铁强化微生物—电催化厌氧污水处理技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧消化是处理中高浓度废水最现实、有效的方法之一。它将污水处理与污染物能源化相结合,在国内外得到广泛应用。但是,产甲烷菌代谢缓慢且对环境条件敏感,其容易导致水解酸化过程和甲烷化过程失衡,从而引起有机酸积累、甲烷化抑制甚至厌氧过程的失败。因此,有必要研究强化有机酸高效降解以及提高厌氧甲烷化能力的新方法,提高厌氧处理效率,这对解决高浓度难降解有机废水的有效处理和污染物资源化利用具有重要意义。
     针对以上问题,本论文利用零价铁的还原性和微生物异化铁(Ⅲ)还原的特性,将零价铁和三价铁分别置于厌氧反应器内用以强化厌氧消化的处理效果,重点开展了基于铁电极和铁氧化物的微生物电化学强化厌氧甲烷化技术的研究,考察了电化学强化技术、铁(0,Ⅲ)强化技术与厌氧生物处理的耦合关系和交互作用机制,结合分子生物学技术探索了铁(0,Ⅲ)和电与厌氧微生物之间的协同作用关系。主要研究内容和结果如下:
     (1)通过零价铁(ZVI)置于厌氧反应器内的方法有效增强了处理含硫酸盐废水过程中的厌氧甲烷化。结果表明,零价铁作为还原剂可有效缓冲酸性、维持厌氧体系中性的pH(7-8)从而减弱了硫酸盐还原产生的硫化氢对厌氧甲烷化的抑制作用,实现了较高的COD去除率和甲烷产量。分子生物学实验结果表明该反应器底部硫酸盐还原菌为优势菌而上部则以产甲烷菌为主导。该方法实现了微生物群落的功能化分区,这与两相厌氧反应器处理含硫酸盐废水较相似,却在单一反应器内实现。同时,这表明零价铁的加入有助于强化厌氧甲烷化过程。
     (2)采用将Fe203置于酸化硫酸盐还原反应器内的方法,强化了硫酸盐废水处理过程中有机酸的降解。研究结果发现Fe203的加入可促进微生物异化Fe(Ⅲ)还原过程,其协同硫酸盐还原过程增强了有机酸的降解能力,从而实现了酸化硫酸盐还原反应器较高的COD去除率(27.3%)和硫酸盐还原率(57.9%)。分子生物学的定性和定量分析结果表明该方法实现了铁还原菌、硫酸盐还原菌和酸化菌的共生并大量富集,其中硫酸盐还原菌Desulfovibrio marrakechensis和铁(Ⅲ)还原菌Iron-reducing bacteria HN54的含量均明显高于参比反应器。
     (3)由(1)部分可知,零价铁可促进厌氧甲烷化过程,基于此构建了使用铁电极为阳极的生物电解池(MEC)-上流式厌氧污泥床反应器(UASB)装置,即将一对铁-石墨电极置入厌氧反应器内并施以适当的电压。零价铁的加入可强化厌氧过程(包括强化厌氧还原氛围和厌氧菌生长),从而实现了其对含盐废水、染料废水和含氮废水的有效处理。此外,该反应器对有机废水的厌氧水解酸化过程也表现出了明显促进作用。针对含盐废水的处理,该反应器表现出了较高的耐盐能力和有机物降解能力。在较高盐度条件下(50g/L),该反应器(外加电压1.2V)的COD去除率达到了93%且有机酸去除率较高,而参比反应器的COD去除率降为53%且发生了严重的有机酸积累。分子生物学实验表明该反应器富集了大量的耐盐古菌和耐盐细菌且食丙酸盐细菌的丰度较高;针对高浓度偶氮染料废水(1200mg/L活性艳红X-3B)的处理,该反应器表现出了较高的脱色能力(83.4%)和COD去除能力(84.7%)。阳极腐蚀释放的Fe2+与电场的耦合作用强化了胞外聚合物的产生。微生物群落结构的动态分析表明基于铁电极的电场作用可显著加快微生物的富集速度,这对缩短反应器启动时间和增加反应器负荷具有重要意义;铁电极和电场的耦合作用明显提高了废水的水解酸化效率并优化产酸类型,实现了酸化相高效的COD去除并以产乙酸结构为主导。同时,铁电极作用下反应器的甲烷产量也有近两倍的提高。分子生物学的定性和定量分析结果表明基于铁电极的水解酸化反应器仍保留了大量古菌,其中食乙酸产甲烷菌相对含量较高,而参比无电极的反应器古菌含量相对较低且以食氢产甲烷菌为优势菌;基于铁电极的电催化作用可有效增强厌氧氨氧化(ANAMMOX)菌的富集,进而缩短ANAMMOX反应器的启动时间(近24%)。考察了不同电压对ANAMMOX脱氮的影响,在一定范围内增加电压(≤0.6V)有助于强化反应器的脱氮性能,但当电压超过一定的值(0.8V)将会减弱ANAMMOX反应器的脱氮能力。
     (4)由(2)部分可知,三价铁具有异化还原降解有机物和富集铁还原菌的特性,基于此通过在MEC-UASB反应器内投加氢氧化铁的方法,强化了厌氧消化和阳极氧化作用,实现了有机废水的高效降解。分子生物学实验结果表明氢氧化铁可增强反应器内细菌和古菌菌落的富集度和生物多样性,同时电场作用使得电极表面的微生物群落结构发生明显改变,这使得反应器内实现了不同功能微生物群落的垂直分布。此外,该方法对染料废水脱色也表现出较好的效果。酶活分析表明氢氧化铁与电场的耦合作用提高了微生物偶氮还原酶活性,其对废水脱色具有重要作用。在该反应器体系的阳极生物膜内富集并分离到了一株具有电化学活性的新型铁还原菌Aeromonas hydrophila.XB (KC507819)。该菌株同时具有铁还原、脱色和电化学活性。
Anaerobic digestion (AD) is a desirable and widely used technology for high-strength organic wastewater treatment, simultaneously with the generation of bio-energy resources. Slow metabolism of methanogens and its sensitive characteristics to environmental perturbation are liable to cause the unbalance between acidogenesis and methanogenesis, thereby resulting in the accumulation of volatile fatty acids (VFAs), inhibition of methanogenesis and even failure of anaerobic process. Therefore, it is necessary to develop a new approach to enhance the effective degradation of VFAs and improve the ability of methanogenesis. This study is meaningful for efficient treatment of lugh concentration organic wastewater, bio-energy recovery and the application of AD in a wider field.
