高效毛细管电泳法在食品和药品检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳技术是分析科学领域继液相色谱之后又一重大的进展,在分析和测定复杂样品的过程中发挥着巨大的作用。本论文开展了毛细管电泳技术在食品、中药、化妆品和生物样品中的应用研究,旨在完善毛细管电泳技术和拓展其应用范围,重点集中在以下四个方面:
     1.首次采用毛细管电泳脉冲电导法同时测定了市售饮品中的葡萄糖、果糖和蔗糖,该法分析速度快、灵敏度高。
     2.毛细管电泳结合电化学和间接紫外检测方法,快速分离和测定了中药枸杞和枸杞胶囊中的单糖和寡糖,方法分析时间短,结果准确可靠。
     3.首次采用胶束电动毛细管色谱测定了八种不同化妆品中的糖皮质激素类物质地塞米松,为有效地监测化妆品的行业安全提供了一个快速、有效的检测方法。
     4.首次应用胶束电动毛细管色谱测定了人血样和尿液中的地塞米松和倍他米松对映体,为运动员是否滥用糖皮质激素的常规分析提供了一个新途径。
High performance capillary electrophoresis has many advantages such as high efficiency, short analysis time, small sample size and inexpensive instrumentation, which can be useful in the rapid and efficient determination of active compounds in complex samples. In this paper, four developed methods for the analysis of active compounds in food and medicine were presented.
     1. Carbohydrates are the focus of new analytical techniques because of their importance in several areas ranging from medicine to food science.
     In this study, a method for simultaneous determination of mono–and disaccharides by capillary zone electrophoresis with pulsed conductivity detection at Au microelectrode was developed. The effects of running buffer, separation voltage and injection time were studied and optimized. Common mono– and disaccharides, including fructose, glucose and sucrose, were baseline separated in 10 mmol/L sodium hydroxide–10mmol/L sodium chloride–0.5mmol/L cetryltrimetylammonium bromide within 9 min at the separation voltage of–15kV. Under the optimized conditions, the linear relationship between peak area and concentration almost existed in the rangs of 2.0×10~(–4) - 1.0×10~(–2)mol/L with the detection limits were 2.0×10~(–5)mol/L, 3.0×10~(–5)mol/L, 1.0×10~(–5)mol/L for fructose, glucose and sucrose, respectively. The method was successfully applied to the separation and determination of mono–and disaccharides in three soft drinks with satisfactory results.
     2. Lycium fruit is a kind of popular Chinese herb and food supplement. The content of sugars in Lycium fruit is important because it decides the quality of Lycium fruit and affects the contents of other activities in Lycium fruit.
     In this part, a method of rapid separation and determination of monosaccharides and oligosaccharides in lycium fruit by capillary electrophoresis with electrochemical detection and indirect UV detection was presented. The effects of detection potential, injection time, buffer concentration and separation voltage were all investigated. Under the optimum condition, seven sugars including xylose, fructose, glucose, galatose, maltotetraose, maltohexoaose and sucrose were well separated within 8 min. This method has linear ranges of 1.0×10~(–4) - 5.0×10~(–3) mol/L for CE–ECD and 5×10~(–4) - 7×10~(–3) mol/L for CE–UV for all the analysts with the detection limits of 1×10~(–6) - 2.5×10~(–6 )mol/L for CE–ECD and 1×10~(–4) - 3×10~(–4) mol/L for CE–UV, which shows that the direct ECD is more sensitive and selective than indirect UV detection. The method were first applied to the rapid determination of sugars in Lycium fruit and Lycium fruit capsule with satisfied results.
     3. In the hygienic standardization of cosmetics in the People’s Republic of China and the directive of cosmetics in the European Economic and Monetary Union, the glucocorticoids are forbidden. The reason for this is that prolonged use of cosmetics containing glucocorticoids leads to severe side effects on the skin. However, glucocorticoids are still added illegally since their initial results are favorable. Hence, a rapid and reliable method to monitor the content of glucocorticoids in cosmetics is urgently required. Up to now, the assay of glucocorticoids in cosmetics has always been based on LC despite the fact that its separation efficiency needs to be further improved.
     In this section, a rapid and reliable method based on micellar electrokinetic capillary chromatography was developed for the determination of dexamethasone in cosmetics. Effects of the buffer composition, concentration and pH, and detection wavelength, separation voltage, injection time were systematically investigated to optimize the method. The optimum conditions were: 30 mmol/L borax buffer containing 20 mmol/L sodium dodecyl sulfate at pH 9.0, detection wavelength 254 nm, injection time 10 s at a height of 10 cm, and separation voltage at 15 kV, under which the analysis of dexamethasone in cosmetics was carried out within 6 min. The proposed method was validated through stability, precision, linearity and accuracy experiments. Excellent linearity was obtained in the range of 50ˇ1000μg/mL with a correlation coefficient of 0.9997, and acceptable precision, in intra–day and inter–day analysis, was also obtained with relative standard deviation in the range of 0.19ˇ0.86% and 2.50ˇ4.90% for migration time and peak area ratio, respectively. Additionally, the developed method was applied to assay eight different cosmetics from local market with the recoveries ranging from 93.3 to 97.6%.
