六堡茶和茉莉花改善胰岛素抵抗功效及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六堡茶始于广西梧州市苍梧县六堡乡,属于中国特有的后发酵茶----黑茶家族成员,传统消费区域为华南一带及东南亚各国。黑茶具有多种特殊保健功效,其独特的减肥降脂功能得到了消费者的认可,降血糖功效也引起了科学工作者的关注。茉莉花窨制花茶剩余的花渣,有可能作为废弃物造成环境二次污染,目前没有综合利用的报道,没有实现综合开发,其最大价值没有得到体现。六堡茶和茉莉花基础研究和应用研究都已经滞后于市场脚步,它们能够降低糖尿病小鼠血糖,挖掘六堡茶和茉莉化降血糖有效成分及其降糖机制将有助于植物资源的综合开发。本研究的主要总结如下:
     1、六堡茶和茉莉花化学成分分析
     以红外光谱法表征六堡茶,测定六堡茶化学成分红外图谱总叠加,根据化学成分各基团的红外指纹特征可以对六堡茶的陈化时间先后作出判断。六堡茶粉末和提取物的红外光谱和二阶红外光谱分析结果表明,六堡茶红外光谱有类似的光谱特征,两者光谱的相同波数峰强度相似系数均大于0.96,系统进化树图表明相近陈化时间六堡茶有较近的关系。茶叶粉末和提取物红外光谱有较大差异,它们的红外光谱和二阶红外光谱随陈化时间延长都出现了变化。
     六堡茶和茉莉花化学成分测定发现,六堡茶与其他黑茶成分存在共性,随陈化时间延长,多酚类、总糖含量呈减少趋势,茶黄素、茶红素、茶褐素含量呈增加趋势,茶褐素含量大幅度增加;与未发酵茶比较,化学成分含量变化较大,化学成分变化特点可能是六堡茶保健功能优异的物质基础。不同陈化时间六堡茶茶黄素含量为0.19-0.42%,茶红素含量为1.26-3.24%,茶褐素含量为9.49-16.29%。
     茉莉花蛋白质含量0.68%,与六堡茶相当,多酚含量高达6.84%,比六堡茶高,总糖含量为8.6%,稍低于六堡茶。
     2、软脂酸对HepG2细胞糖脂代谢的影响
     软脂酸0.4mmol/L剂量刺激HepG2细胞16h可以有效建立胰岛素抵抗模型,HepG2细胞胰岛素抵抗模型葡萄糖消耗减少,细胞中TC、TG堆积量增加。GLUT2、HL和AMPKa2基因表达降低,PEPCK和ACC2基因表达升高。
     二甲双胍改善HepG2细胞胰岛素抵抗模型的胰岛素抵抗症状,葡萄糖消耗量增加,细胞中TC、TG堆积量减少,糖原堆积量增加。胰岛素抵抗模型经治疗后,GLUT2、HL和AMPKa2等糖脂代谢相关基因表达上调。
     辛伐他汀能够改善HepG2细胞胰岛素抵抗模型胰岛素抵抗症状,细胞中TC、 TG堆积量减少,糖原堆积量增加。胰岛素抵抗模型经治疗后,GLUT2和HL基因表达上调,PEPCK和ACC2表达下调。
     3、六堡茶和茉莉花对高脂饮食大鼠胰岛素抵抗的影响
     给大鼠喂养猪油、蔗糖和蛋黄含量高的饲料8周,大鼠体重增加很快,形成肥胖大鼠模型。六堡茶和茉莉花能够降低高脂饮食大鼠体重、脂肪含量、谷草转氨酶、甘油三酯水平,升高HDL水平,降低大鼠空腹血糖和空腹胰岛素浓度,提高胰岛素敏感指数,降低葡萄糖耐量试验AUC,对高脂饮食导致的高血糖和胰岛素抵抗有改善作用。
     4、六堡茶和茉莉花对糖尿病大鼠胰岛素抵抗的影响
     高脂喂养加小剂量STZ腹腔注射大鼠可以成功建立糖尿病大鼠模型。糖尿病大鼠模型经六堡茶给药干预,大鼠食量减少,但幅度不大。实验结束,六堡茶高剂量组体重比模型组高,但幅度不大,能减少糖耐量AUC,降低糖尿病大鼠空腹血糖和空腹胰岛素水平。茉莉花各剂量组体重都减少,随着剂量增加,体重减少变慢,能够减少糖耐量AUC,降低糖尿病大鼠空腹血糖,升高空腹胰岛素水平。
     5、六堡茶和茉莉花对糖脂代谢机制的影响
     六堡茶水提物可以促进胰岛素抵抗状态HepG2细胞的葡萄糖摄取,中剂量、高剂量六堡茶促进葡萄糖吸收,改善细胞内总胆固醇含量。这种作用可能是通过增加AMPKα2和HL mRNA表达、减少ACC1、ACC2mRNA表达,调控能量代谢和加速脂肪氧化来实现。在蛋白水平上能够促进Akt ser473位点磷酸化,改善胰岛素抵抗导致的葡萄糖转运和肝糖原合成紊乱。茉莉花水提物促进葡萄糖吸收,显著降低总胆固醇含量,在基因水平上增加HL mRNA表达,降低AMPKα2、 ACC1mRNA表达,茉莉花不同剂量对ACC2mRNA表达影响不同。
     6、六堡茶和茉莉花改善胰岛素抵抗成分及其机制
     六堡茶化学成分中与减肥降脂降血糖相关成分有没食子酸、儿茶素、茶黄素、他汀类、茶多糖、茶多酚和茶褐素。渥堆过程中,儿茶素、茶多酚含量减少,茶黄素、茶褐素、他汀类含量增加,改善胰岛素抵抗化学成分很可能与茶黄素、茶褐素增加有关,也可能与各成分含量比例改变有关。六堡茶对胰岛素抵抗的改善作用是各化学成分对不同靶点共同作用的结果,通过上调AMPK表达,提高Akt活性,增加葡萄糖摄取,促进脂肪氧化来实现的。茉莉花中富含胡萝卜素、齐墩果酸、槲皮素、芦丁等黄酮及多酚类物质,对降低脂肪堆积有很好的作用,多糖对降低血糖也有很好的作用,其作用机制可能是通过增加Akt蛋白磷酸化,提高Akt活性,增加HL表达,减少脂肪合成增加脂肪分解的途径实现对糖脂代谢的调整。
Liupao tea is one of Chinese post-fermented teas with unipue flavour, originating in Liubao town, Cangwu County, Guangxi, which has traditionally been drunk in Southern part of China and Southeast Asia. Dark tea, so called post-fermented tea, was proved to possess unipue healthy efficacy, especially anti-obesity, hypolipidemia, hypoglycemia effects attracting more scientists' attention. Jasmine flower residue is left after Jasmine tea scented, which is usually regarded pollutional garbage. Comprehensive ultilization of Jasmine flower residue has not been found currently and the essential value is fully ignored. Basic and applied research in Liupao tea and Jasmine have been greatly lagging behind market demand. Liupao tea and Jasmine flower can ameliorate hyperglycemia in diabetic mice. Insulin resistance is the indispensable stage and outcome of diabetes. Research on chemical ingredients and hypoglycemia mechanism will help to highlight the ultilization of Liupao tea and Jasmine. The main results are as follows:
     1chemical ingredients'analysis of Liupao tea and Jasmine
     Liupao tea was characterised by infrared spectrum without the process of chemical ingredients' isolation of Liupao tea. The Liupao tea's quality is concluded according to IR fingerprint of different perssads in multi-ingredients. IR spectrum and second derivative spectrum of Liupao tea power and extracts were conducted. The results showed that IR spectum of Liupao tea possesses the same characters, in which the similarity factor of peak intensity with same wave number are more than0.96. Cluster Dendrogram shows that similar aging time Liupao teas have close relationship. Difference can be found in IR spectrums of power and extract from a same tea, and also in which of powers or extracts from different aging time teas.