     To solve the above issues, we explored the performance and potential mechanisms of zero valent iron (ZⅥ) and Fe(Ⅲ) on the enhancement of AD, and we mainly focused on the study of microbial electrocatalysis of anaerobic methanogenesis system based on the iron electrode and Fe(Ⅲ) oxides. Furthermore, we also investigated the coupling effects among electrochemical technology, iron (0, Ⅲ) enhanced technology and anaerobic digestion, and clarified the synergistic relationships and mechanisms among Fe (0, Ⅲ), electricity and anaerobic microbial community. Main contents and results are as follows:
     (1) A novel method via dosing zero-valent iron (ZⅥ) into an anaerobic reactor significantly enhanced anaerobic methanogenesis in sulfate-containing wastewater treatment. The results showed that ZⅥ as a reducing agent could buffer acidity, maintain neutral pH(7-8) and reduce the inhibition of H2S generated from sulfate reduction on methanogenesis, resulting in high COD removal and methane production. Molecular biology analysis showed that the fractions of methanogens and SRB presented highest in the upper portion and the bottom of the ZⅥ-anaerobic reactor, respectively. This method realized the functionalized partitioning of microbial activities that was similar to a two-stage anaerobic reactor for sulfate-containing wastewater treatment, but in a single anaerobic reactor. The addition of ZⅥ in an anaerobic reactor helped to enhance anaerobic methanogenesis.
     (2) Based on the characteristics of microbial Fe(Ⅲ) reduction for the degradation of organics, a novel approach via dosing Fe2O3into an acidogenic sulfate-reducing reactor was developed to enhance the degradation of organic acids in the sulfate-containing wastewater treatment. The results showed that the addition of Fe2O3resulted in microbial reduction of Fe (Ⅲ), which enhanced the degradation of organic acids through assisting sulfate reduction process. In this way, high COD removal (27.3%) and sulfate reduction (57.9%) were realized. The qualitative and quantitative analysis of molecular biology revealed that this method realized the enrichment and symbiosis of iron reducing bacteria, sulfate reducing bacteria and acidogenic bacteria. Thereinto, the abundances of sulfate reducing bacteria Desulfovibrio marrakechensis and Iron-reducing bacteria HN54were significantly higher than that in the control reactor.
     (3) Using the characteristics of ZVI on the enhancement of anaerobic methanogenesis, a Fe anode-based microbial electrocatalysis cell (MEC)-upflow anaerobic sludge blanket reactor (UASB) was developed i.e. a pair of Fe-graphite electrodes was inserted into an UASB reactor with a proper voltage input. The addition of ZVI could strengthen the anaerobic process including the enhancement of anaerobic reducing atmosphere and the growth of anaerobic bacteria, further realizing the effective treatment of high salinity wastewater, dye wastewater and nitrogen-containing wastewater. In addition, this coupled reactor also enhanced acidogenic process of organics. For the high salinity wastewater treatment, this coupled reactor presented high salt-adapted ability and high degradation ability. Under the high salt condition, the COD removal of this coupled reactor reached93%while the COD removal of the control reactor was only53%and the accumulation of organic acids occurred. The molecular biology analysis indicated that a large amount of salt-adapted bacteria and archaea were enriched in this coupled reactor and the relative abundance of propionate-utilizing bacteria was higher. For the high azo dye wastewater treatment (1200mg/L reactive brilliant red X-3B), this coupled reactor showed high decolorization (83.4%) and COD removal (84.7%). The coupling effect of Fe2+generated from anode and electric field enhanced the production of extracellular polymer substances (EPS). The dynamic analysis of microbial community indicated that the coupling of Fe electrode and electric field significantly accelerated the enrichment of anaerobic bacteria, which was meaningful for shortening the start-up time and increasing organic loading. The coupling of Fe electrode and electric field significantly improved the efficiency of hydrolysis and optimized the composition of organic acids, realizing the high COD removal and the dominant acetate production. Additionally, the yields of methane of this coupled reactor was about two times higher than that of the control reactor. The qualitative and quantitative analysis of molecular biology indicated that a large amount of archaea was retained in this coupled reactor, in which the acetate-utilizing methanogens was dominant. From comparsion, the abundance of archaea in the control reactor was low and the hydrogen-utilizing methanogens was dominant. The Fe anode-based MEC-UASB reactor could enhance the enrichment of ANAMMOX bacteria, which further shortened the start-up time (about24%). Through investigating the effects of different voltage on the nitrogen removal of ANAMMOX, we discovered that raising the voltage applied for the electrode in a given extent (≤0.6V) enhanced the performance of the reactor, while a voltage more than0.8V reduced the anammox performance.
     (4) Using the characteristics of microbial Fe(III) reduction on the degradation of organics and the enrichment of iron reducing bacteria (IRB), a novel method via dosing Fe(OH)3into a MEC-UASB reactor enhanced both anaerobic digestion and anodic oxidation of organics, realizing the high treatment performance of organic wastewater. Molecular biology analysis indicated that the addition of Fe(OH)3increased the abundance and biodiversity of bacteria and archaea communities. Meanwhile, the effects of electric field changed the microbial community structure on the surface of electrodes, which created a vertical distribution of different functional microbial community in a single reactor. On the other hand, this method also presented high performance for color removal. Enzyme activity analysis showed that the coupling of Fe(III) and electric field could improve the activity of azoreductase that was important for the decolorization. Subsequently, a novel iron reducing bacteria (IRB) Aeromonas hydrophila. XB (KC507819) with electrochemical activity was isolated from the anodic biofilm of MEC-UASB reactor. The strain XB had the electrochemical activity, Fe(III) reducing activity and decolorization capacity.
引文
[1]Masse D I, Droste R L. Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor. Water Research [J],2000,34 (12):3087-3106.
    [2]Marchaim U, Krause C. Propionic to Acetic-Acid Ratios in Overloaded Anaerobic-Digestion. Bioresource Technology [J],1993,43 (3):195-203.
    [3]Tiwari M K, Guha S, Harendranath C S, et al. Influence of extrinsic factors on granulation in UASB reactor. Applied Microbiology and Biotechnology [J],2006,71 (2):145-154.
    [4]Yu H Q, Fang H H P, Tay J H. Effect of Fe2+on sludge granulation in upflow anaerobic sludge blanket reactor. Water Science and Technology [J],2000,41 (12):199-205.