     4. Betamethasone (BM) and dexamethasone (DM) are epimeric synthetic glucocorticoids with different configuration of the methyl group on C–16 and frequently employed as ant–inflammatory agents in clinic to treat a wide range of diseases. However, in clinic, prolonged and systemic administration of these drugs is often accompanied with significant side effects, such as skin fragility, abnormal fat, poor wound healing, suppression of growth, etc. Simultaneity, BM and DM, in sport medicine, are used by reason of their anti–inflammatory and analgesic properties, but systemic administration of them is forbidden by the International Olympic Committee (IOC) because of their potential positive effects on sport performance and associated toxicological risks. Therefore, in order to monitor the systemic glucocorticoids administration, a simple, rapid and reliable method for measurement of BM and DM in human urine and serum is urgently required. Up to now, it is still a challenge for analysts to determine BM and DM in the body fluids of athletes owing to not only their very similar structures but also, in many cases, their low concentrations found in biofluids.
     In this study, simultaneous determination of betamethasone and its epimer dexamethasone in human urine and serum by a simple and reliable micellar electrokinetic capillary chromatography method has been presented. A three level full factorial experimental design was employed to search for the optimum conditions. Rapid and baseline separation of BM and DM was obtained within 7 min with the optimum conditions of 30 mmol/L borax buffer, 30 mmol/L sodium dodecyl sulfate at pH 10.0, separation voltage at 18 kV, injection time 15 s at a height of 10 cm, using sodium sorbate as internal standard. The proposed method was validated with respect to stability, precision, linearity and accuracy. Good relationship between peak area ratio and analyte concentration was linear over 30ˇ1000μg/mL for BM and DM with correlation coefficients≥0.9993. Relative standard deviations of the method were all less than 4.50% in the intra–day and inter–day analysis. The developed method was applied to assay spiked human urine and serum samples containing both compounds with recoveries in the range of 97.5ˇ100.5%.
引文
[1]陈义.毛细管电泳技术及应用[M].北京,化学工业出版社, 2006.
    [2]毛煜,徐建明.毛细管电泳技术和应用新进展[J].化学研究与应用, 2001, 13:4–9.
    [3] JORGENSON J W, LUKACE K D. Zone electrophoresis in open–tubular glass capillary [J]. Analytical Chemistry, 1981, 53: 1298–1302.
    [4] TERABE S, OTSUKA K, ICHKAWA K, et al. Electrokinetic separations with micellar solutions and open–tubular capillaries [J]. Analytical Chemistry, 1984, 56: 111–113.
    [5] HJERTEN S, LIAO J, YAO K. Theoretical and experimental study of high–performance electrophoretic mobilization of isoelectrically focused protein zone [J]. Journal of Chromatography A, 1987, 387: 127–138.
    [6] COHEN A, KARGET B. High–performance sodium dodecyl sulfate polyacrylamide gel of peptides and proteins [J]. Journal of Chromatography A, 1987, 397: 409–417.
    [7]邓延卓,何金兰.高效毛细管电泳[M].北京:科学出版社, 1996, 21–26.
    [8]陈义.毛细管电泳技术及应用[M].北京:化学工业出版社, 2000.
    [9] Dixon T. www.chemsoc.org: capillary electrophoresis. RSC.
    [10] TSUKA T, SWEEDLER J V, ZARE R N. Rectanglular capillaries for capillary zone electrophoresis [J]. Analytical Chemistry, 1990, 62: 2149–2152.
    [11] WANG T, AIKEN C W, HUIE C W, et al. Nanoliter–scale cell for absorption detection in capillary electrophoresis [J]. Analytical Chemistry, 1991, 63: 1372–1376.
    [12]林炳承.毛细管电泳导论[M].北京:科学出版社, 1996.
    [13]陈义.毛细管电泳理论探索[M].北京:华文出版社, 2000.
    [14]周新.提取方法及毛细管电泳法在中药研究中的应用[D].长春:吉林大学化学学院, 2005, 32.
    [15] OKAMOTO H, OKAMOTO Y, HIROKAWA T, et al. Trace ion analysis of sea water by capillary electrophoresis: Determination of strontium and lithium pri–concentrated by transient isotachophoresis [J]. The Analyst, 2003, 128: 1439–1442.
    [16] PEREIRA E A, CARRILHO E, TAVARES M F M. Laser–induced fluorescence and UV detection of derivatized aldehydes in air samples using capillary electrophoresis [J]. Journal of Chromatography A, 2002, 979: 409–416.
    [17] CAO Y, WANG Y, CHEN X, et al. Study on sugar profile of rice during ageing by capillary electrophoresis with electrochemical detection [J]. Food Chemistry, 2004, 86: 131–136.
    [18] SU A K, CHANG Y S, LIN C H. Analysis of riboflavin in beer by capillary electrophoresis/blue light emitting diode (LED)–induced fluorescence detection combined with a dynamic pH junction technique [J]. Talanta, 2004, 64: 970–974.
    [19] YU L, LI S F Y. Dynamic pH junction–sweeping capillary electrophoresis for online preconcentration of toxic pyrrolizidine alkaloids in Chinese herbal medicine [J]. Electrophoresis, 2005, 26: 4360–4367.
