紫花香薷(Elsholtzia argyi)富集镉的特性及其强化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤镉污染是一个日益严峻的环境问题。植物提取是一种环境友好的土壤镉污染治理方法,主要使用超富集植物或作物同时配施螯合剂,但利用富集植物进行植物提取的很少。植物重金属耐性的调控及土壤中重金属的活化是促进植物重金属吸收及提高其提取效率的关键。本论文通过水培试验和盆栽试验,结合仪器分析和生理生化测试等手段,研究铅锌矿区生长的紫花香薷对镉(Cd)的耐性和富集特性,探讨尿囊素、乳酸和聚乳酸对紫花香薷积累Cd的影响,取得了以下主要结果:
     1水培条件下,Cd处理紫花香薷茎、叶、地上部和根的生物量(除25μM Cd处理的地上部生物量显著高于对照)均与对照无显著性差异,50μM Cd处理紫花香薷叶的生物量和Cd处理紫花香薷叶、地上部、根和全株的生物量均显著小于对照(P<0.05)。紫花香薷地上部Cd浓度随Cd处理浓度的增大而增大,20、25、30和Cd处理的紫花香薷地上部Cd浓度分别为104.3、125.2、164.5和237.9:ng kg-1,均高于Cd超富集植物的临界浓度100mg kg-1;各处理的转运系数(地上部Cd浓度与根部Cd浓度的比值)均小于1,矿区紫花香薷可确定为Cd的耐性和富集植物。
     25-15μMCd处理的Fv/Fo (植物的光合能力)、Fv/Fm(光合系统(?)光化学量子效率)、qP(光化学淬灭系数)和5-10μM Cd处理的ΦPSΠ(光合系统ΓI电子传递量子产量)、ETR(电子传递速率)和Fv'/Fm'(光合系统ΓI有效光化学量子产量)均显著高于对照(P<0.05);20-50μM Cd处理的Fv/Fo、Fv/Fm、qP和15-50μM Cd处理的ΦPSΠ、ETR和Fv'/Fm'均与对照没有显著性差异,但上述所有参数在100μM Cd处理时均显著低于对照(P<0.05)。5-30μM Cd处理的净光合速率显著高于对照(P<0.05),但50和100μM Cd处理的净光合速率显著低于对照(P<0.05)。50和100μM Cd处理的气孔导度显著低于对照(P<0.05)。上述结果表明高镉处理抑制净光合速率不仅与气孔抑制有关,还与初始的光化学过程受到抑制有关。紫花香薷在其镉耐性范围内保持其稳定的叶绿素荧光特性和光合活性是其耐性机制之一。
     3水培条件下,在Cd处理基础上,5-30μM尿囊素处理的紫花香薷地上部生物量、根系表面积、根系体积及根系直径均显著大于(P<0.05)对照(40μMCd处理)。5和1OμM尿囊素处理的净光合速率、叶绿素值(SPAD)值显著大于(P<0.05)对照。5和10gM尿囊素处理的紫花香薷地上部Cd浓度显著高于对照(P<0.05)。5-30μM尿囊素处理的紫花香薷地上部Cd积累量显著高于对照(P<0.05)。在Cd处理基础上,所有尿囊素处理(5-30μM)的紫花香薷地上部生物量均显著大于(P<0.05)对照Cd处理)。5-10gM尿囊素处理的SPAD值显著大于(P<0.05)对照。紫花香薷地上部Cd浓度在所有处理的间均无显著性差异。5-30μM尿囊素处理的紫花香薷地上部Cd积累量均显著大于对照(P<0.05)。在Cd处理基础上,叶面喷施316、632和948μM尿囊素处理的紫花香薷地上部生物量和Cd积累量均显著大于(P<0.05)对照(喷水处理)。紫花香薷地上部Cd浓度在所有处理的间均无显著性差异(除316μM尿囊素处理外,叶面喷施316μM尿囊素处理的地上部Cd浓度显著高于对照)。尿囊素处理能提高紫花香薷对Cd胁迫的耐性,促进其生长及地上部Cd积累。
     4水培条件下,在Cd处理基础上,≥2000μM乳酸处理显著抑制(P<0.05)紫花香薷的生长及地上部Cd的积累。进一步试验结果表明,40μM乳酸处理的紫花香薷地上部生物量显著大于(P<0.05)对照Cd处理),200和400μM乳酸处理与对照无显著性差异。40和200μM乳酸处理的紫花香薷地上部Cd浓度均显著高于(P<0.05)对照。40和200μM乳酸处理的紫花香薷地上部Cd积累量均显著高于(P<0.05)对照。在20Cd处理基础上,乳酸/镉比为0.5、1.0和2.0的紫花香薷地上部生物量和根系总表面积、根系总体积及侧根数均显著大于(P<0.05)对照,乳酸/镉比为0.5和1.0时紫花香薷净光合速率、SPAD值也显著大于(P<0.05)对照。乳酸/镉比为1.0时紫花香薷地上部Cd浓度显著高于(P<0.05)对照。施加乳酸处理的紫花香薷地上部Cd积累量显著大于(P<0.05)对照。乳酸处理能提高紫花香薷的光合作用强度,促进其生长及地上部对Cd的积累。
     5采用四种模拟镉污染土壤(5mg kg-1Cd污染菜园土、10mg kg-1Cd污染菜园土、5mg kg-1Cd污染水稻土和10mg kg-1Cd污染水稻土)分别进行盆栽试验,结果表明,0.063和0.126g pot-1聚乳酸处理的紫花香薷地上部生物量、Cd积累量和紫花香薷镉提取率均显著高于(P<0.05)无聚乳酸添加处理,且均为0.126g聚乳酸处理显著高于(P<0.05)0.063g pof-1聚乳酸处理;施加量为0.063g或0.126g pot-1时,PLA1处理的紫花香薷地上部生物量、Cd积累量和紫花香薷镉提取率均显著高于(P<0.05)PLA2(PLA1分子量小于PLA2)处理。在四种镉污染土壤上,各处理紫花香薷地上部Cd浓度的差异不显著(除5mg kg-1Cd污染水稻上0.126g聚乳酸pot-1处理显著高于没有添加聚乳酸处理)。聚乳酸处理主要通过增加紫花香薷地上部生物量从而增加Cd的积累量,施加0.126g pot-1PLA1处理的镉提取率最高。
Soil cadmium pollution has become a serious environmental problem. Phytoextration is regarded as an environmentally friendly method for cleaning up soils contaminated with cadmium, mainly using hyperaccumulator or crops with chelator amendment, rarely using accumulating plant. Increase in soil heavy metal bioavailability and plant tolerance to metals was the key aspect for enhancing plant uptake and extraction efficiency of metals from soil. The present study investigated cadmium tolerance and accumulation characteristics of Elsholtzia argyi, a plant origining from a mining site, and explore the effects of allantoin, lactic acid and poly-lactic acid on plant growth and Cd removal by hydroponic and pot experiments with instrument and physiological-biochemical analyses. The main results were as follows:
     1The results of hydroponic experiment indicated that the dry biomass of stems, leaves, shoots and roots were similar to that of control underz≤<40μM Cd, except for25μM Cd, shoot biomass was significantly higher (P<0.05) than that of control under this treatment. Leaf biomass of50μM Cd treatment and leaf, shoot, root and total plant biomass of100μM Cd treatment was significantly lower (P<0.05) than that of control. Shoot Cd concentration increased with the increase of Cd level in nutrient solution, shoot Cd concentrations of20,25,30and40μM Cd treatments were104.3,125.2,164.5, and237.9mg kg-1, respectively, which were higher than100mg kg-1, normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. Translocation factors (ratio of shoot Cd concentration to root Cd concentration) of all Cd treatments were lower than1. It could be concluded that E. argyi origining from a mining site was identified as a Cd tolerant and accumulating plant species.