    [5]Yu H Q, Tay J H, Fang H H P. The roles of calcium in sludge granulation during UASB reactor start-up. Water Research [J],2001,35 (4):1052-1060.
    [6]Parkin G F, Sneve M A, Loos H. Anaerobic filter treatment of sulfate-containing wastewaters. Water Science Technology [J],1991,23:1283-1291.
    [7]Vallero M V G, Hulshoff Pol L W, Lettinga G, et al. Effect of NaCl on thermophilic (55℃) methanol degradation in sulfate reducing granular sludge reactors. Water Research [J],2003, 37 (10):2269-2280.
    [8]Chong S, Sen T K, Kayaalp A, Ang H M. The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment-A state-of-the art review. Water Research [J],2012,46 (11):3434-3470.
    [9]Schmidt J E, Ahring B K. Effects of Magnesium on Thermophilic Acetate-Degrading Granules in Upflow Anaerobic Sludge Blanket (UASB) Reactors. Enzyme and Microbial Technology [J],1993,15 (4):304-310.
    [10]Teo K C, Xu H L, Tay J H. Molecular mechanism of granulation. Ⅱ:Proton translocating activity. Journal of Environmental Engineering-Asce [J],2000,126 (5):411-418.
    [11]Yu H Q, Fang H H P, Tay J H. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere [J],2001,44 (1):31-36.
    [12]王林山,吴允,张勇,等.UASB反应器中投加惰性载体促进颗粒污泥生成。环境导报[J],1996,16(3):12-15
    [13]Kalogo Y, M'Bassiguie Seka A, Verstraete, W. Enhancing the start-up of a UASB reactor treating domestic wastewater by adding a water extract of Moringa oleifera seeds. Applied Microbiology and Biotechnology [J],2001,55 (5),644-651.
    [14]Tiwari M, Guha S, Harendranath C, Tripathi S. Enhanced granulation by natural ionic polymer additives in UASB reactor treating low-strength wastewater. Water Research [J], 2005,39 (16):3801-3810.
    [15]Cao Y, Zhang, M, Shan, S. Effect of two-added powdered bamboo-charcoal on sludge granulation of UASB reactor. Transactions of the Chinese Society of Agricultural Engineering [J],2010,26 (5):246-250.
    [16]Lersittichai S, Lertsutthiwong P, Phalakornkule C. Improvement of upflow anaerobic sludge bed performance using chitosan. Water Environment Research [J],2007,79 (7): 801-807
    [17]Wang Y, Show, K Y, Tay J H, Sim K H, Effects of cationic polymer on start-up and granulation in upflow anaerobic sludge blanket reactors. Journal of Chemical Technology & Biotechnology [J],2004,79 (3):219-228.
    [18]Jeong H S, Kim Y H, Yeom S H, Song B K, Lee S I. Facilitated UASB granule formation using organic-inorganic hybrid polymers. Process Biochemistry [J],2005,40 (1): 89-94.
    [19]Yu H Q, Tay J H, Fang H H P, Effect of added powdered and granular activated carbons on start-up performance of UASB reactors. Environmental Technology [J],1999,20: 1095-1101.
    [20]Zhang W, Wang D, Koga Y, et al. PVA-gel beads enhance granule formation in a UASB reactor. Bioresource Technology [J],2008,99 (17):8400-8405.
    [21]Alphenaar P A, Visser A, Lettinga G. The effect of liquid upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content. Bioresource Technology [J],1993,43:249-258.
    [22]Noyola A, Mereno G. Granulation production from raw waste actived sludge. Water Science and Technology [J],1994,30:339-345.
    [23]Ma L M, Zhang W X. Enhanced biological treatment of industrial wastewater with bimetallic zero valent iron. Environment Science and Technology [J],2008,42 (15):5384-5389.
    [24]Olivier X L, Stephan J H. Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research [J],2005,39 (9): 1729-1740.
    [25]杨凤林,全燮,高桂英.铁屑过滤法处理染料废水的研究.化工环保[J],1988,8(6):330-332。
    [26]郝瑞霞,赵英,罗人明,等.铁屑过滤-SBR工艺处理印染废水研究,环境科学[J],1998,19(3):54-57。
    [27]Lai B, Zhou, Y, Qin, H, et al. Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by microelectrolysis. Chemical Engineering Journal [J], 2012,179:1-7.
    [28]宋勇,戴友芝.超声波与零价铁联合降解五氯苯酚的初步研究.湖南工程学院学报[J],2005,15(2):76-79。
    [29]汤心虎,黄丽莎,莫测辉,曹刚.中心条件下超声波/零价铁协同降解活性艳红X-3B.环境化学[J],2006,25(2):199-202。
    [30]Muftikan, R, Fernando, Q, Korte, N. A Method for rapid dechlorination of low molecular weight chlorinated hydrocarbons in water. Water Research [J],1995,29 (10):2434-2439.
    [31]Jong T, Parry D L, Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Research [J],2003, 37:3379-3389.
    [32]Daniels L, Belay N, Rajagopal B S, Weimer P J. Bacterial methanogenisis and growth from CO2 with elemental iron as the sole source of electrons. Science [J],1987,237:509-511.
    [33]陈宜菲,陈少瑾.利用零价铁还原土壤中硝基苯类化合物的研究.环境科学学报[J],2007,27(2):241-246。
    [34]胡劲召,陈少瑾,等.零价铁对土壤中4-氯苯酚还原脱氯研究.生态环境[J],2005,14(3):349-352。
    [35]Zhang Y B, Jing Y W, Quan X, et al. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater. Water Science and Technology [J],2011,63 (4): 741-746.
    [36]Zhang Y B, Jing Y W, Zhang J X, et al. Performance of a ZVI-UASB reactor for azo dye wastewater treatment. Journal of Chemical Technology and Biotechnology [J],2011,86 (2): 199-204.
    [37]Lovley D R. Dissimilatory Fe(III) and Mn (IV) reduction. Microbialogical Reviews [J], 1991,55(2):259-287.
    [38]Villatoro-Monzon W R, Mesta-Howard A M, Razo-Flores E. Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors. Water Science and Technology [J],38:120-128.
    [39]Nevin K P, Lovley D R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Applied and Environmental Microbiology [J],2000,66:2241-1165.