     Ingredients'analysis results show that Liupao tea shares great same constituents with other dark teas. Polyphenols and total sugar content have a reducing trend and theaflavin, Thearubigin and Theabrownin content increase with aging time extending. Alteration of chemical ingredients may be the key factor on Liupao tea healthy efficacy compared to non-fermented teas. Theaflavins in different aging time Liupao tea extracts range from0.19to0.42%, thearubigin from1.26to3.24%, theabrownin from9.49to16.29%.
     Jasmine extracts contain0.68%protein,6.84%polyphenol,8.6%total sugar.
     2the effects of palmitate on glucose and lipid's metabolism in HepG2cells
     Insulin resistant HepG2cell model is established by incubation with0.4mmol/L palmitate for16h, with glucose consumption decreasing, content of total cholesterol and triglyceride accumulation increasing, expression of GLUT2, HL and AMPKa2mRNA decreasing, expression of PEPCK and ACC2mRNA increasing.
     Metformin can ameliorate insulin resistance in HepG2cell model, with increasing glucose consumption and glycogen content, decreasing content of total cholesterol and triglyceride accumulation, up-regulating the expression of GLUT2, HL and AMPKa2mRNA. Simvastatin also ameliorate insulin resistance in HepG2cell model, with increasing glycogen content, decreasing content of total cholesterol and triglyceride accumulation, up-regulating the expression of GLUT2, HL mRNA, down-regulating the expression of PEPCK and ACC2mRNA.
     3the effects of Liupao tea and Jasmine on high fat diet-induced insulin resistance in rats
     Obese rat model is successfully established by feeding high fat chow containing high content of lard, sugar and yolky powder for8weeks. Body weight, content of lipid, level of AST and TG all decrease, level of HDL increases after administration of Liupao tea and Jasimine extracts in high fat diet induced obese rats. Levels of rats' fasting plasma and insulin, AUC of glucose tolerance test also lower, while the insulin sensitivity index rises. Symptom of hyperglycemia and hyperinsulinemia induced by high fat diet are improved.
     4the effects Liupao tea and Jasmine on insulin resistance in diabetic rats
     Diabetic rat model is successfully established by feeding high fat chow combining with intraperitoneal inject of streptozotocin. Food intake of rats has a little decrease after administration of Liupao tea extracts in the end of the experiment. Body weight of high dose group is a little heavier than which of model group, AUC of glycose tolerance test less, fasting plasma glucose and fasting insulin lower compared with model group. Three group rats of Jasmine extracts has weight loss, AUC of glycose tolerance test less, fasting plasma glucose level lower, fasting insulin level higher compared with model group.
     5the effect of Liupao tea and Jasmine on metabolism mechanism of glucose and lipids
     Liupao tea and Jasmine extracts can improve glucose intake of insulin resistant HepG2cell and lower level of total cholesterol. This may attributes to up-regulate the expression of AMPKα2, HL mRNA, accelerating energy metabolism and lipid oxidation. Akt phosphorylation in ser473may improve glucose transport and liver glycogen synthesis. Jasmine extracts also can improve glucose intake, and lower level of total cholesterol, increase the expression of HL mRNA, reduce the expression of MPKa2,ACC1mRNA.
     6incredients and mechanism of ameliorating insulin resistance in Liupao tea and Jasmine
     Ingredients in Liupao tea related to antiobsity, hypolipidemia and hypoglycemia include gallic acid, catechins, theaflavins, stastins, tea polysaccharides, tea polyphenols and theabrownins. In the fermenting stage, the content of catechins and tea polyphenols reduce while the content of theaflavins, statins and theabrownins increase. The effective ingredients of ameliorating insulin resistance may be related to the increase of theaflavins and theabrownins'content, or to the alteration of ratio among different ingredients. The improvement of insulin resistance may attribute to the synergistic effect of various effective ingredients acting on multiple targets. The curative effect is through up-regulation of AMPK mRNA expression, activation of Akt, increase of glucose intake and promotion of lipid oxidation. Jasmine contains high content of flavonoids and polyphenols such as carotene, oleanolic acid, quercetin and rutin, which help to lower the accumulation of lipids. Polysaccharides in Jasmine can also lower the blood glucose level.
引文
[1]Yang W, Lu J, Weng J et al. Prevalence of diabetes among men and women in China[J]. New England Journal of Medicine.2010,362(12):1090-1101.
    [2]Whiting DR, Guariguata L, Weil C et al. IDF diabetes atlas:global estimates of the prevalence of diabetes for 2011 and 2030[J]. Diabetes research and clinical practice.2011,94(3):311-321.
    [3]Reaven GM. Pathophysiology of insulin resistance in human disease[J]. Physiological reviews.1995,75(3):473-486.
    [4]DeFronzo RA. Pathogenesis of type 2 diabetes mellitus[J]. Medical Clinics of North America.2004,88(4):787-836.
    [5]Caballero AE. Endothelial dysfunction in obesity and insulin resistance:a road to diabetes and heart disease[J]. Obesity.2003,11(11):1278-1289.
    [6]纪宝华.胰岛素抵抗研究的现状与未来[J].高血压杂志.2004,12(2):103-105.
    [7]Paradis S, Ruvkun G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor[J]. Genes & development.1998,12(16):2488-2498.
    [8]White MF. The IRS-signaling system:a network of docking proteins that mediate insulin and cytokine action[J]. Recent progress in hormone research.1998,53: 119.
    [9]Staubs PA, Nelson JG, Reichart DR et al. Platelet-derived growth factor inhibits insulin stimulation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase in 3T3-L1 adipocytes without affecting glucose transport[J]. Journal of Biological Chemistry.1998,273(39):25139.
    [10]Kotani K, Ogawa W, Matsumoto M et al. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes[J]. Molecular and cellular biology.1998,18(12):6971.
    [11]Kitamura T, Ogawa W, Sakaue H et al. Requirement for activation of the serine-threonine kinase Akt (protein kinase B) in insulin stimulation of protein synthesis but not of glucose transport[J]. Molecular and cellular biology.1998, 18(7):3708.
    [12]ZHANG Y, Hui L. Three Important Transcription Factors Related to Lipogenesis and Adipogenesis in Mammal[J]. Journal of Northeast Agricultural University. 2010,17(3):1013-1017.