    [20] DONG Y, CHEN X, CHEN Y, et al. Separation and determination of pseudoephedrine, dextromethorphan, diphenhydramine and chlorpheniramine in cold medicines by nanaqueous capillary electrophoresis [J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39: 285–289.
    [21] ZHOU X, LI X, ZENG Z. Solid–phase microextraction coupled with capillary electrophoresis for the determination of propranolol enantiomers in urine using a sol–gel derived calixarene fiber [J]. Journal of Chromatography A, 2006, 1104: 359–365.
    [22] BUCHBERGER W, FERDIG M, SOMER S, et al. A novel technique foron–capillary preconcentration of anionic compounds applied to the analysis of rapamycin in human blood by capillary electrophoresis [J]. Electrophoresis, 2005, 26: 161–165.
    [23] MASUKAWA Y. Separation and determination of basic dyes formulated in hair care products by capillary electrophoresis [J]. Journal of Chromatography A, 2006, 1108: 140–144.
    [24] ALBERT M, DEBUSSCHERE L, DEMESMAY C, et al. Large–volume stacking for quantitative analysis of anions in capillary electrophoresis I. Large–volume stacking with polarity switching [J]. Journal of Chromatography A, 1997, 757: 281–289.
    [25] TAYLOR R B, LOW A S, REID R G. Determination of opiates in urine by capillary electrophoresis [J]. Journal of Chromatography B, 1996, 675: 213–223.
    [26] DADGUPTA P K, SUROWIEC K. Electromigration injection from a small loop in capillary electrophoresis [J]. Analytical Chemistry, 1996, 68: 4291–4299.
    [27] MIKKERS F E P, EVERAERTS F M, VERHEGGEN Th P E M. Concentration distributions in free zone electrophoresis [J]. Journal of Chromatography A, 1979, 169: 1–10.
    [28] CHIEN R L, BURGI D S. Field–amplifed polarity–switching sample injection in high–performance capillary electrophoresis [J]. Journal of Chromatography A, 1991, 559: 153–161.
    [29] CHIEN R L, BURGI D S. Field amplifed sample injection in high–performance capillary electrophoresis [J]. Journal of Chromatography A, 1991, 559: 141–152.
    [30] MICHOV B W. Electrophoresis in one buffer at two pH values [J]. Electrophoresis, 1989, 10: 686–689.
    [31] SJOEGREN A, DASGUPTA P K. Enhancement of separation efficiency in capillary electrophoresis by electrostacking without liquid contant [J]. AnalyticalChemistry, 1996, 68: 1933–1940.
    [32] AEBERSOLD R, MORRISON H D. Analysis of dilute peptide samples by capillary zone electrophoresis [J]. Journal of Chromatography A, 1990, 516: 79–88.
    [33] SCHWER C, LOTTSPEICH F. Analytical and micropreparative separation of peptides by capillary zone electrophoresis using discontinuous buffer systems [J]. Journal of Chromatography A, 1992, 623: 345–355.
    [34] STEGEHUIS D S, TJADEN U R, VAN DER GREEF J. Analyte focusing in capillary electrophoresis using on–line isotachophoresis [J]. Journal of Chromatography A, 1992, 591: 341–349.
    [35] STEGEHUIS D S, IRTHU H, TJADEN U R, et al. Isotachophoresis as an on–line concentration pretreatment technique in capillary electrophoresis [J]. Journal of Chromatography A, 1991, 538: 393–402.
    [36] THOMPSON T J, FORET F, VOUROS P. Capillary electrophoresis/electrospray ionization mass spectrometry: Improvement of protein detection limits using on–column transient isotachophoretic sample preconcentration [J]. Analytical Chemistry, 1993, 65: 900–906.
    [37] TOMLINSON A J, NAYLOR S. Systematic development of on–line membrane preconcentration–capillary electrophoresis–mass spectrometry for the analysis of peptide mixtures [J]. Journal of Capillary Electrophoresis, 1995, 2: 225–233.
    [38] REINHOUD N J, TJADEN U R, VAN DER GREEF J. Automated isotachophoretic analyte focusing for capillary zone electrophoresis in a single capillary using hydrodynamic back–pressure programming [J]. Journal of Chromatography A, 1993, 641: 155–162.
    [39] FORET F, SZOKO E, KARGER B L. On–column transient and coupled column isotachophoretic preconcentration of protein samples in capillary zoneelectrophoresis [J]. Journal of Chromatography A, 1992, 608: 3–12.
    [40] TOMLINSON A J, BENSON L M, LANDERS J P. Investigation of the metabolism of the neuroleptic drug haloperidol by capillary electrophoresis [J]. Journal of Chromatography A, 1993, 652: 417–426.
    [41] BECKERS J L, EVERAERTS F M. Isotachophoresis with two leading ions and migration behaviour in capillary zone electrophoresis:Ⅱ. Migration behaviour in capillary zone electrophoresis [J]. Journal of Chromatography A, 1990, 508: 19–26.
    [42] AMANKWA L N, KUHR W G. Trypsin–modified–fused–silica capillary microreactor for peptide mapping by capillary zone electrophoresis [J]. Analytical Chemistry, 1992, 64: 1610–1613.
    [43] AMANKWA L N, KUHR W G. Online peptide mapping by capillary zone electrophoresis [J]. Analytical Chemistry, 1993, 65: 2693–2697.