     2In the hydroponic test, Fv/Fo, Fv/Fm, qP of5-15μmol L-1Cd treatments and ΦPSΠ, ETR, Fv'/Fm' of5-10μmol L-1Cd treatments were significantly higher (P<.05) than that of control, and these parameters were similar to control until50μmol L1Cd, but all above parameters were significantly (P<0.05) decreased at100 μmol L-1Cd. Compared with control, Pn was significantly increased (P<0.05) under5-30μmol L-1Cd. However,50and100μmol L-1Cd significantly reduced (P<0.05) it. Gs was substantially decreased at50-100μmol L-1Cd. Cd-induced decrease of Pn at high Cd stress is not only connected to stomatal limitation but also to the inhibition some of primary photochemical processes. Maintain chlorophyll fluorescence and photosynthesis parameters were one of tolerance mechanisms of E. argyi under its Cd tolerance threshold (小≤40μM).
     3In the hydroponic test, compared with the control (40μM Cd without allantoin added), shoot biomass, root surface area, root volume and root diameter of E. argyi increased significantly (P<0.05) under5-30μM allantoin treatments. Net photosynthesis rate and SPAD value increased significantly (P<0.05) under5and10μM allantoin. Shoot Cd concentrations of5and10μM allantoin were significantly higher (P<0.05), so were shoot Cd accumulations of5-30μM allantoin. Compared with the control (50μM Cd without allantoin added), shoots biomass and Cd accumulation of all allantoin treatments were significant higher (P<0.05), so were SPAD value of5and10μM allantoin. The differences of shoot Cd concentration among all treatments were unsignificant. Based on50μM Cd stress, spraying allantoin (316,632and948μM) could significantly increase (P<0.05) shoot biomass and Cd accumulation. The differences of shoot Cd concentration among all treatments were unsignificant, except sparying316μM allantoin, which was significantly higher than the control. Allantoin with appropriate level can relieve Cd stress to E. argyi, promote plant growth and increase Cd accumulation in shoot.
     4In the hydroponic experiment, based on40μM Cd stress,≥2000μM Cd stress significantly inhibited (P<0.05) the growth and shoot Cd accumulation of the plant. Further study indicated, shoot biomass of40μM lactic acid was significantly higher (P<0.05) than that of control (40μM Cd alone), but shoots biomass of200and400μM lactic acid treatments were similar to control. Shoots Cd concentration increased significantly (P<0.05) under40and200μM lactic acid, so did shoots Cd accumulation. Compared with control (20μM Cd alone), shoot biomass, root surface area, root volume, and number of lateral tips increased significantly (P<0.05) under the ratios of lactic acid/Cd were0.5,1.0, and2.0, so did net photosynthesis rate and SPAD value under the ratios of lactic acid/Cd were0.5,1.0. Shoot Cd concentration increased significantly (P<0.05) under the ratio of lactic acid/Cd was1.0, so did shoot Cd accumulation under all lactic acid treatments. Based on above results, appropriate level of lactic acid can promote photosynthesis of E. argyi, and increase Cd concentration and accumulation in shoot.
     5The results of four pot experiments with four artificially contaminated soil (e.g. vegetable garden soil added with5mg kg-1Cd, vegetable garden soil added with10mg kg-1Cd, rice soil added with5mg kg-1Cd, rice soil added with10mg kg-1Cd) indicated that shoot biomass, shoot Cd accumulation and Cd phytoextraction efficiency of E. argyi grown on vegetable garden soil amended with0.063or0.126g poly-lactic acid pot-1were significantly higher (P<0.05) than no poly-lactic acid amended, and shoot biomass, shoot Cd accumulation and Cd phytoextraction efficiency of0.126g poly-lactic acid pot-1treatment was significantly higher (P<0.05) than that of0.063g poly-lactic acid pot-1treatment. Shoot biomass, shoot Cd accumulation and Cd phytoextraction efficiency of E. argyi grown on above four types of soil amended with0.063or0.126g pot-1PLA1was significantly higher (P<0.05) than that of PLA2(molecular weight of PLA2is higher than PLA1). The differences of shoot Cd concentration among all treatments were unsignificant, except for0.126g pot-1poly-lactic acid amended to5mg kg-1Cd rice soil, which was significantly higher (P<0.05) than no poly-lactic acid amended. Poly-lactic acid enhanced Cd accumulation in shoot of E. argyi mainly by increasing its biomass. Amendment of0.126g pot-1PLA1was optimal for shoot Cd accumulation.
引文
Li SL, Wang FP, Ru M, Ni WZ.2013. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site-a hydroponics experiment. International Journal of Phytoremediation Online.
    Agami RA, Mohamed GF.2013. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety 94:164-171.
    Ahmad P, Nabi G, Ashraf M.2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern.& Coss.] plants can be alleviated by salicylic acid. South African Journal of Botany 77:36-44.
    Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH.2007. Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. Comptes Rendus Biologies 330:735-746.
    Ainsworth EA, Rogers A.2007. The response of photosynthesis and stomatal conductance to rising [CO2]:mechanisms and environmental interactions. Plant, Cell and Environment 30:258-270.
    Alamillo JM, Diaz-Leal JL, Sanchez-Moran MV, Pineda M.2010. Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L. Plant, Cell and Environment 33:1828-1837.
    Alcantara E, Romera FJ, Canete M, De La Guardia MD.1994. Effects of heavy metals on both induction and function of root Fe(Ⅲ) reductase in Fe-deficient cucumber(Cucumis sativus L.) plants. Journal of Experimental Botany 45:1893-1898.
    Al-Rmalli SW, Jenkins RO, Haris PI. 2012. Dietary intake of cadmium from Bangladeshi foods. Journal of Food Science 77:T26-T33.
    An YJ, Kim YM, Kwon TI, Jeong SW.2004. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Science of Total Environment 326:85-93.
    Andrade SAL, Gratao PL, Azevedo RA, Silveira APD, Schiavinato MA, Mazzafera P. 2010. Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations. Environmental and Experimental Botany 68:198-207.