    [13]Choy L, Skillington J, Derynck R. Roles of autocrine TGF-β receptor and Smad signaling in adipocyte differentiation[J]. The Journal of cell biology.2000, 149(3):667-682.
    [14]Fajas L. PPARy:from cell proliferation to adipocyte differentiation[J]. Progress in obesity research:9.2003,9:131.
    [15]Tomlinson JJ, Boudreau A, Wu D et al. Insulin sensitization of human preadipocytes through glucocorticoid hormone induction of forkhead transcription factors[J]. Molecular Endocrinology.2010,24(1):104-113.
    [16]Banerjee A, Meyer K, Mazumdar B et al. Hepatitis C virus differentially modulates activation of forkhead transcription factors and insulin-induced metabolic gene expression[J]. Journal of virology.2010,84(12):5936-5946.
    [17]Guilherme A, Virbasius JV, Puri V et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes[J]. Nature Reviews Molecular Cell Biology.2008,9(5):367-377.
    [18]van Harmelen V, Ryden M, Sjolin E et al. A role of lipin in human obesity and insulin resistance:relation to adipocyte glucose transport and GLUT4 expression[J]. Journal of lipid research.2007,48(1):201-206.
    [19]Temofonte N, Sajan M, Nimal S et al. Combined thiazolidinedione-Metformin treatment synergistically improves insulin signalling to insulin receptor substrate-1-dependent phosphatidylinositol 3-kinase, atypical protein kinase C and protein kinase B/Akt in human diabetic muscle [J]. Diabetologia.2009,52(1): 60-64.
    [20]Whelan SA, Dias WB, Thiruneelakantapillai L et al. Regulation of Insulin Receptor Substrate 1 (IRS-1)/AKT Kinase-mediated Insulin Signaling by 0-Linked beta-N-Acetylglucosamine in 3T3-L1 Adipocytes[J]. Journal of Biological Chemistry.2010,285(8):5204.
    [21]Kim YB, Nikoulina SE, Ciaraldi TP et al. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes[J]. Journal of Clinical Investigation.1999,104: 733-741.
    [22]Schultze SM, Hemmings BA, Niessen M et al. PI3K/AKT, MAPK and AMPK signalling: protein kinases in glucose homeostasis[J]. Expert Reviews in Molecular Medicine. 2012,14(1):561.
    [23]Goldstein BJ, Ahmad F, Ding W et al. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases[J]. Molecular and cellular biochemistry.1998,182(1):91-99.
    [24]邹大进,陶弢.蛋白酪氨酸磷酸酶-1B与肥胖和2型糖尿病[J].国外医学(内分泌学分册).2003,23(5):325-327.
    [25]DELIBEGOVIC M, Mody N. Protein tyrosine phosphatase 1B (PTP1B) in obesity and type 2 diabetes[J]. Acta Med Sal.2009,38(1):2-7.
    [26]Koren S, Fantus IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus[J]. Best Practice & Research Clinical Endocrinology & Metabolism.2007, 21(4):621-640.
    [27]Goodyear LJ, Giorgino F, Sherman LA et al. Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects[J]. Journal of Clinical Investigation.1995,95(5):2195.
    [28]Epstein FH, Shepherd PR, Kahn BB. Glucose transporters and insulin action-implications for insulin resistance and diabetes mellitus[J]. New England Journal of Medicine.1999,341(4):248-257.
    [29]Bruce CR, Hoy AJ, Turner N et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance[J]. Diabetes. 2009,58(3):550-558.
    [30]Olofsson SO, Andersson L, Haversen L et al. The formation of lipid droplets: possible role in the development of insulin resistance/type 2 diabetes[J]. Prostaglandins, leukotrienes, and essential fatty acids.2011,85(5):215-218.
    [31]Mirbolooki MR, Constantinescu CC, Pan ML et al. Quantitative assessment of brown adipose tissue metabolic activity and volume using 18 F-FDG PET/CT and β3-adrenergic receptor activation[J]. EJNMMI research.2011,1(1):1-11.
    [32]Harper ME, Green K, Brand MD. The efficiency of cellular energy transduction and its implications for obesity[J]. Annu. Rev. Nutr.2008,28:13-33.
    [33]de Souza CJ, Hirshman MF, and Horton ES. CL-316,243, a beta3-specific adrenoceptor agonist, enhances insulin-stimulated glucose disposal in nonobese rats[J]. Diabetes.1997,46:1257-1263.
    [34]Melanson EL, Astrup A, Donahoo WT. The relationship between dietary fat and fatty acid intake and body weight, diabetes, and the metabolic syndrome[J]. Ann Nutr Metab.2009,55(1-3):229-243.
    [35]Singhal N, Misra A, Shah P et al. Secular trends in obesity, regional adiposity and metabolic parameters among Asian Indian adolescents in north India:a comparative data analysis of two selective samples 5 years apart (2003,2008) [J]. Ann Nutr Metab.2010,56(3):176-181.
    [36]Remedi MS, Nichols CG. Hyperinsulinism and Diabetes:Genetic Dissection of [beta] Cell Metabolism-Excitation Coupling in Mice[J]. Cell Metabolism.2009,10(6): 442-453.
    [37]Kuo LE, Kitlinska JB, Tilan JU et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome[J]. Nature medicine.2007,13(7):803-811.
    [38]Ben-Jonathan N, Hugo ER, Brandebourg TD. Effects of bisphenol A on adipokine release from human adipose tissue:Implications for the metabolic syndrome[J]. Molecular and cellular endocrinology.2009,304(1-2):49-54.
    [39]Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK et al. Insulin resistance associated to obesity:the link TNF-alpha[J]. Archives of physiology and biochemistry.2008,114(3):183-194.
    [40]Cawthorn WP, Sethi JK. TNF-α and adipocyte biology[J]. FEBS letters.2008, 582(1):117-131.
    [41]吴峰,都健,王慧敏et al.胰岛素抵抗大鼠的肝脏中丝氨酸/酪氨酸磷酸化异常与血清TNF-α相关[J].中国实验动物学报2009,17(5):567-572.
    [42]Hotamisligil G. The role of TNF伪 and TNF receptors in obesity and insulin resistance[J]. Journal of internal medicine.1999,245(6):621-625.
    [43]李宏睿,孙文夏.瘦素功能研究进展[J].中国动脉硬化杂志.2004,12(1):108-113.
    [44]Ahima RS. Revisiting leptin's role in obesity and weight loss[J]. The Journal of clinical investigation.2008,118(7):2380.
    [45]王斌,章卫平.瘦素调节下丘脑神经肽Agouti相关蛋白表达的研究进展[J].第二军医大学学报.2009,30(5):569-572
    [46]陈名道.对瘦素临床意义的重新认识[J].中华内科杂志.2002,41(4):219-220.
    [47]Petersen KF, Oral EA, Dufour S et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy[J]. Journal of Clinical Investigation.2002,109(10):1345-1350.
    [48]Li Y, Soos TJ, Li X et al. Protein kinase Cθ inhibits insulin signaling by phosphorylating IRS1 at Ser1101[J]. Journal of Biological Chemistry.2004, 279(44):45304-45307.
