR等表征手段分析了催化剂的物理结构、化学结构及还原性能,通过纤维素加氢反应对催化剂进行了活性评价,采用HPLC、ESI-MS和FT-IR等表征手段对加氢反应的液态产物进行了表征,研究了催化剂类型和反应条件对纤维素转化率和加氢产物产率的影响。
     实验表明,经共沉淀法制备的CuO/ZnO/CeO2催化剂前躯体为非晶态,煅烧后的物相主要是CuO, ZnO和Ce02,从TEM表征可以看出催化剂均为类球形,加入ZnO后,颗粒尺寸在10nm左右,ZnO和Ce02能促进CuO的分散,降低催化剂的还原温度。铈源的种类影响催化剂的物理结构和化学结构,采用硝酸铈为铈源时,催化剂比表面积为42.08m2·g-1~80.49m2·g-1,催化剂失重率为26%~29%,还原温度在250℃以下。采用硫酸铈为铈源,催化剂比表面积为7m2·g-1~28m2·g-1,催化剂失重率为13%~24%,还原温度在250℃以上。
     纤维素加氢反应中,催化剂种类、反应时间和反应温度均对纤维素转化率和产物产率造成影响。使用CZAl 361、CZCS 361、CMg-01和CSr-01作为催化剂时,6MPa H2,250℃反应120min,纤维素转化率可达100%。使用CuO/ZnO/CeO2作为催化剂,相同条件下以硫酸铈为铈源时,纤维素转化率较高,生成糠醇、乙酰丙酸以及其它小分子类化合物,而以硝酸铈为铈源时,纤维素转化率普遍低于硫酸铈铈源,但催化剂加氢效果较好,生成多元醇,如山梨糖醇和甘露糖醇及一些小分子化合物。
Cellulose is the most abundant resources of raw materials, the main convert methods of cellulose are acid hydrolysis and hydrogenation catalyzed by noble metals. The acid hydrolysis may cause environmental problems and the high cost, limited supply of noble metals will suppress their applications towards industrial production. Therefore, it is urgent to develop new materials to convert cellulose environment-friendly. In this case, non-noble metal materials such as copper-based catalysts which are typical hydrogenation catalysts have been studied as promising alternative candidates. Up to now, there is few study reported on their applications in catalytic hydrogenation of cellulose. In our work, we use cellulose as the raw material, the no-noble Cu-based multiple oxides catalysts were used towards hydrogenation of cellulose.
     The Cu-based and Ni-based catalysts were prepared by co-precipitation method using sodium carbonate as the precipitating agent and the CuO supported on alkaline earth metal oxides catalysts were prepared by the chemisorption-hydrolysis method. The focus is on the different hyrogenation products catalyzed by CuO/ZnO/CeO2 catalysts which is caused by different sources of cerium (Ce(SO4)2, Ce(NO3)3), the molar content of Cu and the molar ratio of Zn/Ce. The physical structure, chemical structure and reduction performance of catalysts were characterized by XRD, SEM, BET, TG, XPS, EDX and TPR. The hydrogenation activities of catalysts were evaluated by hydrogenation of cellulose. Liquid reaction products were characterized by HPLC, ESI-MS, FT-IR and so on. Influences of the kind of catalysts and reaction conditions on the conversion of cellulose and the yield of hydrogenation products were discussed.
     Experiment results indicated that the main phase of CuO/ZnO/CeO2 catalysts prepared by precipitation method was CeO2, ZnO and CuO. It can be obseved from the TEM images that the catalysts were spherical with the particle size about 10 nm. ZnO and CeO2 can promote the dispersion of CuO and reduce the reduction temperature of the catalysts. The sources of Ce affected on the physical and chemical structure of catalysts. When using cerium sulfate as source, the catalysts surface area were 7 m2·g-1-28 m2·g-1, weight loss of the catalysts were 13%-24%, the reduction temperature of the catalysts were higher than 250℃. While using cerium nitrate as source, the surface area of catalysts were 42.08 m2·g-1-80.48 m2·g-1, weight loss of the catalysts were 26%-29%, the reduction temperature of the catalysts were mostly lower than 250℃.In the hydrogenation reaction, the conversion of cellulose and the yield of products were influenced by the kind of the catalysts, reaction time and reaction temperature. When using CZA1 361, CZCS 361, CMg-01 and CSr-01 as catalysts and 6 MPa H2,250℃,120 min as the reaction condition, the conversion of cellulose can reach 100%. Under the same reaction conditions, when using CuO/ZnO/CeO2 as catalyst, the catalysts produced by cerium sulfate source had higher conversion of cellulose, the hydrogenation products were furfural, levulinic acid and other small molecule compounds. While using catalysts produced by cerium nitrate source, the conversion of cellulose was generally lower, but a better hydrogenation product of polyols, such as sorbitol, mannitol and other small molecule compounds, were obtained.