    Badger MR, Price GD.1994. The role of carbonic anhydrase in photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 45:369-392.
    Baker AJM, Brooks RR, Pease AJ, Malaisse F.1983. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. {Caryophyllaceae) from Zaire. Plant and Soil 73:377-385.
    Baker AJM, Brooks RR.1989. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81-126.
    Baker AJM, McGrath SP, Reeves RD, Smith JAC.2000. Metal hyperaccumulator plants:a review of the ecology and physiology of a biological resource of phytoremediation of metal polluted soils. In:Terry N, Banuelos G, Vangronsveld J, eds. Phytoremediation of contaminated soil and water. USA:CRC Press Inc.
    Baker NR, Rosenqvist E.2004. Applications of chlorophyll fluorescence can improve crop production strategies:an examination of fulture possibilities. Journal of Experimental Botany 55:1607-1621.
    Baker NR.2008. Chlorophyll fluorescence:a probe of photosynthesis in vivo. Annual Review of Plant Physiology and Plant Molecular Biology 59:89-113.
    Barcelo J, Poschenrieder C.2003. Phytoremediation:principles and perspectives. Contributions to Science 2:333-344.
    Barnes J, Bender J, Lyons T, Borland A.1999. Natural and man-made selection for air pollution resistance. Journal of Experimental Botany 50:1423-1435.
    Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M.2001. Leaf chlorosis in oilseed rape plants (Brassuca napus) grown on cadmium-polluted soil:causes and consequences for photosynthesis and growth. Planta 212:696-709.
    Belkadhi A, Haro AD, Soengas P, Obregon S, Cartea ME, Djebali W, Chaibi W.2013. Salicylic acid improves root antioxitant defense system and total antioxidant capacities of flax subjected to cadmium. Journal of Integrative Biology 17:398-406.
    Bell CF.1977. Principles and applications of metal chelation. Oxford:Clarendon Press.
    Benavides M, Gallego SM, Tomaro ML.2005. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology 17:21-34.
    Bjorkman O, Demming B.1987. Photo yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504.
    Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I.1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology 31: 860-865.
    Bricker TJ, Pichtel J, Brown HJ, Simmons M.2001. Phytoextraction of Pb and Cd from superficial soil:effects of amendments and croppings. Journal of Environmental Science and Health Part A36:1597-1610.
    Brooks RR, Lee J, Reeves RD, Jaffre T.1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration 7:49-57.
    Brychkova G, Alikulov Z, Fiuhr R, Sagi M.2008. A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdhl Arabidopsis mutant. The Plant Journal 54:496-509.
    Bucheli-Witschel M, Egli T.2001. Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiology Reviews 25:69-106.
    Burzynski M, Klobus G.2004. Changes of photosynthetic parameters in cucumber leaves under Cu, Cd and Pb stress. Photosynthetica 42:505-510.
    Catherine S, Christophe S, Louis MJ.2006. Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilization. International Journal of Phytoremediation 8:149-161.
    Cestone B, Quartacci MF, Navari-Izzo F.2010. Uptake and translocation of Cu-EDDS complexes by Brassica carinata. Environmental Science and Technology 44:6403-6408.
    Chai MW, Shi FC, Li RL, Liu FC, Qiu GY, Liu LM.2013. Effect of NaCl on growth and Cd accumulation of halophyte Spartina alterniflora under CdCl2 stress. South African Journal of Botany 85:63-69.
    Chao YY. Chen CY, Huang WD, Kao CH.2010. Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant and Soil 329:327-337.
    Chartzoulakis K, Loupassaki M, Bertaki M, Androulakis I.2002. Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Scientia Horticulture 96:235-247.
    Chaudhry NY, Rasheed S.2003. Study of the external and internal morphology of Pisum sativum L. with growth hormones i.e. indole-3-acetic acid and kinetin and heavy metal i.e. lead nitrate. Pakistan Journal of Biological Sciences 6:407-412.
    Chen H, Cutright T.2001. EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21-28.
    Chen HM, Zheng CR, Tu C, Shen ZG.2000. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41: 235-242.
    Chen X, Wang J, Shi Y, Zhao MQ, Chi GY.2011. Effects of cadmium on growth and photosynthetic activities in pakchoi and mustard. Botantical Studies 52:41-46.
    Chiang PN, Wang MK, Chiu CY, Chou SY.2006. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Envrionmental Toxicology 21:479-488.
    Ciscato M, Valcke R, Van Loven K, Clijster H, Navariizzo F.1997. Effect of in vivo copper treatment on the photosynthetic apparatus of two Triticum durum cultivars with different stress sensitivity. Physiologia Plantarum 100:901-908.
    Cook CM, Kostidou A, Vardaka F, Lanaras T.1997. Effects of copper on the growth, photosynthesis and nutrient concentrations of Phaseolus plants. Photosynthetica 34:179-193.
    Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR.1999. Chelate-assisted phytoextraction of lead from contaminated soils. Journal of Environmental Quality 28:1709-1719.
    Costa G, Morel JL.1993. Cadmium uptake by Lupinus albus (L.):Cadmium excretion, a possibile mechanism of cadmium tolerance. Journal of Plant Nutrition 16:1921-1929.
    Cui S, Zhou QX, Wei SH, Zhang W, Cao L, Ren LP.2007. Effects of exogenous chelators on phytoavailability and toxicity of Pb in Zinnia elegans Jacq. Journal of Hazardous Materials 146:341-346.
    Dan TV, KrishnaRaj S, Saxena PK.2000. Metal tolerance of scented geranium (Pelargonium sp.'Frensham'):effects of cadmium and nickel on chlorophyll fluorescence kinetics. International Journal of Phytoremediation 2:91-104.
    Das P, Samantaray S, Rout GR.1997. Studies on cadmium toxicity in plants:a review. Environmental Pollution 98:29-36.
    de Souza SCR, de Andrade SAL, de Souza LA, Schiavinato MA.2012. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. Journal of Environmental Management 110:299-307.
    di Toppi SL, Gabrielli R.1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41:105-130.
    Dias M C, Monteiro C, Monteiro C, Moutinho-Pereira J, Correia C, Goncalves B, Santos C.2013. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum 35:1281-1289.
    Dong J, Wu FB, Zhang GP.2005 Effect of cadmium on growth and photosynthesis of tomato seedlings. Journal of Zhejiang University Science 6B:947-980.
    Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M.2008. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study:Influence of different complexing agents. Chemosphere 72:1481-1490.
    Drazkiewicz M, Baszynski T.2005. Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, as related to protection mechanisms. Journal of Plant Physiology 162:1013-1021.
    Duarte B, Delgado M, Cacador I.2007. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69:836-840.
    Duquenea L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J.2009. Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Science of Total Environment 407:1496-1505.
    Dushenkov V, Nanda Kumar PBA, Motto H, Raskin I.1995. Rhizofiltration-the use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology 29:1239-1245.
    Edenborn HM.2004. Use of poly (lactic acid) amendmends to promote the bacterial fixation of metals in zinc smelter tailings. Bioresource Technology 92:111-119.