    [49]Summermatter S, Mainieri D, Russell A et al. Thrifty metabolism that favors fat storage after caloric restriction:a role for skeletal muscle phosphatidylinositol-3-kinase activity and AMP-activated protein kinase[J]. The FASEB Journal.2008,22(3):774-785.
    [50]Shimomura I, Hammer RE, Ikemoto S et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy[J]. Nature.1999, 401 (6748):73-76.
    [51]Gavrilova 0, Marcus-Samuels B, Graham D et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice[J]. Journal of Clinical Investigation.2000,105(3):271-278.
    [52]01efsky JM. Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists[J]. Journal of Clinical Investigation.2000,106(4):467-472.
    [53]Hussein Z, Wentworth JM, Nankervis AJ et al. Effectiveness and side effects of thiazolidinediones for type 2 diabetes:real-life experience from a tertiary hospital[J]. Medical journal of Australia.2004,181(10):536-539.
    [54]Lee YH, Chung M, Lin Q et al. Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2+/-mice:Two-stage oxidative injury[J]. Toxicology and applied pharmacology.2008,231(1):43-51.
    [55]Xiao B, Heath R, Saiu P et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase[J]. Nature.2007,449(7161):496-500.
    [56]Minokoshi Y, Alquier T, Furukawa N et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus[J]. Nature.2004, 428(6982):569-574.
    [57]Cool B, Zinker B, Chiou W et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome[J]. Cell Metabolism.2006,3(6):403-416.
    [58]Wright DC, Geiger PC, Holloszy JO et al. Contraction-and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle[J]. American Journal of Physiology-Endocrinology And Metabolism. 2005,288(6):E1062-E1066.
    [59]Burcelin R, Crivelli V, Perrin C et al. GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor-stimulated muscle glucose utilization[J]. Journal of Clinical Investigation.2003,111(10):1555-1562.
    [60]Fryer LGD, Foufelle F, Barnes K et al. Characterization of the role of the AMP-activated protein kinase in the stimulation of glucose transport in skeletal muscle cells[J]. Biochemical Journal.2002,363(1):167-174.
    [61]Misra P, Chakrabarti R. The role of AMP kinase in diabetes[J]. Indian Journal of Medical Research.2007,125(3):389.
    [62]Kim WS, Lee YS, Cha SH et al. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity[J]. American Journal of Physiology-Endocrinology And Metabolism.2009,296(4):E812-E819.
    [63]Shang J, CHEN L, XIAO F et al. Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase[J]. Acta Pharmacologica Sinica.2008,29(6):698-706.
    [64]Hwang JT, Park IJ, Shin JI et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase[J]. Biochemical and biophysical research communications.2005,338(2): 694-699.
    [65]Chiang CT, Weng MS, Lin-Shiau SY et al. Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through downregulating Akt and JNK signalings as demonstrated in human hepatoma HepG2 cells[J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics.2006,16(3): 119-128.
    [66]Lin CL, Huang HC, Lin JK. Theaflavins attenuate hepatic lipid accumulation through activating AMPK in human HepG2 cells[J]. Journal of lipid research.2007, 48(11):2334.
    [67]Gong J, Peng C, Chen T et al. Effects of Theabrownin from Pu-erh Tea on the Metabolism of Serum Lipids in Rats:Mechanism of Action[J]. Journal of food science.2010,75(6):H182-H189.
    [68]Jeng KC, Chen CS, Fang YP et al. Effect of microbial fermentation on content of statin, GABA, and polyphenols in Pu-Erh tea[J]. Journal of agricultural and food chemistry.2007,55(21):8787-8792.
    [69]Zhou X, Wang D, Sun P et al. Effects of soluble tea polysaccharides on hyperglycemia in alloxan-diabetic mice[J]. Journal of agricultural and food chemistry.2007,55(14):5523-5528.
    [70]张海凤,董亚琳,张琰.没食子酸对a-葡萄糖苷酶的抑制作用及其降糖机制研究[J].中国药业.2011,20(21):8-10.
    [71]田洋,肖蓉,徐昆龙et al.普洱茶加工过程中主要成分变化及相关性研究[J].食品科学.2010,31(11):20-25.
    [72]丁玲.茯砖茶加工过程中主要化学成分的变化及其对胰酶活性的影响[D].杭州:浙江大学;2006.
    [73]Wu Y, Ding L, Xia H et al. Analysis of the major chemical compositions in Fuzhuan brick-tea and its effect on activities of pancreatic enzymes in vitro [J]. African Journal of Biotechnology.2010,9(40):6748-6754.
    [74]傅冬和,刘仲华,黄建安et al.茯砖茶加工过程中主要化学成分的变化[J].食品科学.2008,29(2):64-67.
    [75]Liang Z, Li N, Ma Z et al. Comparison of the chemical constituents of aged Pu-erh tea,ripened Pu-erh tea and other teas using HPLC-DAD-ESI-MSn[J]. Journal agricultural and food chemistry.2011.
    [76]朱旗,MN C,毛清黎et al. LC-MS分析普洱茶和茯砖茶与红茶成分的比较研究[J].茶叶科学.2006,26(3):191-194.
    [77]Kuo KL, Weng M, Chun-Te Chiang et al. Comparative studies on the hypolipidemic and growth suppressive effects of oolong, black, pu-erh, and green tea leaves in rats[J]. Journal of agricultural and food chemistry.2005,53(2):480-489.
    [78]江新凤,邵宛芳.普洱茶对高脂血症大鼠血脂、血浆中血栓B-2、6-酮前列腺素F-(1α)水平影响[J].食品科学.2011,32(17):317-320.
    [79]陈沛,王雪青,宋文军.普洱茶茶色素减肥作用的研究[J].食品研究与开发.2011,32(7):169-171.
    [80]陈婷,彭春秀,龚加顺et al.普洱茶茶褐素对高脂血症大鼠血脂代谢的影响[J].中国食品学报.2011,11(120-27).
    [81]张冬英,邵宛芳,蒋智林et al.普洱茶分离组分的降糖降脂活性作用研究[J].云南农业大学学报.2010,23(6):831-834.
    [82]傅冬和,刘仲华,黄建安et al.高通量筛选研究茯砖茶降脂功效[J].茶叶科学.2006,26(3):209-214.
    [83]高斌,彭春秀,龚加顺et al.普洱茶茶褐素对大鼠激素敏感性脂肪酶活性及其mRNA表达的影响[J].营养学报.2010,32(4):362-366.
    [84]侯艳,肖蓉,徐昆龙et al.普洱茶对非酒精性脂肪肝保护作用[J].中国公共卫生.2009,25(12):1445-1447.
    [85]Adachi M, Suzuki K, Masuda S et al. ANTI-OBESITY ACTIVITY OF PU-ERH TEA IN MICE [J]. The 3rd International Conference on O-CHA(Tea) Culture and Science.2007.
    [86]周斌星,孔令波,陈军贤.普洱茶多糖的提取及降血糖的研究[J].中国农学通报.2009,25(15):55-59.
    [87]Oi Y, Hou I, Fujita H et al. Antiobesity Effects of Chinese Black Tea (Pu-erh Tea) Extract and Gallic Acid[J]. Phytotherapy Research.2011.