    [44] CHRISTINE E E. Direct on–line injection in capillary electrophoresis [J]. Analytical Chemistry, 1997, 69: 2952–2954.
    [45] ALTRIA K D, KELLY M A, CLARK B. The use of a short–end injection procedure to achieve improved performance in capillary electrophoresis [J]. Journal of Chromatography A, 1996, 43: 153–158.
    [46] FU C G, FANG Z L. Combination of flow injection with capillary electrophoresis: Part 7. Microchip capillary electrophoresis system with flow injection sample introduction and amperometric detection [J]. Analyica Chimica Acta, 2000, 422: 71–79.
    [47] LUX J A. Production of windows in fused silica capillaries for in–column detection of uv–absorption or fluorescence in capillary electrophoresis or HPLC [J]. Journal of High Resolution Chromatography, 1990, 13: 373–374.
    [48] McCORMICK R M. Polyimide stripping device for producing detectionwindows on fused–silica tubing used in capillary electrophoresis [J]. Analytical Chemistry, 1991, 63: 750–752.
    [49] IMASAKE T. Kikan Kagaku Sosetsm. Electrophoresis, 1990, 9: 86.
    [50] BAEYENS W R G, ZHAO Y. Chemiluminescence detection in capillary electrophoresis [J]. Analytical Chemistry, 1997, 69: 83A–88A.
    [51] BAEYENS W R G, LIN B L. Chemiluminescence detection in capillary electrophoresis [J]. Journal of Microclomn Separation, 1994, 6: 195.
    [52] BATA Y, MATSUURA T, WAKAMOTO K, et al. A simple method for the preparation of polyacrylamide gel filled capillaries for high performance separation of polynucleotides by using capillary gel electrophoresis [J]. Chemistry Letters, 1991, 3: 371.
    [53] CHEN C Y, MORRIS M D. On–line multichannel Raman spectroscopic detection system for capillary zone electrophoresis [J]. Journal of Chromatography, 1991, 540: 355–363.
    [54] YIK Y F, LI S F Y. Capillary electrophoresis with electrochemical detection Trends [J]. Analytical Chemistry, 1992, 11: 326–340.
    [55] NANN A, SIMON W. On–column detection in capillary zone electro–phoresis with ion–selective micro–electrodes in conical capillary apertures [J]. Journal of Chromatography, 1993, 633: 207–211.
    [56] MIKKERS F E P, EVERAETS F M, VERHEGGEN Th P E M. Argon ionization detector sensitive to hydrogen: construction and mechanism of operation [J]. Journal of Chromatography, 1979, 168: 1–7.
    [57] GEBAUER P, DEML M, BOCEK P, TANEK J. Determination of nitrate, chloride and sulphate in drinking water by capillary free–zone electrophoresis [J]. Journal of Chromatography, 1983, 267: 455–457.
    [58] FIRESTONE M A, MICHAUD J, CARTER R H, et al. Capillary zoneelectrophoresis and isotachophoresis as alternatives to chromatographic methods for purity control of synthetic peptides [J]. Journal of Chromatography, 1987, 407: 363–368.
    [59] BECKERS J L, VERHEGGEN Th P E M, EVERAERTS F M. Use of a double–detector system for the measurement of mobilities in zone electrophoresis [J]. Journal of Chromatography, 1988, 452: 591–560.
    [60] KAR S, DASGUPTA P K, LIU H, et al. Computer–interfaced bipolar pulse conductivity detector for capillary systems [J]. Analytical Chemistry, 1994, 66: 2537–2543.
    [61]赵藻潘,周性尧等.仪器分析[M].北京:高等教育出版社, 1990, 372–373.
    [62]林树昌,曾永淮.化学分析(仪器分析部分) [M].北京:高等教育出版社, 1994, 313–376.
    [63] KUHN R, KUHN H. Capillary electrophoresis: Principle and Practice [M]. JONES K Ed. Berlin: Springer–Verlag, 1993, 249–250.
    [64] MILLER J C, MILLER J N. Statics for analytical chemistry [M]. Chalmers R. A. et al, Ed. Chichester, England, Ellis Horwood limited, 1984, 96–100.
    [65]吴东儒.糖类的生物化学[M].北京:高等教育出版社, 1987, 256: 885–892.
    [66]丁侃,方积年.多糖类药物的毛细管电泳分析方法及其应用[J].色谱, 1999, 17(4): 346–349.
    [67] NISHI H, KUWAHARA Y. Journal of Pharmaceutical and Biomedical Aanlysis, 2002, 27(3–4): 577–85.
    [68] CHANKVETADZE B, BURJANADZE N, BLASCHKE G. Journal of Pharmaceutical and Biomedical Aanlysis, 2002, 27(1–2): 153–159.
    [69]毛秀丽,林炳承.糖类的毛细管电泳及芯片毛细管电泳[J].色谱, 2001, 19(4): 309–313.
    [70] GOUBET F, STR?M A, DUPREE P, et al. An investigation of pectinmethylesterification patterns by two independent methods: capillary electrophoresis and polysaccharide analysis using carbohydrate gel electrophoresis [J]. Carbohydrate Research, 2005, 340: 1193–1199.