引文
[1]Mckendry P. Energy production from biomass(part 1):overview of biomass[J]. Bioresour. Technol., 2002,83(1):37-46.
    [2]Dodds D R,Gross R A.Chemistry:chemicals from biomass[J]. Science,2007,318(5854):1250-1251.
    [3]方真,曾德超.生物能源利用技术的研究和发展[J].中国能源,1991,11:9-11.
    [4]Mckendry P. Energy production from biomass (part 2):conversion technologies[J]. Bioresour. Technol.,2002,83(1):47-54.
    [5]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社,2002,39-47.
    [6]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2001.12-16.
    [7]Ren N Q, Wang A J, Cao G L, Xu J F, Gao L F. Bioconversion of lignocellulosic biomass to hydrogen:potential and challenges[J]. Biotechnol. Adv.,2009,27(6):1051-1060.
    [8]金辉,赵亚平,王大璞.纤维素超临界水解反应技术[J].现代化工,2001,21(12):56-59.
    [9]叶代勇,黄洪,傅和青.纤维素化学研究进展[J].化工学报,2006,57(8):1782-1791.
    [10]Zugenmaier P. Conformation and Packing of Various Crystalline Cellulose Fibers[J]. Prog. Polym. Sci.,2001,26 (9):1341-1417.
    [11]Gardner K H, Blackwell J. The structure of native cellulose[J]. Biopolymers,1974,13(10): 1975-200.
    [12]Parajo J C, Alonso J L, Santos V. Lactic acid from wood [J]. Process Biochem.,1996,31(3): 271-280.
    [13]DuffS J B, Murray W D. Bioconversion of forest products industry waste cellulosic to fuel ethanol: a review[J]. Bioresour. Technol.,1996,55(1):1-33.
    [14]Kumar R J, Sompal S H, Singh V. Bioconversion of lignocellulosic biomass:biochemical and molecular perspectives[J]. J. Ind. Microbiol. Biotechnol.,2008,11(35):377-391.
    [15]Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen bonding system in cellulose Ⅰβ from synchrotron X-ray and neutron fiber differation [J]. J. Am. Chem. Soc.,2002,124(31):9074-9082.
    [16]Matthews J F, Skopec C E, Mason P E. Computer simulation studies of microcrystallline Cellulose Ⅰ β[J]. Carbohydr. Res.,2006,341(1):138-152.
    [17]高洁,汤烈贵.纤维素科学.北京:科学出版社,1996,24-210.
    [18]Zhang Y P, Lynd L R. Toward an aggregated understanding of enzymatic hydrolysis of cellulose:Noncomplexed cellulase systems[J]. Biotechnol. Bioeng.,2004,88(7):797-824.
    [19]Yang B in, W illies D M, W yman C E. Changes in the enzymatic hydrolysis rate of avicel cellulose with conversion[J]. Biotechnol Bioeng.,2006,94 (6):1122-1128.
    [20]Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K. Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water[J]. Ind. Eng. Chem. Res.,2000,39(8):2883-2890.
    [21]Sasaki M, Kabyemela B, Malauan R, Hirose S, Takeda N. Cellulose hydrolysis in subcritical and supercritical water[J]. J. Supercrit. Fluids,1998,13(1-3):261-268.
    [22]Ishida M, Otsuka K, Takenaka S, Yamanaka I. One-step production of CO-and CO2-free hydrogen from biomass[J]. J. Chem. Technol. Biotechnol,2005,80(3):281-284.
    [23]Pavasars I, Hagberg J, Boren H, et al. Alkaline Degradation of Cellulose:Mechanisms and Kineticsa[J]. J Polymer Environ.,2003,11(2):39-47.
    [24]Varma A J,Kulkarni M P. Oxidation of cellulose under controlled conditions[J]. Polym.Deg.and Stab.,2002,77(1):25-27.