    Egamberdieva D.2009. Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiologiae Plantarum 31:861-864.
    Egli T.2001. Biodegradation of metal-complexing aminopolycarboxylic acids. Journal of Bioscience and Bioengineering 92:89-97.
    Epstein A L, Gussman C D, Blaylock M J, Yermiyahu U, Huang J W W, Kapulnik Y, Orser C S.1999. EDTA and Pb-DTA accumulation in Brassica juncea grown in Pb-amended soil. Plant and Soil 208:87-94.
    Erakhrumen AA.2007. Phytoremediation:an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research and Reviews 7:151-156.
    Evangelou MWH, Bauer U, Ebel M, Schaeffer A.2007. The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere 68:345-353.
    Evangelou MWH, Ebel M, Schaeffer A.2006. Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco(Nicotiana tabacum). Chemosphere 63:996-1004.
    Farooq MA, Ali S, Hameed A, Ishaque W, Mahmood K, Iqbal Z.2013. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicology and Environmental Safety 96:242-249.
    Fazadfar S, Zarinkamar F, Modarres-Sanavy SAM, Hojati M.2013. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environmental Science and Pollution Research 20:1413-1422.
    Feng JP, Shi QH, Wang XF, Wei M, Yang FJ, Xu HN.2010. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Scientia Horticulture 123:521-530.
    Font R, del Rio M, de Haro A.2002. Use of near infrared spectroscopy to evaluate heavy content in Brassica juncea cultivated on the polluted soils of Guadiamar river area. Fresenius Evironmental Bulletin 11:777-781.
    Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176-2191.
    Ghosh M, Singh SP.2005. A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution 133:365-371.
    Gill SS, Khan NA, Tuteja N.2012. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidum sativum L.). Plant Science 182:112-120.
    Gill SS, Tuteja N.2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909-930.
    Grcman H, Vodnik D, Velikonja-Bolta S, Lestan D.2003. Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. Journal of Environmental Quality 32:500-506.
    Greger M, Landberg T.2008. Role of rhizosphere mechanisms in Cd uptake by various wheat cultivars. Plant and Soil 312:195-205.
    Groppa MD, Rosales EP, Iannone MF, Benavides MP.2008. Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609-2615.
    Groppa MD, Tomaro ML, Benavides MP. 2001. Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Science 161:481-488.
    Guo B, Liang YC, Zhu YG.2009. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice? Journal of Plant Physiology 166:20-31.
    Guo J, Dai X, Xu W, Ma M.2008. Over expressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020-1026.
    Guo TR, Zhang GP, Zhou MX, Wu FB, Chen JX.2004. Effects of aluminum and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant and Soil 258:241-248
    Hamlin RL, Barker AV.2006. Influence of ammonium and nitrate on plant growth and zinc accumulation by Indian mustard. Journal of Plant Nutrition 29:1523-1541.
    Han YL, Yuan HY, Huang SZ, Guo Z, Xia B, Gu JG.2007. Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology 16:557-563.
    Hasan S A, Hayat S, Ali B, Ahmad A.2008.28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environmental Pollution 151:60-66.
    Hayat Q, Hayat S, Irfan M, Ahmad A.2010. Effect of exogenous salicylic acid under changing environment:a review. Environmental and Experimental Botany 68:14-25.
    He JY, Ren YF, Zhu C, Yan YP, Jiang DA.2008. Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica 46:466-470.
    Howarth JR, Dominguez-Soils JR, Gutierrez-Alcala G, Wray JL, Romero LC, Gotor C.2003. The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Molecular Biology 51:589-598.
    Hsiao KH, Kao PH, Hseu ZY.2007. Effects of chelators on chromium and nickel by Brassica juncea on serpentine-mine tailings for phytoextraction. Journal of Hazardous Materials 148:366-376.
    Hsu YT, Kao CH.2007. Cadmium-induced oxidative damage in rice leaves is reduced by polymines. Plant and Soil 291:27-37.
    Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ.2009. Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Envrionmental and Experimental Botany 66:317-325.
    Huang JM, Cunningham JD.1996. Lead phytoextraction:species variation in lead uptake and translocation. New Phytologist 134:75-84.
    Huang JW, Chen J, Berti WR, Cunningham SD.1997. Phytoremediation of lead-contaminated soils:role of synthetic chelates in lead phytoextraction. Environmental Science and Technology 31:800-805.
    Inaba S, Takenaka C.2005. Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts. Environment International 31:603-608.
    Iqbal N, Masood A, Nazar R, Syeed S, Khan NA.2010. Photosynthesis, growth and antioxidant metabolism in Mustard(Brassica juncea L.) cultivars differing in cadmium tolerance. Agricultural Sciences in China 9:519-527.
    Islam E, Liu D, Li TQ, Yang XE, Jin XF, Mahmood Q, Tian SK, Li JY.2008. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials 154:914-926.
    Islam E, Yang XE, Li TQ, Liu D, Jin XF, Meng FH.2007. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials 147:806-816.
    Israr M, Jewell A, Kumar D, Sahi SV.2011. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. Journal of Hazardous Materials 186:1520-1526.
    Issam NI, Kawther M, Haythem M, Moez J.2012. Effects of CaCl2 pretreatment on antioxidant enzyme and leaf lipid content of faba bean (Vicia faba L.) seedlings under cadmium stress. Plant Growth Regulation 68:37-47.
    Januskaitiene I.2012. The effect of cadmium on several photosynthetic parameters of pea (Pisum sativum L.) at two growth stages. Zemdirbyste (Agriculture) 99:71-76.
    Jiang LY, Yang XE, Ye ZQ, Shi WY.2003. Uptake, distribution and accumulation of copper in two ecotypes of Elsholtzia. Pedospere 13:359-366.
    Jiang WS, Liu DH, Hou WQ.2001. Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic(Allium saltivum L.). Bioresource Technology 76:9-13.
    John R, Ahmad P, Gadgil K, Sharma S.2009. Heavy metal toxicity:effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L International Journal of Plant Nutrition 3:65-76.
    Kamnev AA, Lelie Daniel van der.2000. Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Bioscience Reports 20(4):239-258.
    Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R.2000. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil:the use of NTA and sulfur amendments. Environmental Science and Technology 34:1778-1783.
    Kedziorek MAM, Dupuy A, Bourg ACM, Compere Fabrice.1998. Leaching of Cd and Pb from a polluted soil during the percolation of EDTA:laboratory column experiments modeled with a non-equilibrium solubilization step. Environmental Science and Technology 32:1609-1614.
    Kim S, Lim H, Lee I.2010. Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. Journal of Bioscience and Bioengineering 109:47-50.
    Kinnersley AM, Scott Ⅲ TC, Yopp JH, Whitten GH.1990. Promotion of plant growth by polymers of lactic acid. Plant Growth Regulation 9:137-146.