    [71] RAINELLI A, HAUSER P C. Fast electrophoresis in conventional capillaries by employing a rapid injection device and contactless conductivity detection [J]. Anal Bioanal Chem, 2005, 382: 789–794.
    [72] KHANDURINA J, GUTTMAN A. High resolution capillary electrophoresis of oligosaccharide structural isomers [J]. Chromatographia, 2005, 62: S37–S41.
    [73] FU X F, HUANG L, ZHAI M L, et al. Analysis of natural carbohydrate biopolymer–high molecular chitosan and carboxymethyl chitosan by capillary zone electrophoresis [J]. Carbohydrate Polymers, 2007, 68: 511–516.
    [74] WANG Z, LIU X, DACANAY A, et al. Carbohydrate analysis and serological classification of typical and atypical isolates of Aeromonas salmonicida: A rationale for the lipopolysaccharide–based classification of A. salmonicida Eleonora Altman [J]. Fish & Shellfish Immunology, 2007, 23: 1095–1106.
    [75] YANG X B , ZHAO Y, LV Y. Chemical composition and antioxidant activity of an acidic polysaccharide extracted from Cucurbita moschata Duchesne ex Poiret [J]. Journal of Agricultural and Food Chemistry, 2007, 55, 4684–4690.
    [76] ALESSANDRA V J, FERNANDO G T, MARINA F M T. Comparative evaluation of extraction procedures and method validation for determination of carbohydrates in cereals and dairy products by capillary electrophoresis [J]. J. Sep. Sci, 2007, 30: 586–594.
    [77] DUPONT A L, EGASSE C, MOORIN A, et al. Comprehensive characterisation of cellulose– and lignocellulosedegradation products in aged papers: Capillary zone electrophoresis of low–molar mass organic acids, carbohydrates, and aromatic lignin derivatives. Carbohydrate Polymers, 2007, 68: 1–16.
    [78] FERMAS S, GONNET F, VARENNE A, et al. Frontal analysis capillary electrophoresis hyphenated to electrospray ionization mass spectrometry for the characterization of the antithrombin/heparin Pentasaccharide complex [J]. Anal. Chem. 2007, 79: 4987–4993.
    [79] BAO Y W, NEWBURG D S. Capillary electrophoresis of acidic oligosaccharides from human milk [J]. Electrophoresis, 2008, 29: 2508–2515.
    [80] VOLPI N, MACCARI F, LINHARDT R J. Capillary electrophoresis of complex natural Polysaccharides [J]. Electrophoresis, 2008, 29: 3095–3106.
    [81] YANG X B , ZHAO Y, YANG Y, et al. Isolation and characterization of immunostimulatory polysaccharide from an herb tea, gynostemma pentaphyllum makino [J]. Journal of Agricultural and Food Chemistry, 2008, 56, 6905–6909.
    [82] ROVIO S, SIMOLIN H, KOLJONEN K, et al. Determination of monosaccharide composition in plant fiber materials by capillary zone electrophoresis. Journal of Chromatography A, 2008, 1185: 139–144.
    [83] FENG H T, WONG N, WEE S, et al. Simultaneous determination of 19 intracellular nucleotides and nucleotide sugars in Chinese Hamster ovary cells by capillary electrophoresis [J]. Journal of Chromatography B, 2008, 870: 131–134.
    [84] KAZARIAN A A, HILDER E F, BREADMORE M C. Utilisation of pH stacking in conjunction with a highly absorbing chromophore, 5–aminofluorescein, to improve the sensitivity of capillary electrophoresis for carbohydrate analysis [J]. Journal of Chromatography A, 2008, 1200: 84–91.
    [85] VOLPI N. Capillary electrophoresis determination of glucosamine in nutraceutical formulations after labeling with anthranilic acid and UV detection [J]. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49: 868–871.
    [86]张利,陈蓁蓁,王燕, et al.糖类物质的毛细管电泳分析[J].化学研究与应用, 2003, 15(5): 607–611.
    [87]常理文,腰锐锋,陈义, et al.单糖的高校毛细管电泳定量分析[J].分析化学, 1994, 22(1): 1–5.
    [88] SOGA T, IMAIZUMI M. Capillary electrophoresis method for the analysis of inorganic anions, organic acids, amino acids, nucleotides, carbohydrates and other anionic compounds [J]. Electrophoresis, 2001, 22: 3418–3425.
    [89] KINOSHITA M, SHIRAISHI H, MURANSHI C, et al. Determination of molecular mass of acidic polysaccharides by capillary electrophoresis [J]. Biomedical Chromatography, 2002, 16: 141–145.
    [90] KHANDURINA J, ANDERRSON A A, OLSON N A, et al. Large–scale carbohydrate analysis by capillary array electrophoresis: Part 2. Data normalization and quantification [J]. Electrophoresis, 2004, 25: 3122–3127
    [91] MOMENBEIK F, JOHNS C, BREADMORE M C, et al. Sensitive determination of carbohydrates labelled with p–nitroaniline by capillary electrophoresis with photometric detection using a 406 nm light–emitting diode [J]. Electrophoresis 2006, 27: 4039–4046.
    [92] JAGER A V, TONIN F G, TAVARES M F M. Comparative evaluation of extraction procedures and method validation for determination of carbohydrates in cereals and dairy products by capillary electrophoresis [J]. Journal of Separation Science, 2007, 30: 586–594.