    [88]Cao ZH, Gu DH, Lin QY et al. Effect of pu-erh tea on body fat and lipid profiles in rats with diet-induced obesity[J]. Phytotherapy Research.2011,25(2): 234-238.
    [89]Way TD, Lin HY, Kuo DH et al. Pu-erh tea attenuates hyperlipogenesis and induces hepatoma cells growth arrest through activating AMP-activated protein kinase (AMPK) in human HepG2 cells[J]. Journal of agricultural and food chemistry.2009, 57(12):5257-5264.
    [90]徐小江,黄建安,肖力争et al.茯砖茶及其配方对脂肪变性L-02肝细胞中TG含量的影响[J].茶叶科学.2011,31(3):247-254.
    [91]熊昌云,屠幼英,欧阳梅et al.人工接种发酵茯砖茶降脂减肥作用研究[J].菌物学报.2011,30(2):349-354.
    [92]黄群,陈林杰,李彦坡et al.冠突散囊菌黑茶发酵液对消化酶活性影响的研究[J].微生物学通报.2007,34(5):917-920.
    [93]陈小强,叶阳,成浩et al.六堡茶的理化分析研究[J].中国农学通报.2008,24(7):77-80.
    [94]刘艳丰,黄惠华.乌龙茶与普洱茶浸提液对胰α-淀粉酶的抑制作用[J].食品与发酵工业.2010,36(7):54-57.
    [95]宋鲁彬,黄建安,刘仲华et al.中国黑茶对PPARs的作用研究[J].茶叶科学.2008,28(5):319-325.
    [96]邹瑶,齐桂年.茉莉花渣多糖降血糖改善糖尿病症状作用的研究[J].食品科技.2011,36(2):157-160.
    [97]刘志平,韦英亮,崔建国.广西横县窨茶后茉莉花渣化学成分研究[J].广西科学.2009,16(3):300-301.
    [98]刘海洋,倪伟,袁敏惠et al.茉莉花的化学成分[J].云南植物研究.2004,26(6):687-690.
    [99]Yang Y, Piao X, Zhang M et al. Bioactivity-guided fractionation of the triglyceride-lowering component and in vivo and in vitro evaluation of hypolipidemic effects of Calyx seu Fructus Physalis[J]. Lipids in Health and Disease.2012,11(1):38.
    [100]倪坤仪.仪器分析[M]:南京:东南大学出版社,2003.
    [101]尹泉,李惠芬,周群et al.大血藤药材及不同提取物FTIR的比对分析[J].光谱学与光谱分析.2010,30(1):54-57.
    [102]占茉莉,李勇,魏益民et al.应用FT-IR光谱指纹分析和模式识别技术溯源茶叶产地的研究[J].核农学报.2008,22(6):829-833.
    [103]谢直虎,杨群.FTIR法对储存年限不同的两种普洱绿茶的研究[J].光谱实验室.2008,25(5):909-913.
    [104]黄意欢.茶学实验技术[M]:北京:中国农业出版社,1995.
    [105]宁永成.有机波谱学谱图解析[M]:北京:科学出版社,2010.
    [106]Zhu H, Wang Y, Liang H et al. Identification of Portulaca oleracea L. from different sources using GOMS and FT-IR spectroscopy[J]. Talanta.2010,81(1-2): 129-135.
    [107]Yang P, Song P, Sun SQ et al. Differentiation and quality estimation of Cordyceps with infrared spectroscopy [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2009,74(4):983-990.
    [108]易恋,杨新河,杨泱et al.普洱茶中多酚与茶褐素的提取工艺研究[J].食品工业科技.2011,7:220-222.
    [109]陈栋,李晶晶,方祥et al.广东陈香茶后发酵过程中主要微生物种群和酶类活性变化的研究[J].茶叶科学.2010,30(6):429-434.
    [110]杨大鹏,史文斌,陈一江et al.不同微生物发酵的云南普洱茶样中茶褐素提取物的化学成分分析[J].林产化学与工业.2010,30(1):49-52.
    [111]秦谊,龚加顺,张惠芬et al.普洱茶茶褐素提取工艺及理化性质的初步研究[J].林产化学与工业.2009,29(5):95-98.
    [112]王秋萍,龚加顺,邹莎莎.普洱茶发酵阶段色泽的变化及其与品质的关系[J].农业工程学报2010,26(supp.1):394-399.
    [113]张新富,龚加顺,周红杰et al.云南普洱茶中多酚类物质与品质的关系研究[J].食品科学.2008,29(4):230-233.
    [114]Kim SP, Ellmerer M, Van Citters GW et al. Primacy of hepatic insulin resistance in the development of the metabolic syndrome induced by an isocaloric moderate-fat diet in the dog[J]. Diabetes.2003,52(10):2453-2460.
    [115]Staehr P, Hother-Nielsen 0, Beck-Nielsen H. The role of the liver in type 2 diabetes[J]. Reviews in Endocrine & Metabolic Disorders.2004,5(2):105-110.
    [116]Tatarczyk T, Ciardi C, Niederwanger A et al. Postprandial triglyceride-rich lipoproteins induce hepatic insulin resistance in HepG2 cells independently of their receptor-mediated cellular uptake[J]. Molecular and cellular endocrinology.2011.
    [117]Bhattacharyya S, O-Sullivan I, Katyal S et al. Exposure to the common food additive carrageenan leads to glucose intolerance, insulin resistance and inhibition of insulin signalling in HepG2 cells and C57BL/6J mice[J]. Diabetologia.2012,55(1):194-203.
    [118]Brown AJ, Jupe S, Briscoe CP. A family of fatty acid binding receptors[J]. DNA and cell biology.2005,24(1):54-61.
    [119]Stolba P, Kvapil M, Wichterle D et al. Kinetics of free fatty acids in hypertriglyceridemia. Evidence for different types of insulin resistance[J]. Annals of the New York Academy of Sciences.1993,683:373.
    [120]NelsonLE, Valentine RJ, Cacicedo JM et al. A novel inverse relationship between Metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose exposed HepG2 cells [J]. American Journal of Physiology-Cell Physiology. 2012.
    [121]Kojima K, Shimada T, Nagareda Y et al. Preventive Effect of Geniposide on Metabolic Disease Status in Spontaneously Obese Type 2 Diabetic Mice and Free Fatty Acid-Treated HepG2 Cells[J]. Biological & Pharmaceutical Bulletin.2011, 34(10):1613-1618.
    [122]Andreozzi F, Procopio C, Greco A et al. Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance[J]. Diabetologia.2011, 54(7):1879-1887.
    [123]安飞云,廖春华,边寰峰.改良MTT法检测HepG2细胞增殖的研究[J].毒理学杂志.2006,20(3):186-188.
    [124]Bai L, Zhao S, Huang X et al. Upregulating APOAV expression by statins via PPAR-[alpha] activated pathway possibly contributes to their triglyceride-lowering effect[J]. Bioscience Hypotheses.2008,1(6):292-294.
    [125]Picard F, Kurtev M, Chung N et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma[J]. Nature.2004,429(6993):771-776.
    [126]Chun Y, Yin ZD. Glycogen assay for diagnosis of female genital Chlamydia trachomatis infection[J]. Journal of clinical microbiology.1998,36(4): 1081-1082.