    Kos B, Lestan D.2003. Influence of a biodegradable ([S,S]-EDDS) and nondegradable (EDTA) chelate and hydrogen modified soil water sorption capacity on Pb phytoextraction and leaching. Plant and Soil 253:403-411.
    Kos B, Lestan D.2004a. Chelator induced phytoextration and in situ soil washing of Cu. Environmental Pollution 132:333-339.
    Kos B, Lestan D.2004b. Soil washing of Pb, Zn and Cd using biodegradable chelator and permeable barriers and induced phytoextraction by Cannabis sativa. Plant and Soil 263:43-51.
    Kramer U.2010. Metal hyperaccumulation in plants. Annual Review of Plant Physiology and Plant Molecular Biology 61:517-534.
    Krantev A, Yordanova R, Janda T, Szalai G, Popova L.2008. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology 165:920-931.
    Krause GH, Weis E.1991. Chlorophyll fluorescence and photosynthesis:the basics. Annual Review Plant Physiology and Plant Molecular Biology 42:313-349.
    Krupa Z, Baszynski T.1995. Some aspects of heavy metals toxicity towards photo synthetic apparatus-direct and indirect effects on light and dark reactions. Acta Physiologiae Plantarum 17:177-190.
    Kulli B, Balmer M, Krebs R, Lothenbach B, Geiger G, Schulin R.1999. The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. Journal of Environmental Quality 28:1699-1705.
    Kumar M, Bijo AJ, Baghel RS, Reddy CRK, Jha B.2012. Selenium and spermine alleviate cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidants and DNA methylation. Plant Physiology and Biochemistry 51:129-138.
    Kupper H, Kiipper F, Spiller M.1998. In situ detection of heavy metal substituted chlorophylls in water plants. Photosynthesis Research 58:123-133.
    Kupper H, Setlik I, Spiller M, Kupper FC, Prasil O.2002. Heavy metal-induced inhibition of photosynthesis:targets of in vivo heavy metal chlorophyll formation. Journal of Phycology 38:429-441.
    Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM.2005. A cadmium enzyme from a marine diatom. Nature 435:42.
    Lin L, Zhou WH, Dai HX, Cao FB, Zhang GP, Wu FB.2012. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Journal of Hazardous Materials 235-236:343-351.
    Liu CP, Shen ZG, Li XD.2007. Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis. Biologia Plantarum 51:116-120.
    Liu JN, Zhou QX, Wang S, Sun T.2009. Cadmium tolerance and accumulation of Althaea rosea Cav. and its potential as a hyperaccumulator under chemical enhancement. Environmental Monitoring and Assessment 149:419-427.
    Liu MQ, Yanai J, Jiang RF, Zhang FS, McGrath SP, Zhao FJ.2008. Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere 71:1276-1283.
    Liu W, Shu WS, Lan CY.2004. Viola baoshanensis, a plant that hyperaccumulates cadmium. Chinese Science Bulletin 49:29-32.
    Liu ZL, He XY, Chen W, Yuan FH, Yan K, Tao DL.2009. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator-Lonicera japonica Thunb. Journal of Hazardous Materials 169:170-175.
    Lopez-Millan AF, Sagardoy R, Solanas M, Abadia A, Abadia J.2009. Cadmium toxicity in tomato(Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany 65:376-385.
    Lu HL, Yan CL, Liu JC.2007. Low-molecular-weight organic acid exuded by Mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environmental and Experimental Botany 61:159-166.
    Luo CL, Shen ZG, Li XD, Baker AJM.2006. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere 63:1773-1784.
    Luo CL, Shen ZG, Li XD.2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1-11.
    Ma JF, Yamaji N.2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science 11:392-397.
    Ma JF.2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition 50:11-18.
    Mallick N, Mohn FH.2003. Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecotoxicology and Environmental Safety 55:64-69.
    Mallik MAB, Williams RD.2005. Allelopathic growth stimulation of plants and microorganisms. Allelopathy Journal 16:175-198.
    Masood A, Iqbal N, Khan NA.2012. Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell and Environment 35:524-533.
    Maxwell K, Johnson GN.2000. Chlorophyll fluorescence-A practical guide. Journal of Experimental Botany 51:659-668.
    McLaughlin MJ, Parker DR, Clarke JM.1999. Metals and micronutrients-food safety issues. Field Crop Research 60:143-163.
    Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG.2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011-1022.
    Meers E, Tack FMG, Verloo MG.2008. Degradability of ethylenediaminedisuccinic acid (EDDS) in metal contaminated soils:Implications for its use soil remediation. Chemosphere 70:358-363.
    Meng HB, Hua SJ, Shamsi IH, Jilani G, Li YL, Jiang LX.2009. Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L. and its alleviation through exogenous plant growth regulators. Plant Growth Regulation 58:47-59.
    Mesjasz-Przybylowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybylowicz W, Glowacka E.2004. Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biologica Cracoviensia Series Botanica 46:75-85.
    Metwally A, Finkemeier I, Georgi M, Dietz KJ.2003. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology 132:272-281.
    Metwally A, Safronova VI, Belimov AA, Diez KJ.2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. Journal of Experimental Botany 56:167-178.
    Mohanpuria P, Rana NK, Yadav SK.2007. Cadmium induced oxidative stress influence on glutathione metabolic genes of Camella sinensis (L.). O Kuntze. Environmental Toxicology 22:368-374.
    Moon CS, Zhang ZW, Shimbo S, Watanable T, Moon DH, Lee CU, Lee BK, Ahn KD, Lee SH, Ikeda M.1995. Dietary intake of cadmium and lead among the general population in Korea. Environmental Research 71:46-54.
    Moussa HR, El-Gamal SM.2010. Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biologia Plantarum 54:315-320.
    Muhammad D, Chen F, Zhao J, Zhang GP, Wu FB.2009. Comparison of EDTA-and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. International Journal of Phytoremediation 11:558-574.
    Mukhopadhyay S, Maiti SK.2010. Phytoremediation of metal enriched mine waste:a review. Global Journal of Environmental Research 4:135-150.
    Mulligan CN, Galvez-Cloutier R.2003. Bioremediation of metal contamination. Environmental Monitoring and Assessment 84:45-60.
    Nowack B.2002. Environmental chemistry of aminopolycarboxylate chelating agents. Environmental Science and Technology 36:4009-4016.
    Nwugo C, Huerta A.2008. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant and Soil 311:73-86.
    Padmaja K, Prasad DDK, Prasad ARK.1990. Inhibit of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica 24:399-405.
    Padmavathiamma PK, Li LY.2007. Phytoremediation technology:hyperaccumulation metals in plants. Water, Air, and Soil Pollution 184:105-126.
    Pagliano C, Raviolo M, Dalla Vecchia F, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, La Rocca N.2006. Evidence for PSIT donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). Journal of Photochemistry and Photobiology B:Biology 84:70-78.
    Patel MJ, Patel JN, Subramanian RB.2005. Effects of cadmium on growth and the activity of H2O2 scavenging enzymes in Colocassia esculentum. Plant and Soil 273:183-188.