    [93] SANTOS S M, DUARTE A C, ESTEVES V I. Development and application of a capillary electrophoresis based method for the assessment of monosaccharide in soil using acid hydrolysis [J]. Talanta, 2007, 72: 165–171.
    [94] YOU J M, SHENG X, DING C X, et al. Detection of carbohydrates using new labeling reagent 1–(2–naphthyl)–3– methyl–5–pyrazolone by capillary zone electrophoresis with absorbance (UV) [J]. Analytica Chimica Acta, 2008, 609: 66–75.
    [95] SHENG X, DING C X, LIU L J, et al. Separation of derivatized carbohydrates by capillary zone electrophoresis [J]. Chinese Journal of Analytical Chemistry, 2008, 36(3), 280–284.
    [96] ZINELLU A, SOTGIA S, USAI M F, et al. Short–end injection capillary electrophoresis for quantification of plasma chondroitin sulfate isomer disaccharides [J]. Analytical Bioanalysis Chemistry, 2008, 391: 2865–2868.
    [97]韦寿莲,邓光辉,郑一宁.高效毛细管电泳–间接电导法快速分离混合糖[J].应用化学, 2002, 19(ll): 1100–1102.
    [98] CARVALHO A Z, DA SILVA J A F, DO LAGO C L. Determination of mono– and disaccharides by capillary electrophoresis with contactless conductivity detection [J]. Electrophoresis, 2003, 24: 2138–2143.
    [99] LUO M Z, BALDWIN R P. Characterization of carbohydrate oxidation at copper electrodes [J]. Journal of Electroanalytical Chemistry, 1995, 387: 87–94.
    [100] ZHOU W, BALDWIN R P. Capillary electrophoresis and electrochemical determination of underrivatized oligo–and polysaccharides with surfactant controlled electroosmotic flow [J]. Electrophoresis, 1996, 17: 319–324.
    [101]许丹科,陈洪渊,朱叔韬.毛细管区带电泳分离麦芽寡糖的研究[J].高等学校化学学报, 1997, 18(5): 720–722.
    [102] FU C G, SONG L N, FANG Y Z. Simultaneous determination of sugars and organic acids by co–electroosmotic capillary electrophoresis with amperometric detection at a disk–shaped copper electrode [J]. Analytica Chimica Acta, 1998, 371: 81–87.
    [103] YE J N, ZHAO X W, FANG Y Z, et al. Parallel and seial dual electrode detectors for capillary electrophoresis [J]. Chinese Journal of Chemistry, 1998, 16(3): 226–233.
    [104] HUA L, CHIA L S, GOH N K, et al. Amperometric detection of carbohydratesby capillary electrophoresis with a cuprous oxide modied sol–gel carbon composite electrode [J]. Electroanalysis, 2000, 12(4): 287–291.
    [105] HUA L, TAN S N. Capillary electrophoresis with an integrated on–capillary tubular detector based on a carbon sol–gel–derived platform [J]. Analytical Chemistry, 2000, 72: 4821–4825.
    [106]胡琴,周天舒,张兰, et al.速溶咖啡中单糖的毛细管区带电泳–安培检测分离分析测定方法的研究[J].化学世界, 2000, 162: 172.
    [107]刘少民,宋立楠,张太森, et al.烟草中糖类物质的高效毛细管电泳–安培检测研究[J].分析化学, 2000, 28(10): 1233–1236.
    [108] HU Q, ZHOU T S, ZHANG L, et al. Study of the separation and determination of monosaccharides in soluble coffee by capillary zone electrophoresis with electrochemical detection [J]. Analyst, 2001, 126:298–301
    [109] ZHANG X, CAO Y H, YE J N. Determination of lactose in sugar–free milk powder by capillary electrophoresis with electrochemical detection [J]. Food Chemistry, 2001, 72: 385–388.
    [110] CAO Y H, ZHANG X, FANG Y Z, et al. Determination of the active ingredients in Gastrodia rhizoma by capillary electrophoresis with electrochemical detection [J]. Analyst, 2001, 126: 1524–1528.
    [111] HU Q, ZHOU T S, HU G, et al. Determination of sugars in Chinese traditional drugs by CE with amperometric detection [J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 30: 1047–1053.
    [112] WANG Q J, YU H, ZONG J, et al. Determination of the composition of Chinese ligustrum lucidum polysaccharide by capillary zone electrophoresis with amperometric detection [J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31: 473–480.
    [113] WANG Q J, DING F, ZHU N N, et al. Determination of the compositions ofpolysaccharides from Chinese herbs by capillary zone electrophoresis with amperometric detection [J]. Biomedical Chromatography, 2003, 17: 483–488.
    [114]傅崇岗,单瑞峰,苏昌华.毛细管电泳电化学检测法测定枣中糖类物质[J].食品科学, 2003, 24(12): 91–94.
    [115] CAO Y H, WANG Y, CHEN X L, et al. Study on sugar profile of rice during ageing by capillary electrophoresis with electrochemical detection [J]. Food Chemistry, 2004, 86: 131–136.
    [116] CHEN G, ZHANG L Y, WU X L, et al. Determination of mannitol and three sugars in Ligustrum lucidum Ait. by capillary electrophoresis with electrochemical detection [J]. Analytica Chimica Acta, 2005, 530: 15–21.