    [127]Kenneth J, Thomas D. Schmittgenl analysis of relative gene expression data using real-time quantitative PCR and the 22DDCT method [J]. J Methods.2001,25: 402-408.
    [128]Mei S, Ni HM, Manley S et al. Differential Roles of Unsaturated and Saturated Fatty Acids on Autophagy and Apoptosis in Hepatocytes[J]. Journal of Pharmacology and Experimental Therapeutics.2011,339(2):487-498.
    [129]Lou T, Zhang Z, Xi Z et al. Berberine Inhibits Inflammatory Response and Ameliorates Insulin Resistance in Hepatocytes[J]. Inflammation.2011,34(6): 659-668.
    [130]Wang X, Nath A, Yang X et al. Synergy Analysis Reveals Association between Insulin Signaling and Desmoplakin Expression in Palmitate Treated HepG2 Cells[J]. PloS one.2011,6(11):e28138.
    [131]Yang X, Chan C. Repression of PKR mediates palmitate-induced apoptosis in HepG2 cells through regulation of Bcl-2[J]. Cell research.2009,19(4):469-486.
    [132]Pu J, Peng G, Li L et al. Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells[J]. Journal of lipid research.2011,52(7):1319-1327.
    [133]Stephenne X, Foretz M, Taleux N et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status[J]. Diabetologia.2011,54:3101-3110.
    [134]Kulkarni CR, Joglekar MM, Patil SB et al. Antihyperglycemic and antihyperlipidemic effect of Santalum album in streptozotocin induced diabetic rats[J]. Pharmaceutical Biology.2012,50(3):360-365.
    [135]LIAO L, TIAN Y, ZHAO J et al. Metformin versus Metformin plus rosiglitazone in women with polycystic ovary syndrome[J]. Chin Med J.2011,124:714-718.
    [136]Grzybowska M, Bober J, Olszewska M et al. Metformin-mechanisms action and use for the treatment of type 2 diabetes mellitus[J]. Postepy Hig Med Dosw (Online). 2011,65:277-285.
    [137]Matsui Y, Hirasawa Y, Sugiura T et al. Metformin reduces body weight gain and improves glucose intolerance in high-fat diet-fed C57BL/6J mice[J]. Biological & Pharmaceutical Bulletin.2010,33(6):963-970.
    [138]Mohamadin AM, Elberry AA, Abdel Gawad HS et al. Protective Effects of Simvastatin, a Lipid Lowering Agent, against Oxidative Damage in Experimental Diabetic Rats[J]. Journal of Lipids.2011,6:1-13.
    [139]A1-Siyabi K, Farhan H, Al-Rasadi K et al. Safety of Simvastatin and Goal Attainment for Low-Density Lipoprotein Cholesterol in Sultan Qaboos University HospitalQ]. Oman Medical Journal.2010,25(4):264-268.
    [140]Cleasby ME, Dzamko N, Hegarty BD et al. Metformin prevents the development of acute lipid-induced insulin resistance in the rat through altered hepatic signaling mechanisms[J]. Diabetes.2004,53(12):3258.
    [141]Wu H, Lu D, Jiang H et al. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury[J]. Journal of neurotrauma.2008,25(2):130-139.
    [142]Wakashin H, Hirose K, Maezawa Y et al. IL-23 and Th17 cells enhance Th2 cell-mediated eosinophilic airway inflammation in mice[J]. American journal of respiratory and critical care medicine.2008,178(10):1023-1032.
    [143]Asano T, Ogihara T, Katagiri H et al. Glucose transporter and Na+/glucose cotransporter as molecular targets of anti-diabetic drugs [J]. Current medicinal chemistry.2004,11(20):2717-2724.
    [144]Leturque A, Brot-Laroche E, Le Gall M et al. The role of GLUT2 in dietary sugar handling[J]. Journal of physiology and biochemistry.2005,61(4):529-537.
    [145]Stark R, Pasquel F, Turcu A et al. Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion[J]. Journal of Biological Chemistry. 2009,284(39):26578.
    [146]Hall RK, Wang XL, George L et al. Insulin represses phosphoenolpyruvate carboxykinase gene transcription by causing the rapid disruption of an active transcription complex:a potential epigenetic effect[J]. Molecular Endocrinology.2007,21(2):550-563.
    [147]Janevski M, Ratnayake S, Siljanovski S et al. Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBPlc with no effect on body weight or liver fat[J]. Food Funct.2012,3(2):141-149.
    [148]Alkhateeb H, Holloway GP, Bonen A. Skeletal muscle fatty acid oxidation is not directly associated with AMPK or ACC2 phosphorylation[J]. Applied Physiology, Nutrition, and Metabolism.2011,36(3):361-367.
    [149]Brown RJ, Lagor WR, Sankaranaravanan S et al. Impact of Combined Deficiency of Hepatic Lipase and Endothelial Lipase on the Metabolism of Both High-Density Lipoproteins and Apolipoprotein B-Containing Lipoproteins[J]. Circulation research.2010,107(3):357-364.
    [150]Chatterjee C, Sparks DL. Hepatic Lipase, High Density Lipoproteins, and Hypertriglyceridemia[J]. The American Journal of Pathology.2011,178(4): 1429-1433.
    [151]Joselyn R, Nailet A, Miguel A et al. AMPK as Target for Intervention in Childhood and Adolescent Obesity[J]. Journal of Obesity.2010,2011.
    [152]Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase-development of the energy sensor concept[J]. The Journal of physiology.2006,574(1):7-15.
    [153]Bogachus LD, Turcotte LP. Genetic downregulation of AMPK-α isoforms uncovers the mechanism by which Metformin decreases FA uptake and oxidation in skeletal muscle cells[J]. American Journal of Physiology-Cell Physiology.2010,299(6): C1549-C1561.
    [154]Foretz M, Hebrard S, Leclerc J et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state[J]. The Journal of clinical investigation.2010,120(7): 2355.
    [155]He L, Sabet A, Djedjos S et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein[J]. Cell.2009, 137(4):635-646.
    [156]Goldstein JL, Brown MS. Regulation of the mevalonate pathway [J]. Nature.1990, 343(6257):425.
    [157]Kureishi Y, Luo Z, Shiojima I et al. The HMG-CoA reductase inhibitor Simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals[J]. Nature medicine.2000,6(9):1004-1010.
    [158]Eaton SB, Eaton Iii SB. Paleolithic vs. modern diets-slected pathophysiological implications [J]. European journal of nutrition.2000,39(2): 67-70.
    [159]Zheng H, Lenard N, Shin A et al. Appetite control and energy balance regulation in the modern world:reward-driven brain overrides repletion signals[J]. International Journal of Obesity.2009,33:S8-S13.
    [160]Cahill Jr GF. Fuel metabolism in starvation[J]. Annu. Rev. Nutr.2006,26:1-22.
    [161]Skilton MR, Laville M, Cust AE et al. The association between dietary macronutrient intake and the prevalence of the metabolic syndrome[J]. British Journal of Nutrition.2008,100(2):400-407.