    [40]马小兰,丁琳洁,董军,等.地下水环境中铁氧化物生物异化还原耦合降解硝基苯的影响因素研究.生态环境学报[J],2012,21(6):1109-1114。
    [41]Stabnikov V P, Tay S T L, Tay D K, et al. Effect of iron hydroxide on phosphate removal during anaerobic digestion of activated sludge. Applied Biochemistry and Microbiology [J],2004,40 (4):376-380.
    [42]王亚娥,冯娟娟,李杰.不同Fe(Ⅲ)对活性污泥异化铁还原及除磷影响研究.中国环境科学[J],2013,33(6):993-998。
    [43]Pham H, Boon N, Marzorati M, et al. Enhanced removal of 1,2-dichloroethane by anodophilic microbial consortia. Waster Research [J],2009,43:2936-2946.
    [44]Thrash J C, Van Trump J I, Weber K A, et al. Electrochemical stimulation of microbial perchlorate reduction. Environment Science and Technology [J],2007,41:1740-1746.
    [45]Virdis B, Rabaey K, Yuan Z, et al. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research [J],2008,42:3013-3024.
    [46]Liu H, Grot S, Logan B E. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science and Technology [J],2005,39 (11):4317-4320.
    [47]Rozendal, R, Hamelers H, Euverink G J W, et al. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. International Journal of Hydrogen Energy [J], 2006,31 (12):1632-1640.
    [48]Cheng S, Xing D, Call D, et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environment Science and Technology [J],2009,43 (10): 3953-3958.
    [49]Clauwaert P, Verstraete W. Methanogenesis in membraneless microbial electrolysis cells. Applied Microbiology and Biotechnology [J],2009,82:829-836.
    [50]Bond D R, Lovley D R. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied Environment Microbiology,2003,69 (3):1548-1555.
    [51]Gralnick J A, Newman D K. MicroReview:Extracellular respiration. Molecular Microbiology [J],2007,65 (1):1-11.
    [52]Ringeisen B R, Henderson E, Wu P K, et al. Effect of Iron Hydroxide on Phosphate Removal during Anaerobic Digestion of Activated Sludge. Applied Biochemistry and Microbiology [J],2004,40 (4):376-380.
    [53]Lovley D R, Bug J. Harvesting electricity with microorganisms. Nature Reviews Microbiology [J],2006,4:497-508.
    [54]Bird L J, Bonnefoy V, Newman D K. Bioenergetic challenges of microbial iron metabolisms. Trends in Microbiology [J],2011,19:330-340.
    [55]Bretschger O, Obraztsova A, Sturm C A, et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Applied and Environmental Microbiology [J],2007,73 (21):7003-7012.
    [56]Nakamura R, Kai F, Okamoto A. et al. Self-constructed electrically conductive bacterial networks. Angewandte Chemie International Edition [J],2009,48:508-511.
    [57]Ji J Y, Jia Y J, Wu W G. A layer-by-layer self-assembled Fe2O3 nanorod-based composite multilayer film on ITO anode in microbial fuel cell, Colloids and Surfaces A [J], 2011,390:56-61.
    [58]Wang A J, Sun D, Ren N Q. A rapid selection strategy for an anodophilic consortium for microbial fuel cells, Bioresource Technology [J],2010,101:5733-5735.
    [59]Villano M, Monaco G, Aulenta F, Majone M. Electrochemically assisted methane production in a biofilm reactor. Journal of Power Sources [J],2011,196 (22):9467-9472.
    [60]Hohmann C, Winkler E, Morin G, et al. Anaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation. Environmental Science & Technology [J],2010,44 (1):94-101.
    [61]Druschel G K, Emerson D, Sutka R, et al. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(Ⅱ) oxidizing microorganisms. Geochimica et Cosmochimica Acta [J],2008,72:3358-3370.
    [62]Gault A G, Ibrahim A, Langley S, Renaud R, et al. Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments. Chemical Geology [J].2011,28:141-151.
    [63]Sorokinal A Y, Elena Y, Chernousova G, et al. Ferrovibrio denitrificans gen. nov., sp. nov., a novel neutrophilic facultative anaerobic Fe(Ⅱ)-oxidizing bacterium. FEMS Microbiological Letter [J].2012,335:19-25
    [64]J(?)rgensen C J, Jacobsen O S, Elberling B, et al. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environmental Science & Technology [J]. 2009,43 (13):4851-4857
    [65]Richter K, Schicklberger M, Gescher J, Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Applied &. Environmental Microbiology [J],2012,78: 913-921.
    [66]Nealson K H, Scott J. Ecophysiology of the Genus Shewanella. In:Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes. New York: Springer.2006,1133-1142.
    [67]Finneran K T, Johnsen C V, Lovley D R. Rhodoferaxferrireducens sp. nov., apsychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(Ⅲ). International Journal of Systematic and Evolutionary Microbiology [J],2003,53: 669-673.
    [68]Liu Y W, Zhang Y B, Quan, X, et al. Applying an electric field in a built-in zero valent iron-Anaerobic reactor for enhancement of sludge granulation. Water Research [J],2011a,45 (3):1258-1266.
    [69]Coates J D, Cole K A, Michaelidou U, et al. Biological control of hog waste odor through stimulated microbial Fe(III) reduction. Applied and Environmental Microbiology [J], 2005,71 (8):4728-4635.
    [70]Ka Yu Cheng, Goen Ho, Ralf Cord Ruwisch, Novel Methanogenic rotatable bioelectrochemical system operated with polarity inversion, Environmental Science & Technology,2011,45,796-802.
    [71]Zhang Y B, An X L, Quan X. Enhancement of sludge granulation in a zero valence iron packed anaerobic reactor with a hydraulic circulation. Process Biochemistry,2011,46 (2): 471-476.
    [72]Peng X, Yu H, Wang X, et al. Enhanced anode performance of microbial fuel cells by adding nanosemiconductor goethite. Journal of Power Sources [J],2013,223:94-99.
    [73]Stams A J M, Plugge C M, Bok F A M. Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Science and Technology [J],2005,52:13-20.
    [74]Isa H M, Anderson G K. Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion. Process Biochemistry,2005,40:2079-2089.
    [75]Genschow E, Hegemann W, Maschke C. Biological sulfate removal from tannery wastewater in a two-stage anaerobic treatment. Water Research [J],1996,30:2072-2078.
    [76]Lens P N L, Klijn R, Van Lier J B, et al. Effect of specific gas loading rate on thermophilic (55 ℃) acidifying (pH 6) and sulfate reducing granular sludge reactors. Water Research [J],2003,37:1033-1047.