    [25]Malesic J,Kolar J, Strlic M, Kocar D, Fromageot D. PHoto-induced degradation of cellulose[J]. Polym.Degrad.Stab.,2005,89(1):64-69.
    [26]Mok W S, Antal M J, Varhergyi G. Formation of charcoal from biomass in a sealed reactor[J]. Ind. Eng. Chem. Res.,1992,31(4):1162-1166
    [27]Li C Z,Zhao Z B K.Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid[J]. Adv.Synth.Catal.,2007,349(11-12):1847-1850.
    [28]庄新姝,王树荣,袁振宏.纤维素超低酸水解产物的分析[J].农业工程学报,2007,23(2):177-182.
    [29]Deng W P, Liu M, Zhang Q H, Tan X S, Wang Y. Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures[J]. Chem. Commun.,2010,46(21): 2668-2670.
    [30]Suganuma S, Nakajima K, Kitano M. Hydrolysis of Cellulose by AmorpHous Carbon Bearing SO3H,COOH, and OH Groups. J. Am. Chem. Soc.,2008,130(38):12787-12793.
    [31]Yan N, Zhao C, Luo C, Dyson P J, Liu H, Kou Y. One-Step Conversion of Cellobiose to C6-Alcohols Using a Ruthenium Nanocluster Catalyst[J]. J. Am. Chem. Soc.,2006,128(27): 8714-8715.
    [32]Fukuoka A, Dhepe P L. Catalytic Conversion of Cellulose into Sugar Alcohols[J]. Angew. Chem, 2006,118:5285; Angew. Chem. Int. Ed,2006,45(31):5161-5163.
    [33]Luo C, Wang S, Liu H C. Cellulose Conversion into Polyols Catalyzed by Reversibly Formed Acids and Supported Ruthenium Clusters in Hot Water[J]. Angew. Chem,2007,46(40):7636-7639.
    [34]Deng W P, Tan X S, Fang W H, Zhang Q H, Wang Y. Conversion of cellulose into sorbitol over carbon nanotube-supported ruthenium Catalyst[J]. Catal. Lett.,2009,133:167-174.
    [35]Chen J G Carbide and Nitride Overlayers on Early Transition Metal Surfaces:Preparation, Characterization, and Reactivities[J]. Chem. Rev.,1996,96(4):1477-1498.
    [36]Sun J, Zheng M T, Wang X D, Wang A Q, Cheng R, Li T, Zhang T. Catalytic Performance of Activated Carbon Supported Tungsten Carbide for Hydrazine Decomposition[J]. Catal. Lett.,2008, 123(1-2):150-155.
    [37]H. Wang, A. Q. Wang, X. D. Wang, T. Zhang, One-pot synthesized MoC imbedded in ordered mesoporous carbon as a catalyst for N2H4 decomposition[J]. Chem. Commun.,2008,14(22):2565-2576.
    [38]Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J G. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts[J].Angew. Chem. Int. Ed,2008,47(44):8510-8513
    [39]Ji N, Zhang T, Zheng M Y, Wang A Q. Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts[J]. Catal. Today,2009,147(2):77-85
    [40]Zheng M Y, Wang A Q, Ji N, Pang J F, Wang X D, Zhang T. Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol[J]. ChemSusChem,2010,3(1):63-66
    [41]Zhao G H, Zheng M Y, Wang A Q, Zhang T. Catalytic conversion of cellulose to ethylene glycol over tungsten pHospHide catalysts[J]. Chin. J. Catal.,2010,31(8):928-932
    [42]刁明慧,张明慧,李伟,陶克毅.新型钌催化剂用于葡萄糖加氢反应[J].分子催化,2007,21(4):289-293
    [43]Hoffer B W, Crezee E, Mooijman P R M, Carbon supported Ru catalysts as promising alternative for Raney-type Ni in the selective hydrogenation of D-glucose[J]. Catal. Today,2003,79-80:35-41.
    [44]Ito S T, Fujimori T, Nagashima K, Yuzaki K, Kunimori K. Strong rhodium-niobia interaction in Rh/Nb2O5, Nb2O5-Rh/SiO2 and RhNbO4/SiO2 catalysts:Application to selective CO oxidation and CO hydrogenation[J]. Catal. Today,2000,57(3-4):247-254
    [45]Igarashi H, Uchida H, Suzuki M, Sasaki Y, Watanabe M. Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite[J]. Appl. Catal., A:General,1997,159(1-2):159-169.