    Peng HY, Yang XE.2005. Volatile constituents in the flowers of Elsholtzia argyi and their variation:A possible utilization of plant resources after phytoremediation. J Zhejiang University Science B 6:91-95.
    Piechalak A, Malecka A, Baralkiewicz D, Tomaszewska B.2008. Lead uptake, toxicity and accumulation in Phaseolus vulgaris plants. Biologia Plantarum 52:565-568.
    Piechalak A, Tomaszewska B, Baralkiewicz D.2003. Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 64:1239-1251.
    Pietrini F, Lannelli MA, Pasqualini S, Massacci A.2003. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiology 133:829-837.
    Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Zylkiewicz B.2012. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiology and Biochemistry 52:52-65.
    Poschenrieder C, Barcelo J.1999. Water relation in heavy metals stressed plants. In: Prasad MNV, Hagemayer J, eds. Heavy metal stress in plants, from molecules to ecosystems. New York:Springer Verlag Berlin Heidelberg.
    Prasad MNV.1995. Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany.35:525-545.
    Qiu RL, Fang XH, Tang YT, Du SJ, Zeng XW.2006. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook. International Journal of Phytoremediation 8:299-310.
    Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ.2008. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6-12.
    Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F.2006. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918-925.
    Ralph PJ, Burchett MD.1998. Photosynthetic response Halophila ovalis to heavy metal stress. Environmental Pollution 103:91-101.
    Redondo-Gomez S, Mateos-Naranjo E, Andrades-Moreno L.2010. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator, Arthrocnemum macrostachyum. Journal of Hazardous Materials 184:299-307.
    Richmond KE, Sussman M.2003. Got silicon? The non-essential beneficial plant nutrient. Current Opinion in Plant Biology 6:268-272.
    Ruley AT, Sharma NC, Sahi SV, Singh SR, Sajwan KS.2006. Effects of lead and chelators on growth, photosynthesis activity and Pb uptake in Sesbania drummondii grown in soil. Environmental Pollution 144:11-18.
    Ruley AT, Sharma NC, Sahi SV.2004. Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiology Biochemistry 42:899-906.
    Saber NE, Abdel-Moneim AM, Barakat SY.1999. Role of organic acids in sunflower tolerance to heavy metals. Biologica Plantarum 42:65-73.
    Sagi M, Omarov RT, Lips SH.1998. The Mo-hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity. Plant Science 135:125-135.
    Saidi I, Ayouni M, Dhieb A, Chtourou Y, Chaibi W, Djebali W.2013. Oxidative damages induced by short-term exposure to cadmium in bean plants:protective role of salicylic acid. South African Journal of Botany 85:32-38.
    Saifullah, Zia M H, Meers E,Ghafoor A, Murtaza G, Sabi M, Zia-ur-Rehman M, Tack FMG.2010. Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Chemosphere 79:652-658.
    Salin ML.1988. Toxic oxygen species and protective systems of the chloroplasts. Physiologia Plantarum 72:681-689.
    Salt DE, Prince RC, Pickering IJ, Raskin I.1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology 109:1427-1433.
    Salt DE, Rauser WE.1995. MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiology 107:1293-1301,
    Salt DE, Smith RD, Raskin I.1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology 49:643-668.
    Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, Rio LC. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany 52:2115-2126.
    Sanita di Toppi, L, Gabrielli, R.1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41:105-130.
    Sarijeva G, Knapp M, Lichtenthaler HK.2007. Differences in photosynthetic activity, chlorophyll and carotenoid level, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus. Journal of Plant Physiology 164:950-955.
    Schwab AP, Zhu DS, Banks MK.2008. Influence of organic acids on the transport of heavy metals in soil. Chemosphere 72:986-994.
    Schwartz C, Echevarria G, Morel JL.2003. Phytoextraction of cadmium with Thlaspi caerulescens. Plant and Soil 249:27-35.
    Sedhom E, Duaerman L, Ibrahim N, Windgasse G.1992. Microwave treatment of hazardous wastes-fixation of chromium in soil. Journal of Microwave Power and Electromagnetic Energy 27:81-86.
    Shafi M, Bakht J, Razuddin, Hayat Y, Zhang GP.2011. Genotypic difference in the inhibition of photosynthesis and chlorophyll fluorescence by salinity and cadmium stresses in wheat. Journal of Plant Nutrition 34:315-323.
    Shakirova FM, Bezrukova MV, Maslennikova DR.2013. Endogenous ABA as a hormonal intermediate in the salicylic acid induced protection of wheat plants against toxic ions/Salicylic acid. Springer Netherlands 119-140.
    Sheng XF, Xia JJ.2006. Improvement of rape(Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036-1042.
    Shi GR, Cai QS.2009. Cadmium tolerance and accumulation in eight potential energy crops. Biotechnology Advances 27:555-561.
    Shi GR, Liu CF, Cai QS, Liu QQ, Hou CP.2010. Cadmium accumulation and tolerance of two safflower cultivars in relation to photosynthesis and antioxidantive enzymes. Bulletin of Environmental Contamination and Toxicology 85:256-263.
    Shimbo S, Zhang ZW, Watanabe T, Nakatsuka H, Matsduda-Inoguchi N, Higashikawa K, Ikeda M.2001. Cadmium and lead contents in rice and other cereal products in Japan in 1998-2000. Science of The Total Environment 281:165-175.
    Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH.2002. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Evironmental Pollution 120:445-453.
    Siddiqui MH, Al-Whaibi MH, Sakran AM, Basalah MO, Ali HM.2012. Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress. International Journal of Molecular Sciences 13:6604-6619.
    Solis-Dominguez FA, Gonzalez-Chavez MC, Garrillo-Gonzalez R, Rodriguez-Vazquez R.2007. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. Journal of Hazardous Materials 141:630-636.
    Soudek P, Tykva R, Vanek T.2004. Laboratory analyses of 137Cs uptake by sunflower, reed and poplar. Chemosphere 55:1081-1087.
    Strobel BW.2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma 99:169-198.
    Sun Q, Wang XR, Ding SM, Yuan XF.2005. Effects of exogenous organic chelators on phytochelatins production and its realtionship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress. Chemosphere 60:22-31.
    Sun RL, Zhou QX, Sun FH, Jin CX.2007. Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environmental and Experimental Botany 60:468-476.
    Sun YB, Zhou QX, An J, Liu WT, Liu R.2009. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma 150:106-112.
    Tamura H, Honda M, Sato T, Kamachi H.2005. Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). Journal of Plant Research 118:355-359.
    Tandy S, Bossart K, Mueller R, Ritschel J, Hauaser L, Schulin Rainer, Nowack B. 2004. Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology 38:937-944.
    Tandy S, Schulin R, Nowack B.2006. Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environmental Science and Technology 40:2753-2758.
    Thangavel P, Subbhuraam C.2004. Phytoextraction:role of hyperaccumulators in metal contaminated soils. Proceedings-Indian National Science Academy Part B 70:109-130.