    [77]Pol L W H, Lens P N L, Stams A J M. Anaerobic treatment of sulphate-rich wastewaters, Biodegradation [J],1998,3-4:213-224.
    [78]Zhang Y B, Jing Y W, Zhang J X. et al. Performance of a ZVI-UASB reactor for azo dye wastewater treatment. Journal of Chemical Technology and Biotechnology [J],2011,86 (2): 199-204.
    [79]Speece R E. Anaerobic Biotechnology for Industrial Wastewaters. Archae Press,1996, Nashville, TN.
    [80]Migdisov A A, Williams-Jones A E, Lakshtanov L Z, et al. Estimates of the second dissociation constant of H2S from the surface sulfidation of crystalline sulfur, Geochimica et Cosmochimica Acta [J],2002,66:1713-1725.
    [81]APHA. Standard Methods for the Examinationon of Water and Wastewater,18th edn. American Public Health Association,2005, Washington D.C., USA.
    [81]Amann R I, Binder B J, Olson R J. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology [J],1990,56:1919-1925.
    [82]Sekiquchi Y, Kamagata Y, Nakamura K. et al. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Applied and Environmental Microbiology [J],1999,65:1280-1288.
    [83]Hugenholtz P, Pace N R. Identifying microbial diversity in the natural environment:A molecular phylogenetic approach. Trends Biotechnology [J],1996,14:190-197.
    [84]Teske A, Wawer C, Muyzer G. Distribution of sulfate -redu- cing bacteria in a stratified fjord (mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Applied and Environmental Microbiology [J],1996,62:1405-1415.
    [85]Giovannoni S J. In:Stackebrandt, E., Goodfellow, M. (Eds.), Nucleic Acid Techniques in Bacteria Systematics, Wiley Chichester, England,1991,177-203.
    [86]Karri S, Sierra-Alvarez R, Field J A. Zero Valent Iron as an Electron-Donor for Methanogenesis and Sulfate Reduction in Anaerobic Sludge. Biotechnology and Bioengineering [J],2005,92:810-819.
    [87]Omil F, Lens P, Hulshuff P. Effect of upward velocity and sulphide concentration on fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochemistry [J], 1996,31:699-710.
    [88]Al-Zuhair S, HEl-Naas M, Al-Hassani H. Sulfate inhibition effect on sulfate reducing bacteria. Journal of Biochemical Technology [J],2008,1:39-44.
    [89]O'Flaherty V, Colohan S, Mulkerrins D. Effect of sulphide addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor:microbial interactions and toxic effect. Bioresource Technology [J],1999,68:109-120.
    [90]Koster I W, Rinzema A, Devegt A L, et al. Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Research [J],1986,20:1561-1567.
    [91]Powell M A, Somero G N. Adaptations to sulfide by hydrothermal vent animals:sites and mechanisms of detoxification and metabolism. Biology Bulletin [J],1986,171:274-290.
    [92]Rinzema A, Lettinga G. Anaerobic treatment of sulfate containing wastewater, in:D.L. Wise (Ed.), Biotreatment Systems CRC Press Inc., Boca raton, USA,1988, III:65-109.
    [93]Hulshoff Pol L W, Lens P N L, Weiirna J, New developments in reactor and process technology for sulfate reduction. Water Science and Technology [J],2001,44:67-76.
    [94]Kalyuzhnyi S V, Fedorobich V V. Mathematical modeling of competition between sulphate reduction and methanogenesis in anaerobic reactors. Bioresource Technology [J], 1998,65:227-242.
    [95]Stams A J M, Oude-Elferink S J W H. Understanding and advancing wastewater treatment. Current Opinion Biotechnology [J],1997,8:328-334.
    [96]Briones A M, Daugherty B J, Angenent L T, et al. Characterization of microbial trophic structures of two anaerobic bioreactors processing sulfate-rich waste streams. Water Research [J],2009,43:4451-4460.
    [97]Isa Z, Grusenmeyer S, Verstraete W. Sulfate reduction Relative to methane production in high-rate anaerobic-digestion- microbiological aspects. Applied and Environmental Microbiology [J],1986,51:580-587.
    [98]Vlyssides A, Barampouti E M, Mai S. Influence of ferrous iron on the granularity of a UASB reactor. Chemical Engineering Journal [J],2009,146:49-56.
    [99]Harms G, Layton A C, Dionisi H M. Real-time PCR Quantification of Nitrifying Bacteria in a Municipal Wastewater Treatment Plant. Environmental Science and. Technology [J],2003,37:343-351.
    [100]Barton L L. Sulfate-Reducing Bacteria. New York, London:Plenum Press.1995, 150-180
    [101]Lyew D, Knowles R, Sheppard J. The biological treatment of acid mine drainage under continuous flow conditions in a reactor. Chemical Engineering Research and Design [J],1994, 72(part B):42-47.
    [102]Jong T, Parry D L. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor. Water Research [J],2006,40:2561-2571.
    [103]Wang A J, Ren N Q, Wang X, et al. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria. Journal of Hazardous Materials [J],2008,154:1060-1065.
    [104]Tebo B M, Obraztsova A Y. Sulfate-reducing bacterium grows with Cr (Ⅵ), U (Ⅵ), Mn (IV), and Fe (Ⅲ) as electron acceptors. FEMS Microbiology Letters [J],1998,162: 193-198.
    [105]Lovley D R, Phillips E J P. Competitive mechanism for inhibition of sulfate reduction and methane production in the zone of ferric ion reduction in sediments. Applied and Environmental Microbiology [J],1987,53:2636-2641.
    [106]Chapelle F H, Lovley D R. Competitive exclusion of sulfate reducing by Fe (Ⅲ)-reducing bacteria:a mechanism for producing discrete zones of high-iron ground water. Ground Water [J],1992,30:29-36.
    [107]Huang J G, Wen Y, Ding N, et al., Effect of sulfate on anaerobic reduction of nitrobenzene with acetate or propionate as an electron donor. Water Research [J],2012,46 (14):4361-4370.
    [108]Wilen B M, Nielsen J L, Keiding K, et al. Influence of microbial acivity on the stability of activated sludge flocs. Colloids and Surfaces B:Biointerfaces [J],2000,18:145-156.