    [46]Wang F, Lu G X. Regulating Role of Cobalt Oxide on Deleterious Chlorine Ion over PdO/SiO2 for CO Oxidation[J]. J. PHys. Chem. C,2009,113(39):17070-17075.
    [47]Xu Z Y, Chen L Q, Shao Yun. Catalytic Hydrogenation of Aqueous Nitrate over Pd Cu/ZrO Catalysts, Ind. Eng. Chem. Res.,2009,48:8356-8363.
    [48]Lyubovsky M, Pfefferle L. Complete methane oxidation over Pd catalyst supported on a-alumina. Influence of temperature and oxygen pressure on the catalyst activity[J]. Catal. Today,1999, 47(1-4):29-44.
    [49]Imai H, Date M, Tsubota S. Preferential Oxidation of CO in H2-Rich Gas at Low Temperatures over Au Nanoparticles Supported on Metal Oxides[J]. Catal. Lett.,2008,124(1-2):68-73.
    [50]Zou X H, Xu J G, Qi S X, Suo Z H. Effects of preparation conditions of Au/FeOx/Al2O3 catalysts prepared by a modified two-step method on the stability for CO oxidation[J]. Journal of Natural Gas Chemistry,2011,20(1):41-47.
    [51]Choi Y, Futagami K, Nakamura J. The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site mode [J]. Appl. Catal., A:General,2001,208(1-2): 163-167.
    [52]Zou H B, Chen S Z, Liu Z L, Lin W M. Selective CO oxidation over CuO-CeO catalysts doped with transition metal oxides[J]. Powder Technol.,2011,207(1-3):238-244.
    [53]Herman R G, Klier K, Simmons G W. Catalytic synthesis of methanol from CO/H2:I. Pase composition, electronic properties, and activities of the Cu/ZnO/M2O3 catalysts[J]. J. Catal.,1979, 56(3):407-429.
    [54]Fierro G, Jacno M L, Inveri M. Study of the reducibility of copper in CuO- ZnO catalysts by temperature-programmed reduction[J]. Appl. Catal., A:General,1996,137(2):327-348
    [55]李仲良,梁秋霞,马磊,卢春山,王丽丽,郑遗凡,李小年CuO/ZnO比和制备条件对CuO-ZnO催化剂氢解山梨醇制备C4-C6多元醇性能的影响[J].高等化学工程学报,2007,21(2):262-268.
    [56]Blanc B, Bourrel A, Gallezot P, Haas T, Taylor P. Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts[J]. Green Chem.,2000,2(2):89-91.
    [57]Rao R, Dandekar A, BakerR T K, Vannice M A. Properties of copper chromite catalysts in hydrogenation reactions[J]. J. Catal.,1997,171(2):406-419.
    [58]Monnier J R, Hanrahan M J, Apai G. A study of the catalytically active copper species in the synthesis of methanol over Cu-Cr oxide[J]. J. Catal.,1985,92(1):119-126.
    [59]Shimomura K, Ogawa K, M Oba and Kotera Y. Copper oxide-zinc oxide-alumina catalyst:The structure of a copper oxide-zinc oxide-alumina catalyst for methanol synthesis[J]. J. Catal.,1978, 52(2):191-205.
    [60]Yuan P, Liu Z Y, Zhang W Q, Sun H J, Liu S C. Cu-Zn/Al2O3 Catalyst for the Hydrogenation of Esters to Alcohols[J]. Chin. J. Catal.,2010,31(7):769-775.
    [61]陈霄榕,王爱菊,卢学英,康慧敏Cu-Zn-Al催化剂上糠醛气相加氢制糠醇的研究[J].化工进展,2001,20(6):40-43.
    [62]Avgouropoulos G, Ioannides T, Papadopoulou C, Batista J, Hocevar S. A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen[J]. Catal. Today,2002,75(1-4):157-167.
    [63]Yin A N, Guo X Y, Dai W L, Fan K N. The Nature of Active Copper Species in Cu-HMS Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol:New Insights on the Synergetic Effect between Cu0 and Cu+[J]. J. PHys. Chem. C,2009,113(25):11003-11013.