    Tian SK, Lu LL, Zhang J, Wang K, Brown P, He ZL, Liang J, Yang XE.2011. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 84:63-69.
    Todd CD, Tipton PA, Blevins DG, Piedras P, Pineda M, Polacco JC.2006. Update on ureide degradation in legumes. Journal of Experimental botany 57:5-12.
    Tran TA, Vessileva V, Petrov P, Popova LP.2013. Cadmium-induced structural disturbances in Pisum sativum leaves are alleviated by nitric oxide. Turkish Journal of Botany 37:698-707.
    Tsukahara T, Ezaki T, Moriguchi J, Furuki K, Shimbo S, Matusuda-Inoguchi N, Ikeda M.2003. Rice as the most influential source of cadmium intake among general Japanese population. Science of The Total Environment 305:41-51.
    Tudoreanu L, Phillips CJC.2004. Modeling cadmium uptake and accumulation in plants. Advances in Agronomy 84:121-157.
    Turakainen M, Hartikainen H, Seppanen MM.2004. Effects of selenium treatments on potato(Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. Jouranl of Agricultural and Food Chemistry 52:5378-5382.
    Turgut C, Katie Pepe M, Cutright TJ.2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution 131:147-154.
    Turgut C, Katie Pepe M, Cutright TJ.2005. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metal when grown in Ohio, New Mexico and Colombia soils. Chemosphere 58:1087-1095.
    Van Assche F, Ceulemans R, Clijsters H.1980. Zinc mediated effects on leaf CO2 diffusion conductances and net photosynthesis in Phaseolus vulgaris L. Photosynthesis Research 1:171-180.
    Van Engelen DL, Sharpe-Pedler RC, Moorhead KK.2007. Effect of chelating agents and solubility of cadmium complexes on uptake from soil by Brassica juncea. Chemosphere 68:401-408.
    Vangronsveld J, Clijsters H.1994. Toxic effects of metals. In:Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity. M. E. Farago ed. Germany, Weinheim,:VCH Publishers.
    Vassil AD, Kapulnik Y, Raskin I, Salt DE.1998. The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiology 117:447-453.
    Vassilev A, Nikolova A, Koleva L, Lidon F.2011. Effects of excess Zn on growth and photosynthetic performance of young bean plants. Journal of Phytology 3:58-62.
    Vinit-Dunand F, Epron D, Alaoui-Sosse B, Badot PM.2002. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science 163:53-58.
    Wagner GJ.1993. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy 51:173-212.
    Wahid A, Ghani A, Ali I, Ashraf MY.2007. Effects of cadmium on carbon and nitrogen assimilation in shoots of mungbean [Vigna radiata (L.) Wilczek] seedlings. Journal of Agronomy and Crop Science 193:357-365.
    Wang QH, Liang X, Dong YJ, Xu LL, Zhang XW, Hou J, Fan ZY.2013. Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regulation 69:11-20.
    Wang ZW, Zhang SZ, Shan XQ.2004. Effects of low-molecular-weight organic acids on uptake of lanthanum by wheat roots. Plant and Soil 261:163-170.
    Watanabe S, Nakagawa A, Izumi S, Shimada H, Sakamoto A.2010. RNA interference-mediated suppression of xanthine dehydrogenase reveals the role of purine metabolism in drought tolerance in Arabidopsis. FEBS Letters 584:1181-1186.
    Wei SH, Teixeira da Silva JA, Zhou QX.2008. Agro-improving method of phytoextracting heavy metal contaminated soil. Journal of Hazardous Materials 150:662-668.
    Wen J, Stacey SP, McLaughlin MJ, Kirby JK.2009. Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology and Biochemistry 41:2214-2221.
    Wilkinson G.1987. Comprehensive coordination chemistry:The synthesis, reactions, properties and applications of coordination compounds. London:Pergamon press.
    Wojcik M, Tukiendorf A.2004. Phytochelatin synthesis and cadmium localization in wild type of Arabidopsis thaliana. Plant growth Regulation 44:71-80.
    Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C.2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils:issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials 174:1-8.
    Wuana RA, Okieimen FE.2011. Heavy metals in contaminated soils:a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:1-20.
    Xu LL, Fan ZY, Dong YJ, Kong J, Liu S, Hou J, Bai XY.2013. Effects of exogenous NO supplied with different approaches on cadmium toxicity in lettuce seedlings. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology ahead-of-print:1-10.
    Xue TL, Hartikainen H, Piironen V.2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil 237:55-61.
    Yang CJ, Zhou QX, Wei SH, Hu YH, Bao YY.2011. Chemical-assisted phytoremediation of Cd-PAHs contaminated soils using Solanum nigrum L. International Journal of Phytoremediation 13:818-833.
    Yang M, Xiao XY, Miao XF, Guo ZH, Wang FY.2012. Effect of amendments on growth and metal uptake of giant reed(Arundo donax L.) grown on soil contaminated by arsenic, cadmium and lead. Transactions of Nonferrous Metals Society of China 22:1462-1469.
    Yang MJ, Yang XE, Roemheld V.2002. Growth and nutrient composition of Elsholtzia splendens nakai under copper toxicity. Journal of Plant Nutrition 25:1359-1375.
    Yang XE, Baligar VC, Martens DC, Clark RB.1995. Infux, transport, and accumulation of cadmium in plant species grown at different Cd2+ activities. Journal of Environmental Science and Health part B 30:569-583.
    Yang XE, Long XX, Ni WZ, Fu CX.2002. Sedum alfredii H.:a new Zn hyperaccumulating plant first found in China. Chinese Science Bulletin 47:1634-1637.
    Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ.2004. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant and Soil 259:181-189.
    Yang XE, Shi WY, Fu CX, Yang MJ, He F.1998. Copper-hyperaccumulators of Chinese native plants:characteristics and possible use for phytoremediation. In: Bassam NE. Ed, Sustainable Agriculture for Food, Energy and Industry, London: James & James Science Publishers Ltd.
    Ying RR, Qiu RL, Tang YT, Hu PJ, Qiu H, Chen HR, Shi TH, Morel JL.2010. Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. Journal of Plant Physiology 167:81-87.
    Yoon J, Cao X, Zhou Q, Ma LQ.2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of The Total Environment 368:456-464.
    Yu LX, Gao RX, Shi QH, Wang XF, Wei M, Yang FJ.2013. Exogenous application of sodium nitroprusside alleviated cadmium induced chlorosis, photosynthesis inhibition and oxidative stress in cucumber. Pakistan Journal of Botany 45:813-819.
    Zhang BL, Shang SH, Zhang HT, Jabeen Z, Zhang GP.2013. Sodium chloride enhances cadmium tolerance through reducing cadmium accumulation and increasing anti-oxidative enzyme activity in tobacco. Environmental Toxicology and Chemistry 32:1420-1425.