    [162]Watve M, Yajnik C. Evolutionary origins of insulin resistance:a behavioral switch hypothesis[J]. BMC evolutionary biology.2007,7(1):61.
    [163]Machann J, Haring H, Schick F et al. Intramyocellular lipids and insulin resistance[J]. Diabetes, Obesity and Metabolism.2004,6(4):239-248.
    [164]Carey D, Jenkins A, Campbell L et al. Abdominal fat and insulin resistance in normal and overweight women:Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM[J]. Diabetes.1996,45(5):633.
    [165]Misra A, Garg A, Abate N et al. Relationship of anterior and posterior subcutaneous abdominal fat to insulin sensitivity in nondiabetic men[J]. Obesity research.1997,5(2):93.
    [166]Goodpaster BH, Kelley DE, Wing RR et al. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity[J]. Diabetes.1999,48(4): 839-847.
    [167]王从容,谭健,杨锡让.高脂饲料诱导大鼠肥胖模型的建立及间接推测体脂法[J].北京体育大学学报.1994,17(3):20-23.
    [168]Metcalf PA, Scragg RKR. Comparison of WHO and ADA criteria for diagnosis of glucose status in adults[J]. Diabetes research and clinical practice.2000, 49(2-3):169-180.
    [169]李光伟,潘素仁,Lilliija S et al.检测人群胰岛素敏感性的一项新指标[J].中华内科杂志.1993,32(10):656.
    [170]Cheung CC, Clifton DK, Steiner RA. Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus[J]. Endocrinology.1997,138(10):4489.
    [171]Martin TL, Alquier T, Asakura K et al. Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle [J]. Journal of Biological Chemistry. 2006,281(28):18933.
    [172]CT C, MS W, SY L-S et al. Pu-Erh Tea Supplementation Suppresses Fatty Acid Synthase Expression in the Rat Liver through Downregulating Akt and Jnk Signalings as Demonstrated in Human Hepatoma Hepg2 Cells[J]. Oncol Res.2005, 16(3):119-128.
    [173]Hackel DB, Lebovitz HE, Frohman LA et al. Effect of caloric restriction on the glucose tolerance and plasma insulin of the sand rat[J]. Metabolism.1967,16(12): 1133-1139.
    [174]Kalman R, Adler JH, Lazarovici G et al. The efficiency of sand rat metabolism is responsible for development of obesity and diabetes[J]. J Basic Clin Physiol Pharmacol.1993,4(1-2):57-68.
    [175]Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis[J]. Endocrinology.2006,147(2):943.
    [176]Pease RJ, Smith GD, Peters TJ. Autophagy regulates lipid metabolism[J]. Eur J Biochem.1987,164:251-257.
    [177]DeFronzo PA, Tohin JD, Andres R. glucose clamp technique:a method for quanlifying insulin secretion and resistance[J]. Am J Physiol.1979,237:214.
    [178]Islam M, Akhtar MA, Khan M et al. Oral glucose tolerance test (OGTT) in normal control and glucose induced hyperglycemic rats with Coccinia cordifolia L. and Catharanthus roseus L[J]. Pakistan Journal of Pharmaceutical Sciences.2009,22: 402-404.
    [179]He J, Votruba S, Venti C et al. Higher incremental insulin area under the curve during oral glucose tolerance test predicts less food intake and weight gain[J]. International Journal of Obesity.2011.
    [180]Nicholls SJ, Tuzcu EM, Sipahi I et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis[J]. JAMA:The Journal of 'the American Medical Association.2007,297(5):499.
    [181]Monzillo LU, Hamdy 0. Evaluation of insulin sensitivity in clinical practice and in research settings[J]. Nutrition reviews.2003,61(12):397-412.
    [182]Zhou P, Xie M, Nie S et al. Primary structure and configuration of tea polysaccharide[J]. Science in China Series C:Life Sciences.2004,47(5): 416-424.
    [183]杨大鹏,史文斌,陈一江et al.不同微生物发酵的云南普洱茶样中茶褐素提取物的化学成分分析[J].林产化学与工业.2010,30(1):49-52.
    [184]Dongfeng W, Chenghong W, Jun L et al. Components and activity of polysaccharides from coarse tea[J]. Journal of agricultural and food chemistry.2001,49(1): 507-510.
    [185]Yunoki K, Sasaki G, Tokuji Y et al. Effect of dietary wine pomace extract and oleanolic acid on plasma lipids in rats fed high-fat diet and its DNA microarray analysis[J]. Journal of agricultural and food chemistry.2008,56(24): 12052-12058.
    [186]Visioli F, Borsani L, Galli C. Diet and prevention of coronary heart disease: the potential role of phytochemicals[J]. Cardiovascular research.2000,47(3): 419.
    [187]柳占彪,王鼎,王淑珍et al.齐墩果酸的降糖作用[J].中国药学杂志.1994,29(12):725-726.
    [188]郝志奇,杭秉茜,王瑛.齐墩果酸对小鼠的降血糖作用[J].中国药科大学学报.1991,22(4):210-212.
    [189]Ali MS, Jahangir M, Hussan SS. Inhibition of [alpha]-glucosidase by oleanolic acid and its synthetic derivatives[J]. Phytochemistry.2002,60(3):295-299.
    [190]Worby CA, Gentry MS, Dixon JE. Laforin, a dual specificity phosphatase that dephosphorylates complex (?)bohydrates[J].Journal of Biological Chemistry. 2006,281(41):30412.
    [191]Tagliabracci VS, Turnbull J, Wang W et al. Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo[J]. Proceedings of the National Academy of Sciences.2007,104(49):19262.
    [192]Ilium L. Chitosan and its use as a pharmaceutical excipient[J]. Pharmaceutical Research.1998,15(9):1326-1331.
    [193]Miura T, Usami M, Tsuura Y et al. Hypoglycemic and hypolipidemic effect of chitosan in normal and neonatal streptozotocin-induced diabetic mice[J]. Biological & Pharmaceutical Bulletin.1995,18(11):1623.
    [194]Kobayashi H, Tanaka Y, Asagiri K et al. The antioxidant effect of green tea catechin ameliorates experimental liver injury[J]. Phytomedicine.2010,17(3-4): 197-202.
    [195]Yang T, Koo M. Hypocholesterolemic effects of Chinese tea[J]. Pharmacological research.1997,35:505-512.
    [196]Yang DJ, Hwang LS. Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea[J]. Journal of Chromatography A.2006,1119(1-2):277-284.
    [197]Tang Y, Gao C, Xing M et al. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage[J]. Food Chem Toxicol.2012.
    [198]Liu Y, Hartley DP, Liu J. Protection against carbon tetrachloride hepatotoxicity by oleanolic acid is not mediated through metallothionein[J]. Toxicol Lett.1998,95(2):77-85.
    [199]马学惠,赵元昌,尹镭et al.齐墩果酸防治实验性肝损伤作用的研究[J].药学学报.1982,17(2):93-97.
    [200]赵骏,蓝茹.从齐墩果酸结构分析抗肝细胞损伤的作用机制[J].中草药.1998,29(12):844.
    [201]向阳,马龙.葡萄皮、籽提取物对高脂血症大鼠模型血脂水平的影响[J].新疆医科大学学报.2005,28(6):521-523.