    [64]朱萍,汤颖,薛青松,李剑锋,路勇.微波辅助的金属氯化物Lewis酸催化纤维素水解[J].燃料化学学报,2009,37(2):244-247.
    [65]Kim I C, Park S D, Kim S. Effects of sulfates on the decomposition of cellobiose in supercritical water[J]. Chem. Eng. Process.,2004,43(8):997-1005.
    [66]Yang R, Su M X, Li M, Zhang J C, Hao X M, Zhang H. One-pot process combining transesterification and selective hydrogenation for biodiesel production from starting material of high degree of unsaturation[J]. Bioresour. Technol.,2010,101:5903-5909.
    [67]张全信,刘希尧,陈皓,雷鸣(Cu)CeO2复合氧化物对硝基苯加氢反应的催化性能[J].应用化学,2002,19(11):1049-1053.
    [68]Zhang D Z, Yin H B, Zhang R C, Xue J J, Jiang T S. Gas PHase Hydrogenation of Maleic Anhydride to c-Butyrolactone by Cu-Zn-Ce Catalyst in the Presence of n-Butanol[J]. Catal. Lett., 2008,122(1-2):176-182.
    [69]张东芝,张瑞超,薛金娟,殷恒波Cu-Zn-Ce催化顺丁烯二酸酐气相加氢[J].精细石油化工,2008,25(2):12-16.
    [70]李君,程极源,蒋毅,王华明.担载型铜-锌催化剂上顺丁烯二酸酐加氢制γ-丁内酯[J].燃料化学学报,2000,28(2):189-191.
    [71]刘志坚,廖建军,谭经品,李大东.Ce02对Cu-ZnO催化剂性质和CO2加氢反应性能的影响[J].工业催化,2001,9(6):41-44.
    [72]Jung C R, Han J, Nam S W, Lim T H, Hong S A, Lee. H I. Selective oxidation of CO over CuO-CeO2 catalyst:effect of calcination temperature[J]. Catal. Today,2004,93-95:183-190.
    [73]Liu W, and FlytzaniStepHanopoulos M. Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts:Ⅰ. catalyst composition and activity[J]. J. Catal., 1995,153(2):304-316.
    [74]Liu Y Y, Hayakawa T, Suzuki K, Hamakawa S, Tsunoda T, Ishii T, Kumagai M. Highly active copper/ceria catalysts for steam reforming of methanol[J]. Appl. Catal., A:General,2002,223(1-2): 137-145.
    [75]Wang J B, Lin S H, Huang T J. Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria[J]. Appl. Catal., A:General,2002,232(1-2):107-120.
    [76]Fujiwara M, Kieffer R, Ando H, Souma Y. Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide[J]. Appl. Catal., A:General,1995,121(1): 113-124.
    [77]Gallezot P, Cerino P J, Blanc B, Fleche G, Puertes P. Glucose hydrogenation on promoted raney-nickel catalysts[J]. J. Catal.,1994,146(1):93-102.
    [78]Minowa T, Ogi T. Hydrogen production from cellulose using a reduced nickel catalyst[J]. Catal. Today,1998,45(1-4):411-416.
    [79]储伟.催化剂工程[M].成都:四川大学出版社,2006,85-86.
    [80]Fujita S I, Moribe S, Kanamori Y, et al. Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2-effects of the calcination and reducetion conditions on the catalytic performance[J]. Appl. Catal.:A,2001,207 (1):121-128.
    [81]房德仁,刘中民,黎晓琼,张慧敏,许磊.加料方式对CuO/ZnO/Al2O3系催化剂前驱体性质的影响[J].燃料化学学报,2004,32(6):734-739.
    [82]Shen G C, Fujita S I, Takezawa N. Preparation of precursors for the Cu/ZnO methanol synthesis catalysts by coprecipitation methods:Effects of the preparation conditions upon the structures of the precursors [J]. J. Catal.,1992,138(2):754-758.
    [83]Djinovic P, Batista J, Pintar A. Calcination Temperature and CuO loading dependence on CuO-CeO2 Catalyst Activity for water-gas shift reaction[J]. Appl. Catal., A:General,2008,347(1): 23-33.
    [84]李占双,左宁,杨治.低温催化氧化CO的铜锌铈体系催化剂的制备研究[J].应用科技,2007,34(6):53-57.