    [117] CHEN G, ZHANG L Y, YANG P Y. Rapid determination of paroniflorin and three sugars in radix paeoniae alba by capillary electrophoresis [J]. Analytical Sciences, 2005, 21: 247–251.
    [118] NAGY L, NAGY G. Spectroscopic confirmation of electrocatalytic behavior of amperometric carbohydrate detection on copper electrode [J]. Microchemical Journal, 2006, 84: 70–74.
    [119] CHEN G, ZHANG L Y, ZHU Y Z. Determination of glycosides and sugars in Moutan Cortex by capillary electrophoresis with electrochemical detection [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41: 129–134.
    [120] BASA A, MAGUSZEWSKA J, KROGULEC T, et al. Cyclic chronopotentiometric determination of sugars at Au and Pt microelectrodes in flowing solutions [J]. BaranskiJournal of Chromatography A, 2007, 1150: 312–319.
    [121] CHENG X, ZHANG S, ZHANG H Y, et al. Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano–nickel oxide modified carbon paste electrode [J]. Food Chemistry, 2008, 106: 830–835.
    [122] KAMODA S, NAKANISHI Y, KINOSHITA M, et al. Analysis of glycoprotein–derived oligosaccharides in glycoproteins detected on two–dimensional gel by capillary electrophoresis using on–line concentration method [J]. Journal of Chromatography A, 2006, 1106: 67–74.
    [123] CABáLKOVáJ, ?íDKOVáJ, P?IBYLA L, et al. Determination of carbohydrates in juices by capillary electrophoresis, high–performance liquid chromatography, and matrix–assisted laser desorption/ionization–time of flight–mass spectrometry [J]. Electrophoresis, 2004, 25: 487–493.
    [124] ZAMFIR A D, DINCA N, SISU E, et al. Copper–coated microsprayer interface for on–line sheathless capillary electrophoresis electrospray mass spectrometry of carbohydrates [J]. Journal of separation Science, 2006, 29: 414–422.
    [125]王义明,魏伟,罗国安.多糖的研究进展[J].分析化学, 1996, 24(12): 1459–1463.
    [126] SUZUKI S, HONDA S. A tabulated review of capillary electrophoresis of carbohydrates [J]. Electrophoresis, 1998, 19(15): 2539–2560.
    [127] ZIDKOVA J, CHMELIK J. Electrophoresis of carbohydrates [J]. ChemickéListy, 2000, 94(12): 1093–1103.
    [128]田红,刘定震.肾上腺糖皮质激素样品的采集及测定方法[J].生物学通报, 2002, 37(8): 47–48.
    [129]袁媛,彭池方,胥传来.糖皮质激素类残留检测方法和标准亟待完善[J].安全饲料, 2007, 103: 95–97.
    [130] HOOGENBOOM L A P, HAMERS A R M, BOVEE T F H. Bioassays for the detection of growth–promoting agents,veterinary drugs and environmental contaminants in food [J]. Analyst, 1999, 124: 79–85.
    [131] AMIN A S. Analytical Letters, 1996, 29: 1527–1537.
    [132] JEYASEELAN C, JOSHI A P. Trace determination of dexamethasone sodiumphosphate in pharmaceutical formulations by differential pulse polarography [J]. Analytical Bioanalysis Chemistry, 2002, 373: 772–776.
    [133] HASSAN S S, ROWELL F J, HAMBLETON P, et al. A rapid on–filter immunoassay screen for dexamethasone in equine urine [J].Anal Commun 1998, 35:249–252.
    [134] SCHUMACHER S B, VAN DEN HAUWE O, VAN PETEGHEM C H, et al. Development of a dual luciferase reporter screening assay for the detection of synthetic glucocorticoids in animal tissues [J]. Analyst, 2003, 128: 1406–1412.
    [135] Huetos O, Ramos M, De Pozuelo M M, et al. Determination of dexamethasone in feed by TLC and HPLC [J]. Analyst 1999, 124: 1583–1587.
    [136] DELAHAUT PH, JACQUEMIN R, COLEMONTS Y, et al. Quantitative determination of several synthetic corticosteroids by gas chromatography–mass spectrometry after purification by immunoaffinity chromatography [J]. Journal of Chromatography B, 1997, 696: 203–215.
    [137] HIDALGO O H, LóPEZ M J, CARAZO E A, et al. Determination of dexamethasone in urine by gas chromatography with negative chemical ionization mass spectrometry [J]. Journal of Chromatography B, 2003, 788: 137–146.
    [138]王超,马强,王新.反相高效液相色谱法同时测定化妆品中的16种激素[J].色谱, 2006, 24: 654–655.
    [139]吴大南,郑和辉,李洁.高效液相色谱法检测化妆品中6种糖皮质激素[J].中国卫生检验杂志, 2006, 16: 309–310.
    [140] YANG Y W, ZHU Y, ZHANG W Q, et al. Determination of 7 kinds of Antibiotics, dexamethasone phosphate disodium salt and salicylic acid in anti–acne cosmetics by high performance liquid chromatography [J]. Journal of Environment Health, 2006, 23: 264–266.