    [109]Tugel J B, Hines M E, Jones G E. Microbial iron reduction by enrichment cultures isolated from estuarine sediments. Applied and Environmental Microbiology [J],1986,52: 1167-1172.
    [110]Lu J, Jin Q, He Y L, et al. Biodegradation of nonylphenol polyethoxylates under Fe (Ⅲ)- reducing conditions. Chemosphere [J],2007,69:1047-1054.
    [111]Das A, Frank C J. Adhesion of the dissimilatory Fe (Ⅲ)- reducing bacteria Shewnella alga BrY to crystalline Fe (III) oxides. Current Microbiology [J],2000,42:151-154.
    [112]Reguera G, Pollina R B, Nicoll J S, et al. Possible non-conductive role of Geobacter sulfurreducens pili nanowires in biofilm formation. Journal of Bacteriology [J],2006,189: 2125-2127.
    [113]Kalyuzhnyi S, Fedorovich V, Lens P N L, et al. Mathematical modeling as a tool to study population dynamics between sulfate reducing and methanogenic bacteria. Biodegradation [J],1998,9:187-199.
    [114]Widdel F. Microbiology and ecology of sulfate- and surfer-reducing bacteria, in:J.B. Zehnder (Ed.), Biology of Anaerobic Microorganisms, John Wiley&Sons inc, New York, 1988, pp.469-585.
    [115]Kim S, Jeong H, Kim S. et al. Clostridium ganghwense sp. nov., isolated from tidal flat sediment. International Journal of Systematic and Evolutionary Microbiology [J],2006,56: 691-693.
    [116]Holt J G, Krieg N R, Sneath P H A. Bergey's manual of determinative bacteriology,9th ed. The Williams & Wilkins Company,1994, Baltimore.
    [117]Lu L, Xing D F, Ren N Q. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Research [J],2012,46:2425-2434.
    [118]Lefebvre O, Moletta R. Treatment of organic pollution in industrial saline wastewater:a literature review. Water Research [J],2006,40 (20):3671-3682.
    [119]Lefebvre O, Quentin S, Torrijos M.et al. Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors. Applied Microbiology and Biotechnology [J],2007,75 (1):61-69.
    [120]Sakakibara Y, Nakayama T. A novel multi-electrode system for electrolytic and biological water treatments:electric charge transfer and application to denitrification. Water Research [J],2001,35 (3):768-778.
    [121]Kuroda M, Watanabe T. CO2 reduction to methane and acetate using a bio-electro reactor with immobilized methanogens and homoacetogens on electrodes. Energy Conversion and Management [J],1995,36 (6-9):787-790.
    [122]Tartakovsky B, Mehta P, Bourque J S. et al. Electrolysis-enhanced anaerobic digestion of wastewater. Bioresource Technology [J],2011,102 (10):5685-5691.
    [123]Lalaurette E, Thammannagowda S, Mohagheghi A, et al. Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. International Journal of Hydrogen Energy [J],2009,34 (15):6201-6210.
    [124]Frolund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Research [J],1996,30 (8):1749-1758.
    [125]More M L, Herrick J B, Silva M C, et al. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Applied and Environmental Microbiology [J],1994,60 (5):1572-1580.
    [126]Tang C J, Zheng P, Mahmood Q, et al. Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. Journal of Industrial Microbiology and Biotechnology [J],2009,36 (8):1093-1100.
    [127]Daims H, Bruhl A, Amann R, Schleifer K H. The domain-specific probe EUB338 is insufficient for the detection of all bacteria:development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology [J],1999,22 (3):434-444.
    [128]Sekiguchi Y, Kamagata Y, Nakamura K, et al. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Applied and Environmental Microbiology [J],1999,65 (3):1280-1288.
    [129]Harmsen H J M, Kengen H M P, Akkermans A D L, et al. Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Applied and Environmental Microbiology [J],1996,62 (5):1656-1663.
    [130]Harmsen H J M, Akkermans A D L, Stams A J M et al. Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. Applied and Environmental Microbiology [J],1996,62 (6):2163-2168.
    [131]Hwang K, Song M, Kim W, Kim, et al. Effects of prolonged starvation on methanogenic population dynamics in anaerobic digestion of swine wastewater. Bioresource Technology [J],2010,101 (1):S2-S6.
    [132]Kimata-Kino N, Ikeda S, Kurosawa N.et al. Saline adaptation of granules in mesophilic UASB reactor. International Biodeterioration and Biodegration [J],2010,65 (1):65-72.
    [133]Liu Y W, Zhang Y B, Quan X. Effects of an electric field and zero valent iron on anaerobic treatment of azo dye wastewater and microbial community structures. Bioresource Technology [J],2011,102 (3):2578-2584.
    [134]Rabaey K, Boon N, Siciliano S D, et al. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology [J],2004,70 (9): 5373-5382.
    [135]Sasaki K, Morita M, Sasaki D, et al. A bioelectrochemical reactor containing carbon fiber textiles enables efficient methane fermentation from garbage slurry. Bioresource Technology [J],2011,102 (13):6837-6842.
    [136]Hwang K, Song M, Kim W, Kim, et al. Effects of prolonged starvation on methanogenic population dynamics in anaerobic digestion of swine wastewater. Bioresource Technology [J],2010,101 (1):S2-S6.
    [137]Aiyuk S, Forrez I, Lieven D K, et al. Anaerobic and complementary treatment of domestic sewage in regions with hot climates-a review. Bioresource Technology [J],2006, 97 (17):2225-2241.
    [138]Feijoo G, Soto M, Mendez R et al. Sodium inhibition in the anaerobic digestion process: Antgonism and adaptation phenomena. Enzyme and Microbial Technology [J],1995,17 (2): 180-188.
    [139]Ahring B K, Westermann P. Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Termophilic, Anaerobic, Butyrate-Degrading Triculture. Applied and Environmental Microbiology [J],1987,53 (2):434-439.
    [140]Lay W C L, Liu Y, Fane A G, Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation:A review. Water Research [J],2010,44 (1): 21-40.
    [141]Kotelnikova S, Macario A J L, Pedersen K. Methanobacterium subterraneum, a new alcalphilic, eurythermic and halophilic methanogen isolated from a deep granitic groudwater. International Journal of Systematic Bacteriology [J],1998,48(2):357-367.
    [142]Boone D R, Bryant M P. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Applied and Environmental Microbiology [J], 1980,40 (3):626-632.