    [85]Boccuzzi F, Chiorino A, Gargano M, Ravasioy N. Preparation, Characterization, and Activity of Cu/TiO2 Catalysts Ⅱ. Effect of the Catalyst MorpHology on the Hydrogenation of 1,3-Cyclooctadiene and the CO-NO Reaction on Cu/TiO2 Catalysts[J]. J. Catal.,1997,165: 140-149.
    [86]卢旭晨,徐廷献.溶胶-凝胶法及其应用[J].陶瓷学报,1998,19(1):53-57.
    [87]Gonzalez R D, Lopez T, Gomerz R.. Sol-Gol preparation of supported metal catalysts[J]. Catal. Today,1997,35:293-317.
    [1]Fujita S I, Moribe S, Kanamori Y, et al. Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2-effects of the calcination and reducetion conditions on the catalytic performance[J]. Appl. Catal.:A,2001,207 (1):121-128.
    [2]Yang R, Su M X, Li M, Zhang J C, Hao X M, Zhang H. One-pot process combining transesterification and selective hydrogenation for biodiesel production from starting material of high degree of unsaturation[J]. Bioresour. Technol.,2010,101:5903-5909.
    [3]Activity of Cu/TiO2 Catalysts II. Effect of the Catalyst Morphology on the Hydrogenation of 1,3-Cyclooctadiene and the CO-NO Reaction on Cu/TiO2 Catalysts[J]. J. Catal.,1997,165:140-149.
    [4]陈林深,吕光烈.Fe304的X射线微结构特征与催化活性间的关系[J].化学学报,1995,10:966-971.
    [5]Ji N, Zhang T, Zheng M Y, Wang A Q, Wang H, Wang X D, Chen J G. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts[J].Angew. Chem. Int. Ed,2008,47(44):8510-8513.
    [6]陈耀祖,涂亚平.有机质谱原理及应用[M].北京:科学出版社,2001,15-28.
    [7]蔡武城,袁厚积.生物质常用化学分析法[M].北京:科学出版社,1982,8-9.
    [8]Qi X J, Gou J X, Han X J, Yan B. Study on measuring reducing sugar by DNS reagent[J]. College of Life Science and Engineering,2004,9(3):17-19.
    [1]Martinez-Arias A, Fernandez-Garcia M, Munuera G. Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts[J]. J.Catal.,2000, 195(1):207-216.
    [2]Rao G R. Sahu H R, Mishra B G. Surface and catalytic properties of Cu-Ce-O composite oxides prepared by combustion method[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2003, 220(1-3):261-269.
    [3]张新荣,史鹏飞.Ce02改性Cu/Al2O3催化剂上甲醇水蒸气重整制氢[J].物理化学学报,2003,19(1):85-89.
    [4]刘源,孙海龙,刘全生,金恒芳.氧化铈气凝胶担载氧化铜催化剂上的一氧化碳氧化反应[J].催化学报,2001,22:453-456.
    [5]Luo M F, Zhong Y, Zheng X M. TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation[J]. Appl.Catal.A,1997,162(1-2):121-131.
    [6]Jung C R, Han J, Nametal S W. Selective oxidation of CO over CuO-CeO2 catalyst:effect of calcination temperature[J]. Catal. Today,2004,93-95:183-190.
    [7]马洪涛,邓国才,包信和Cu-ZnO-Al2O3甲醇合成催化剂活性组分的高温动态变化[J].催化学 报,2001,22(3):259-262.
    [8]郑修成,张晓丽,王淑荣,于丽华,王向宇,吴世华.不同CuO/CeO2催化剂上低温氧化反应[J].催化学报,2005,26(11):971-976.
    [9]Stone F S, Waller D. Cu-ZnO and Cu-ZnO/Al2O3 catalysts for the reverse water-gas shift reaction. The effect of the Cu/Zn ration on precursor characteristics and on the activity of the derived catalysts[J].Top. catal.,2003,22(3-4):305-318.
    [10]Li Z J, Flytzani-Stephanopoulos. Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization[J]. Ind. Eng. Chem. Res.,1997,36:187-196.
    [11]Pillai U R, Deevi S. Copper-zinc oxide and ceria promoted copper-zinc oxide as highly active catalysts for low temperature oxidation of carbon monoxide[J]. Appl. Catal. B:Environ.,2006,65: 110-117.