    [202]Haslam DW, James WP. obesity[J]. Lancet.2005,366(9492):1197-1209.
    [203]Pi-Sunyer FX. Comorbidities of overweight and obesity:current evidence and research issues [J]. Medicine & Science in Sports & Exercise.1999,31(11):S602.
    [204]Kubo A, Corley DA. Body mass index and adenocarcinomas of the esophagus or gastric cardia:a systematic review and meta-analysis[J]. Cancer Epidemiology Biomarkers & Prevention.2006,15(5):872-878.
    [205]Musaiger AO, A1-Hazzaa H. Prevalence and risk factors associated with nutrition-related noncommunicable diseases in the Eastern Mediterranean region[J]. International Journal of General Medicine.2012,5:199-217.
    [206]Noeman SA, Hamooda HE, Baalash AA. Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats[J]. Diabetology & Metabolic Syndrome.2011,3(1):17.
    [207]Medinsky MA, Popp JA, Hamm TE et al. Development of hepatic lesions in male Fischer-344 rats fed AIN-76A purified diet [J]. Toxicol Appl Pharmacol.1982,62: 111-120.
    [208]Abishek I, Kathleen K, Md Ashraful A et al. Pharmacological Inhibition of Soluble Epoxide Hydrolase Ameliorates Diet-Induced Metabolic Syndrome in Rats [J]. Experimental Diabetes Research.2011,2012:758614.
    [209]贾晓斌,陈彦,李霞et al.中药复方物质基础研究新思路和方法[J].中华中医药杂志.2008,23(5):420-425.
    [210]刘明,高月,肖瑞et al.中药组方原则“君臣佐使”的模糊数学量化描述[J].药学学报.2009,44(1):38-41.
    [211]Hodgson JM, Croft KD. Tea flavonoids and cardiovascular health[J]. Molecular Aspects of Medicine.2010,31(6):495-502.
    [212]Zhou X, Pang Z, Gao W et al. Performance of an A1C and fasting capillary blood glucose test for screening newly diagnosed diabetes and pre-diabetes defined by an oral glucose tolerance test in Qingdao, China[J]. Diabetes Care.2010,33(3): 545.
    [213]Eschwege E, Charles MA, Simon D et al. Reproducibility of the diagnosis of diabetes over a 30-month follow-up[J]. Diabetes Care.2001,24(11):1941.
    [214]Drzewoski J, Czupryniak L. Concordance between fasting and 2-h post-glucose challenge criteria for the diagnosis of diabetes mellitus and glucose intolerance in high risk individuals[J]. Diabetic medicine.2001,18(1):29-31.
    [215]Alberti K, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1:diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation [J]. Diabetic medicine.1998, 15(7):539-553.
    [216]李布青,张慧玲,舒庆龄et al.中低档绿茶中茶多糖的提取及降血糖作用[J].茶叶科学.1996,16(1):67.
    [217]谢明勇,聂少平,傅博强et al. ICP-MS法测定茶叶及其多糖提取物中的降血糖相关性元素[J].光谱学与光谱分析.2006,26(9):1710-1715.
    [218]AmericanDiabetesAssociation. standards of medical care in diabetes--2009[J]. Diabetes Care.2009,32 (Supplement 1):S13-S61.
    [219]Acharya JD, Ghaskadbi SS. Islets and their antioxidant defense [J]. Islets.2010, 2(4):225-235.
    [220]Jansky L. Humoral thermogenesis and its role in maintaining energy balance [J]. Physiol Rev.1995,75:237-259.
    [221]Cefalu WT. Animal models of type 2 diabetes:clinical presentation and pathophysiological relevance to the human condition[J]. Journal Vol.2006,47(3): 186-198.
    [222]Huang Z, Wang H, Lu M et al. A Better Anti-Diabetic Recombinant Human Fibroblast Growth Factor 21 (rhFGF21) Modified with Polyethylene Glycol[J]. PloS one.2011, 6(6):e20669.
    [223]王军,李利,董砚虎.胰岛β细胞的病理生理与胰岛素抵抗研究进展[J].国外医学内分泌学分册.2002,22(2):119-122.
    [224]金裕范,高雪岩,王文全et al.不同产地普洱茶主要化学成分的比较[J].中国实验方剂学杂志.2011,17(14):78-82.
    [225]Riserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes[J]. Progress in lipid research.2009,48(1):44-51.
    [226]Ansell BJ, Watson KE, Fogelman AM et al. High-density lipoprotein function: recent advances[J]. Journal of the American College of Cardiology.2005,46: 1792-1798.
    [227]陈佩芳,李剑军,吴满平et al.高密度脂蛋白3介导大鼠腹腔巨噬细胞内胆固醇流出[J].中国动脉硬化杂志.2000,8(2):111-114.
    [228]de Faria E, Fong LG, Komaromy M et al. Relative roles of the LDL receptor, the LDL receptor-like protein, and hepatic lipase in chylomicron remnant removal by the liver[J]. Journal of lipid research.1996,37(1):197-209.
    [229]Hajduch E, Litherland GJ, Hundal HS. Protein kinase B (PKB/Akt)-a key regulator of glucose transport?[J]. FEBS letters.2001,492(3):199-203.
    [230]Nikoulina SE, Ciaraldi TP, Mudaliar S et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes[J]. Diabetes. 2000,49(2):263-271.
    [231]Wakashin H, Hirose K, Maezawa Y et al. IL-23 and Thl7 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice[J]. American journal of respiratory and critical care medicine.2008,178(10):1023-1032.
    [232]Eldar-Finkelman H, Kaidanovich 0. The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes[J]. Expert opinion on therapeutic targets. 2002,6(5):555-561.
    [233]Liberman Z, Eldar-Finkelman H. Serine 332 phosphorylation of insulin receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling[J]. Journal of Biological Chemistry.2005,280(6):4422-4428.
    [234]Strahl BD, Allis CD. The language of covalent histone modifications [J]. Nature. 2000,403(6765):41.
    [235]李良刚,陈槐卿.CaMK和AMPK信号通路能共调收缩信号诱导的骨骼肌细胞GLUT4基因转录[J].生物化学与生物物理进展.2009,36(4):471-479.
    [236]Park S, Sheffler T, Spurlock M et al. Chronic activation of 5'-AMP-activated protein kinase changes myosin heavy chain expression in growing pigs[J]. Journal of animal science.2009,87(10):3124-3133.
    [237]Tomas E, Tsao TS, Saha AK et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain:Acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation[J]. Proceedings of the National Academy of Sciences.2002,99(25):16309.
    [238]Neels JG, Olefsky JM. cell signaling. A new way to burn fat [J]. Science.2006, 312(5781):1756-1758.
    [239]Van Goudoever J, Stoll B, Henry J et al. Adaptive regulation of intestinal lysine metabolism[J]. Proceedings of the National Academy of Sciences.2000, 97(21):11620.
    [240]E1-Khoury AE, Sanchez M, Fukagawa NK et al. The 24-h kinetics of leucine oxidation in healthy adults receiving a generous leucine intake via three discrete meals[J]. The American journal of clinical nutrition.1995,62(3): 579-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700