    [143]Grothenhuis J T, Smit M, Plugge C M, et al. Bacteriological composition and structure of granular sludge adapted to different substrates. Applied and Environmental Microbiology [J],1991,57 (7):1942-1949.
    [144]Singh P, Sanghi R, Pandey A, et al. Decolorization and partial degradation of monoazo dyes in sequential fixed-film anaerobic batch reactor (SFABR). Bioresource Technology [J], 2007,98:2053-2056.
    [145]Mendez-paz D, Omil F, Lema J M. Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous conditions. Water Research [J],2005,39:771-778.
    [146]Lakay F M, Botha A, Prior B A. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. Journal of Applied Microbiology [J],2007,102:265-273.
    [147]Bromley-Challenor, K C A, Knapp J S, Zhang Z, et al. Decolorization of an azo dye by unacclimated activated sludge under anaerobic conditions. Water Research [J],2000,34, 4410-4418.
    [148]Georgiou D, Metallinou C, Aivadidis A, Voudrias E, et al. Decolorization of azo-reactive dyes and cotton-textile wastewater using anaerobic digestion and acetate-consuming bacteria. Biochemical Engineering Journal [J],2004,19:75-79.
    [149]Tan L, Qu Y Y, Zhou J T, et al. Dynamics of microbial community for X-3B wastewater decolorization coping with high-salt and metal ions conditions. Bioresource Technology [J],2009,100:3003-3009.
    [150]Mori K, Harayama S, Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments. International Journal of Systematic and Evolutionary Microbiology [J],2011,61 (1):138-143.
    [151]Rudd T, Sterritt R M, Lester J N. Complexation of heavy metals by extracellular polymers in the activated sludge process. Journal of the Water Pollution Control Federation [J],1984,56:1260-1268.
    [152]Logan B E, Regan J M. Microbial fuel cells-challenges and applications. Environmental Science and Technology [J],2006,40:5172-5180.
    [153]Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires. Nature [J],2005,435:1098-1101.
    [154]Liu Y, Xu H L, Yang S F. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Research [J],2003,37:661-673.
    [155]Speece R E. Anaerobic biotechnology for industrial wastewater treatment. Environmental Science and Technology [J],1983,17:A416-A427.
    [156]Miron Y, Zeeman J B, Van Lier J B, Lettinga G. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research [J],2000,34:1705-1713.
    [157]Ren N Q, Wang B Z, Huang J C. Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and Bioengineering [J],1997,54:428-433.
    [158]Hanaki K, Hirunmasuwan S, Matsuo T. Protection of methanogenic bacteria from low pH and toxicmaterials by immobilization using polyvinyl-alcohol. Water Research [J],1994, 28:877-885.
    [159]Hanaki K, Hirunmasuwan S, Matsuo T. Selective use of microorganisms in anaerobic treatment processes by application of immobilization. Water Research [J],1994,28:993-996.
    [160]Ren N Q, Chua H, Chan S Y, etc. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresource Technology [J], 2007,98:1774-1780.
    [161]Zhang J X, Zhang Y B, Quan X. Electricity assisted anaerobic treatment of salinity wastewater and its effects on microbial communities. Water Research [J],2012,46: 3535-3543.
    [162]Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering [J],2005,89:670-679.
    [163]Lee C, Kim J, Hwang K, O'Flaherty V, Hwang S. Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters. Water Research [J],2009,43:157-165.
    [164]O'Reilly J, Lee C, Collins G, etc. Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilims. Water Research [J],43:3365-3374.
    [165]Vlaeminck S E, Terada A, Smets B F, et al. Nitrogen removal from digested black water by one-stage partial nitritation and anammox. Environmental Science and Technology [J],2009,43:5035-5041.
    [166]Strous M, Fuerst J A, Kramer E H, et al. Missing lithotroph identified as new planctomycete. Nature [J].1999,400:446-449.
    [167]Liu S, Yang F, Xue Y et al. Evaluation of oxygen adaptation and identification of functional bacteria composition for Anammox consortium in non-woven biological rotating contactor. Bioresource Technology [J],2008,99:8273-8279.
    [168]Tang C J, Zheng p, Wang C H, et al. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate Anammox UASB reactor. Bioresource Technology [J], 2010,101:1762-1768.
    [169]Van Niftrik L A, Geerts W J C, Van Donselaar E G, et al., Combined structural and chemical analysis of the anammoxosome:a membrane-bounded intracytoplasmic compartment in anammox bacteria. Journal of Structural Biology [J],2008,161:401-410.
    [170]Andrews S C. Iron storage in bacteria. Advances in Microbial Physiology [J],1998.40: 281-351.
    [171]Truong N V, Shishir K B, Ji W K, et al. Effects of Oxidation Reduction Potential and Organic Compounds on Anammox Reaction in Batch Cultures. Environmental Engineering Research [J],2008,13:210-215.
    [172]Zhang L, Zheng P, Hu A H. Effect of ferrous ion on the performance of an anammox reactor. Acta Sci Cirumst [J],2009,29:1629-1634. (In Chinese)
    [173]Amann R I, Binder B J, Olson R J, et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology [J],1990,56:1919-1925.
    [174]Schmid M, Twachtmann U, Klein M, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonia oxidation. Systematic and Applied Microbiology [J],2000,23:93-106.
    [175]Berry E A, Trumpower B L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. Analytical Biochemistry [J],1987,161:1-15.
    [176]Sinclair P R, Gorman M, Jacobs J M, Measurement of heme concentration. Current Protocols in Toxicology, Unit 8.3, John Wiley & Sons, Inc,1999.
    [177]Ni S Q, Fessehaie A, Lee P H, et al. Interaction of anammox bacteria and inactive methanogenic granules under high nitrogen selective pressure. Bioresource Technology [J], 2010,101:6910-6915.
    [178]Gregory K B, Bond D R, Lovely D R. Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology [J],2004,6:596-604.
    [179]Tang C J, Zheng P, Wang C H, et al. Permormance of high-loaded ANAMMOX UASB reactors containing granular sludge. Waster Research [J],2011,45:135-144.
    [180]Wei X, Vajrala N, Hauser L, et al. Iron nutrition and physiological responses to iron stress in Nitrosanonas europaea. Archives Microbiology [J],2006,186:107-118.
    [181]Mizuno A, Hori Y. Destruction of living cells by pulsed high-voltage application. IEEE Transactions on Industry Applications [J],1988,24:387-393.