    [12]Zou H B, Chen S Z, Liu Z L, Lin W M. Selective CO oxidation over CuO-CeO catalysts doped with transition metal oxides[J]. Powder Technol.,2011,207(1-3):238-244.
    [1]Pillai U R, Deevi S. Copper-zinc oxide and ceria promoted copper-zinc oxide as highly activecatalysts for low temperature oxidation of carbon monoxide[J]. Appl. Catal. B:Environ.,2006, 65:110-117.
    [2]Fierro G, Jacno M L, Inveri M. Study of the reducibility of copper in CuO- ZnO catalysts by temperature-programmed reduction[J]. Appl. Catal., A:General,1996,137(2):327-348.
    [3]Pillai U R, Deevi S. Copper-zinc oxide and ceria promoted copper-zinc oxide as highly active catalysts for low temperature oxidation of carbon monoxide[J]. Appl. Catal. B:Environ.,2006,65: 110-117.
    [4]Peplinski B, Unger W E S, Grohmann I. Characterization of Cu-Zn-Al oxide catalysts in the precipitaed, calcined and reduced state by means of XPS with the help of a finger-print data base[J]. Appl SurfSci.,1992,62(3):115-129.
    [5]Batista J, Pintar A, Mandrino D, Jenko M, Martin V. XPS and TPR examinations of g-alumina-supported Pd-Cu catalysts[J]. Applied Catalysis A:General,2001,206:113-124.
    [6]Corma A, Palomares A, Marquez F. Determining the nature of the active sites of Cu-beta zeolites for the selective catalytic reduction(SCR) of NOx by using a coupled reaction-XAES/XPS study[J]. Journal of catalysis,1997,170(1):132-139.
    [7]Balkenenda A R, Kooten W E J, Pieters A R, Lamers M. XPS surface characterization of a Cu/SiO2 catalyst oxidized by NO or O2[J]. Applied Surface Science,1993,68(3):439-444.
    [8]Zou H B, Chen S Z, Liu Z L, Lin W M. Selective CO oxidation over CuO-CeO catalysts doped with transition metal oxides[J]. Powder Technol.,2011,207(1-3):238-244.
    [9]Rao G R. Sahu H R, Mishra B G. Surface and catalytic properties of Cu-Ce-O composite oxides prepared by combustion method[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2003, 220(1-3):261-269.
    [10]Kundakovic L J, Flytzani-Stephanopoulos M. Reduction characteristics of copper oxide incerium and zirconium oxide systems[J]. Appl. Catal. A:Gen.,1998,171:13-29.
    [11]Zhang D Z, Yin H B, Zhang R C, Xue J J, Jiang T S. Gas Phase Hydrogenation of Maleic Anhydride to c-Butyrolactone by Cu-Zn-Ce Catalyst in the Presence of n-Butanol[J]. Catal. Lett.,2008, 122(1-2):176-182.
    [1]Minowa T, Zhen F, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst[J]. J.Supercrit.Fluid.1998,13(1-3),253-259.
    [2]庄新姝,王树荣,袁振宏.纤维素超低酸水解产物的分析[J].农业工程学报,2007,23(2):177-182.
    [3]Ding L N, Wang A Q, Zheng M Y, Zhang T. Selective transformation of cellulose into sorbitol by using a bifunctional nickel phosphide catalys[J]. ChemSumChem,2010,3(7):818-821.
    [4]Zhao Y, Lu W J,Wang H T. Supercritical hydrolysis of cellulose for oligosaccharide production in combined technology[J]. Chem.Eng.J.2009,150(2-3):411-417.
    [5]陈耀祖,涂亚平.有机质谱原理及应用[M].北京:科学出版社,2001,15-28.
    [6]Ji N, Zhang T, Zheng M Y, Wang A Q. Catalytic conversion of cellulose into ethylene glycol over supported carbide catalysts[J]. Catal. Today,2009,147(2):77-85.
    [7]Huber G W, Chheda J N, Barrett C J, Dumesic J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science,2005,308(5727):1446-1450.
    [8]Luo C, Wang S, Liu H C. Cellulose Conversion into Polyols Catalyzed by Reversibly Formed Acids and Supported Ruthenium Clusters in Hot Water[J]. Angew. Chem,2007,46(40):7636-7639.
    [9]Fierz-David H E. The liquefaction of wood and cellulose and some general remarks on the liquefaction of coal[J]. Chem Ind,1925,44:942-944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700