    Zhang FQ, Zhang HX, Xia Y, Wang GP, Xu LL, Shen ZG.2011. Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Reports 30:1475-1483.
    Zhang WN, Chen WL.2011. Role of salicylic acid in alleviating photochemical damage and autophagic cell death induction of cadmium stress in Arabidopsis thaliana. Journal of Photochemical and Photobiological Sciences 10:947-955.
    Zhao SL, Shang XJ, Duo L.2013. Accumulation and spatial distribution of Cd, Cr, and Pb in mulberry from municipal solid waste compost following application of EDTA and (NH4)2SO4. Environmental Science Pollution Research 20:967-975.
    Zhao XF, Chen L, Muhammad IAR, Wang QS, Wang SH, Hou PF, Li GH, Ding YF. 2013. Effect of nitric oxide on alleviating cadmium toxicity in rice (Oryza sativa L.). Journal of Intergrative Agriculture 12:1540-1550.
    Zhou QX, Song YF.2004. Principles and Methods of Contaminated Soil Remediation. Beijing:Science Press.
    Zhou WB, Qiu BS.2005. Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Science 169:737-745.
    Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ.2012. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. Journal of Hazardous Materials 239-240:302-307.
    曹潘荣,陈伟,张怀,孔垂华.1996.尿囊素对茶树、苦丁树的化感作用研究.广东茶叶3:5-7.
    冯德福.2000.镉污染与防治.沈阳化工29:44-45.
    高会玲,刘金隆,洪立洲,王长海,马梅,赵世训,郑春芳.外源油菜素内酯对镉胁迫下菊芋幼苗光合作用及镉积累的调控效应生态学报33:1935-1943.
    顾继光,周启星.2002.镉污染土壤的治理及植物修复.生态科学21:325-356.
    何益波,李立清,曾清如.2006.重金属污染土壤修复技术的进展.广州环境科学21:26-31.
    胡星明,袁新松,王丽平,华攀玉,张天澍.2012.磷肥和稻草对土壤重金属形态,微生物活性和植物有效性的影响.环境科学研究25:77-82.
    姜理英,杨肖娥,叶正钱,石伟勇.2003.海州香薷和紫花香薷对Cu, Zn的吸收和积累.农业环境科学学报22:524-528.
    金晓芬.2008.镉超积累植物东南景天谷胱甘肽代谢特征及比较蛋白质组学研究.博士论文浙江大学.
    李德明,朱祝军.2005.镉对植物光合作用的影响.广东微量元素科学12:61-65.
    李和生.1999.尿囊素对玉米幼苗的生物效应.宁波大学学报(理工版)12:54-56.
    李继光,李廷强,朱恩,杨肖娥.2008.不同氮形态对东南景天镉积累的影响.浙江大学学报(农业与生命科学版)34:327-333.
    李雪莲.2011.东南景天镉超积累生态型根系分泌物的研究.硕士论文浙江大学
    李玉红,宗良纲,黄耀.2002.螯合剂在污染土壤植物修复中的应用.土壤与环境11:303-306.
    梁英,王帅,冯力霞,田传远.2008.重金属胁迫对纤细角毛藻生长和叶绿素荧光特性的影响.中国海洋大学学报38:59-67.
    廖晓勇,陈同斌,阎秀兰,聂灿军.2007.提高植物修复效率的技术途径与强化措施.环境科学学报27:881-889.
    凌杏元,傅庭治.1995.尿囊素对小麦幼苗光合功能的影响.安徽农业大学学报22:203-207.
    刘春阳,张宇峰,崔志强.2005.土壤中重金属污染修复的研究进展.江苏环境科技18(B12):139-141.
    潘武中,唐友斌,王以康,崔世明,范富龙,傅庭治,曹幼琴,秦小琼.1994.尿囊素对土壤微生物的激活作用及其对农作物的增产效应初报.江苏农业科学3:41-43.
    钱海胜,陈亚华,王桂萍,沈振国.2008.镉在不结球白菜中的积累及外源脱落酸对镉积累的影响.南京农业大学学报31:61-65.
    沈丽波,吴龙华,韩晓日,谭维娜,黄玉娟,骆永明.2011.养分调控对超积累植物伴矿景天生长及锌镉吸收性的影响.土壤43:221-225.
    沈振国,陈怀满.2000.土壤重金属污染生物修复的研究进展.农村生态环境16:39-44.
    孙瑞莲,周启星,王新.镉超积累植物龙葵叶片中镉的积累与有机酸含量的关系.环境科学27(4):765-769.
    王松良,陈选阳,陈辉,陈冬梅,王峰吉,高文霞,张志坚,王建明.2007.小白菜镉耐性形成的生理生化机理研究.中国生态农业学报15(5):120-124.
    谢德意,梁惠珍,王浩.1993.尿囊素处理小麦种子增产机理探讨.华北农学报8:115-119.
    徐明岗,刘平,宋正国,张青.2006.施肥对污染土壤中重金属行为影响的研究进展.农业环境科学学报25(增刊):328-333.
    许鸿源,何冰,杨广胜.1999.尿囊素与广增素对水稻幼苗生长及抗寒能力的影响.广西农业科学3:122-124.
    许鸿源,周文亮,周凤珏,施力军,何冰,黄春燕.2005.苗期喷施尿囊素对玉米后期生长及产量的影响.广东农业生物科学24:38-42.
    杨居荣,贺建群,蒋婉如.1995.镉污染对植物生理生化的影响.农业环境保护14:193-197.
    杨秀敏,胡桂娟,杨秀红,李海霞,李宁.2007.生物修复技术的应用及发展.中国矿业16:58-60.
    于彩莲,刘波,徐鑫.2011.DA-6强化龙葵修复高镉污染土壤的作用.中国农业科学44:3485-3490.
    于彩莲.2011.生长调节剂强化龙葵修复镉污染土壤能力的研究.博士论文哈尔滨理工大学.
    袁吉.1995.尿囊素应用于水稻增产的小试初报.广西科学2:63-64.
    张慧,施国新,计汪栋,徐勤松,袁秋红,许晔.2007.外源脱落酸(ABA)增强菹草抗镉(Cd2+)胁迫能力.生态与农村环境学报23:77-81.
    张金彪,柯玉琴,黄维南.2009.Cd胁迫对草莓叶片膜脂质过氧化和脱落酸含量的影响.亚热带农业研究5:242-246.
    张尧,田正贵,曹翠玲,刘建朝,康靖全.2010.农业环境科学学报19(11):2080-2086.
    张圆圆,窦春英,姚芳,叶正钱.2010.氮素营养对重金属超积累植物东南景天吸收积累锌和镉的影响.浙江林学院学报27:831-838.
    赵胡,李裕红.2008.植物对重金属耐性机理的研究进展.阜阳师范学院学报(自然科学版)25(3):35-40.
    郑小林,朱照宇,黄伟雄,梁志伟,黄妃本.2007.N、P、K肥对香根草修复土壤镉、锌污染效率的影响.西北植物学报27:560-564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700