    [182]Shen C F, Kosaric N, Blaszczyk R. The effect of selected heavy-metals (Ni, Co and Fe) on anaerobic granules and their extracellular polymeric substance (EPS). Water Research [J], 1993,27:25-33.
    [183]Zhang L, Yang J C, Hira D, et al. High-rate nitrogen removal from anaerobic digester liquor using an up-flow anammox reactor with polyethylene sponge as a biomass carrier. Journal of Bioscience and Bioengineering [J],2011,111:306-311.
    [184]Fujii T, Sugino H, Rouse D, Furukawa K. Characterization of the microbial community in an anaerobic ammonium oxidizing biofilm cultured on a nonwoven biomass carrier. Journal of. Bioscience and Bioengineering [J],2002,94:412-418.
    [185]Isaka K, Sumino T, Tsuneda S. High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions. Journal of Bioscience and Bioengineering [J],2007,103:486-490.
    [186]Stams A J M, Oude Elferink S J W H, Westermann P. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. Advances in Biochemical Engineering and Biotechnology [J],2003,81:31-56.
    [187]Ivanov V N, Stabnikova E V, Stabnikov V P, et al. Effects of Iron Compounds on the Treatment of Fat-Containing Wastewaters. Applied Biochemistry and Microbiology [J],2002, 38 (3):295-299.
    [188]Toprak H. Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond. Water Research [J],1995,29 (4):1111-1119.
    [189]Bryers J D. Structures modeling of the anaerobic digestion of biomass particulate. Biotechnology and Bioengineering [J],1985,27:638-649.
    [190]Fang H, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology [J],2002,82 (1):87-93.
    [191]Molina F, Garcia C, Roca E, et al.2009. Selection of variables for on-line monitoring, diagnosis, and control of anaerobic digestion processes. Water Science and Technology [J], 60 (3):615-622.
    [192]Ahring B K, Sandberg M, Angelidaki I. Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Biochemistry and Microbiology [J],1995,43 (3): 559-565.
    [193]Zhang J X, Zhang Y B, Quan X, etc. An anaerobic reactor packed with a pair of Fe-graphite plate electrodes for bioaugmentation of azo dye wastewater treatment. Biochemical Engineering Journal [J],2012,63:31-37.
    [194]Xiong Y J, Shi L, Chen B W, et al. High-Affinity Binding and Direct Electron Transfer to Solid Metals by the Shewanella oneidensis MR-1 Outer Membrane c-type Cytochrome OmcA. Journal of the American Chemical Society [J],2006,128:13978-13979.
    [195]Kato S, Nakamura R, Kai F, et al. Respiratory interactions of soil bacteria with (semi) conductive iron-oxide minerals. Environmental Microbiology [J],2010,12 (12):3114-3123.
    [196]Thrash J C, Coates J D. Review:direct and indirect electrical stimulation of microbial metabolism. Environmental Science and Technology [J],2008,42:3921-3931.
    [197]Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature [J],2006,441 (7093):629-632.
    [198]Wrighton K C, Agbo P, Warnecke F, et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. The ISME Journal [J],2008,2 (11): 1146-1156.
    [199]Liu W Z, Wang A J, Cheng S A, et al. Geochip-Based Functional Gene Analysis of Anodophilic Communities in Microbial Electrolysis Cells under Different Operational Modes. Environmental Science & Technology [J],2010,44 (19):7729-7735.
    [200]Chang J S, Chou C, Lin Y C, et al. Kinetic Characteristics of Bacterial Azo Dye Decolorization by Pseudomonas luteola. Water Research [J],2001,35 (12):2041-2850.
    [201]Wrighton K C, Virdis B, Clauwaert P, et al. Bacterial community structure corresponds to performance during cathodic nitrate reduction. The ISME Journal [J] 2010,4 (11):1443-1455.
    [202]Logan B E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Review Microbiology [J],2009,7 (5):375-381.
    [203]Zhang G D, Wang K, Zhao Q L, et al. Effect of cathode types on long-term performance and anode bacterial communities in microbial fuel cells. Bioresource Technology [J],2012b,118:249-256.
    [204]Yoo E S, Libra J, Adrian L. Mechanism of Decolorization of Azo Dyes in Anaerobic Mixed Culture. Journal of Environmental Engineering [J],2000,127 (9):844-849.
    [205]Kim G T, Webster G, Wimpenny J W T, et al.2006. Bacterial community structure, compartmentalization and activity in a microbial fuel cell. Journal of Applied Microbiology [J],101 (3):698-710.
    [206]Kim B H, Kim H J, Hyun M S, et al. Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology [J],1999,9: 127-131.
    [207]Lovley D R, Fraga J L, Blunt-Harris E L, et al. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimica et Hydrobiologica [J],1998,26: 152-157.
    [208]Newman D K, Kolter R. A role for excreted quinones in extracellular electron transfer. Nature [J],2000,405:94-97.
    [209]Park H S, Kim B H. A Novel Electrochemically Active and Fe(Ⅲ)-reducing Bacterium Phylogenetically Related to Clostridium butyricum Isolated from a Microbial Fuel Cell. Anaerobe [J],2001,7:297-306.
    [210]Mu Y, Rabaey K, Rozendal R A, et al. Decolorization of azo dyes in bioelectrochemical systems. Environment Science and Technology [J],2009,43 (13):5137-5143.
    [211]Ieropoulos I A, Greenman J, Melhuish C, et al. Comparative study of three types of microbial fuel cell. Enzyme and Microbial Technology [J],2005,37 (2):238-245.
    [212]Xu J, Sheng G P, Luo H W, et al. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Research [J],2012,46:1817-1824.
    [213]Knight V, Blakemore R. Reduction of diverse electron acceptors by Aeromonas hydrophila, Archives Microbiology [J],1998,169:239-248.
    [214]Hsueh C C, Chen B Y, Yen C Y. Understanding effects of chemical structure on azo dye decolorization characteristics by Aeromonas hydrophil. Journal of Hazardous Materials [J],2009,167:995-1001.
    [215]Greaves A J, Phillips D A S, Taylor J A. Correlation between the bioelimination of anionic dyes by an activated sewage with molecular structure. Part 1. Literature review, Journal of the Society of Dyes and Colourists [J],1999,115:363-365.
    [216]Chen B Y, Lin K W, Wang Y M, et al. Revealing interactive toxicity of aromatic amines to azo-dye decolorizer Aeromonas hydrophila. Journal of Hazardous Materials [J], 2009,166:187-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700