    [141] QUINTANA M C, BLANCO M H, LACAL J, et al. Analysis of pharmaceutical residues in bovine liver by HPLC [J]. Journal of Liquild Chromatography Related Technoledge. 2001, 24: 735–745.
    [142] QUINTANA M C, RAMOS L, GONZáLEZ M J, et al. Development of a solid phase extraction method for simultaneous determination of corticoids and tranquilizers in serum samples [J]. Journal of Separation Science, 2004, 27: 53–58.
    [143] MA Q, WANG C, WANG X, et al. Simultaneous determination of 15 hormonesin cosmetics using ultra performance liquid chromatography [J]. Chinese Journal of Chromatography, 2007, 25: 541–545.
    [144] IGLESIAS Y, FENTE C, VáZQUEZ B I, et al. Application of the luminol chemiluminescence reaction for the determination of nine corticosteroids [J]. Analytica Chimica Acta, 2002, 468: 43–52.
    [145] VáZQUEZ B I, FEáS X, LOLO M, et al. Detection of synthetic corticosteroids in bovine urine by chemiluminescence high–performance liquid chromatography [J]. Luminescence, 2005, 20: 197–204.
    [146] FREICHS V A, TORNATORE K M. Determination of the glucocorticoids prednisone, prednisolone,dexamethasone, and cortisol in human serum using liquidchromatography coupled to tandem mass spectrometry [J]. Journal of Chromatography B, 2004, 802: 329–338.
    [147] PANDERI I, GERAKIS A, ZONARAS V, et al. Development and validation of a liquid chromatography– electrosprayionization mass spectrometric method for the determination of dexamethasone in sheep plasma [J]. Analytica Chimica Acta, 2004, 504: 299–306.
    [148] CHERLET M, DE BAERE S, CROUBELS S, et al. Quantitative determination of dexamethasone in bovine plasma and tissues by liquidchromatography–atmospheric pressure chemical ionization–tandem mass spectrometry to monitor residue depletion kinetics [J]. Analytica Chimica Acta, Analytica Chimica Acta, 2005, 529: 361–36.
    [149] QU J, QU Y, STRAUBINGER R M. Ultra–sensitive quantification of corticosteroids in plasma samples using selective solid–phase extraction and reversed–phase capillary high–performance liquid chromatography/tandem mass spectrometry [J]. Analytical Chemistry, 2007, 79: 3786–3793.
    [150] CAPPIELLO A, FAMIGLINI G, ROSSI L, et al. Use of nonvolatile buffers in liquid chromatography/mass spectrometry: Advantages of capillary–scale particle beam interfacing [J]. Analytical Chemistry, 1997, 69: 5136–5141.
    [151] CUI X L, SHAO B, ZHAO R, et al. Determination of twelve glucocorticoids residues in milk by ultra performance liquid chromatography electrospray tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2006, 24: 213–217.
    [152] CHERLET M, DE BAERE S, DE BACKER P. Quantitative determination of dexamethasone in bovine milk byliquid chromatography–atmospheric pressure chemical ionization–tandem mass spectrometry [J]. Journal of Chromatography B, 2004, 805: 57–65.
    [153] McDONALD M, GRANELLI K, SJ?BERG P. Rapid multi–residue method for the quantitative determination and confirmation of glucocorticosteroids in bovine milk using liquid chromatography–electrospray ionization–tandem mass spectrometry [J]. Analytica Chimica Acta, 2007, 588: 20–25.
    [154] VAN DEN HAUWE O, PEREZ J C, CLAEREBOUDT J, et al. Simultaneous determination of betamethasone and dexamethasone residues in bovine liver by liquid chromatography/tandem mass spectrometry [J]. Rapid commun. Mass spectrum, 2001, 15: 857–861.
    [155] ZURBONSEN K, BRESSOLLE F, SOLASSOL I, et al. Simultaneousdetermination of dexamethasone and 6β–hydroxydexamethasone in urine using solid–phase extraction and liquid chromatography: applications to in vivo measurement of cytochrome P450 3A4 activity [J]. Journal of Chromatography B, 2004, 804: 421–429.
    [156] ANTIGNAC J P, LE BIZEC B, MONTEAU F, et al. Differentiation of betamethasone and dexamethasone using liquid chromatography/ positive electrospray tandem mass spectrometry and multivariate statistical analysis [J]. J Mass Spectrom, 2002, 37: 69–75.
    [157] CREASER C S, FEELY S J, HOUGHTON E, et al. Immunoaffinity chromatography combined on–line with highperformance liquid chromatography–mass spectrometry for the determination of corticosteroids [J]. Journal of Chromatography A, 1998, 794: 37–43.
    [158] FIORI M, PIERDOMINICI E, LONGO F, et al. Identification of main corticosteroids as illegal feed additives in milk replacers by liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry [J]. Journal of Chromatography A, 1998, 807: 219–227.
    [159] VAN DEN HAUWE O, CASTRO P J, CLAEREBOUDT J, et al. Simultaneous determination of betamethasone and dexamethasone residues in bovine liver by liquid chromatography/ tandem mass spectrometry [J]. Rapid Commun Mass Spectrom, 2001, 15: 857–861.
    [160] VAN DEN HAUWE O, DUMOULIN F, ANTIGNAC J P, et al. Liquid chromatographic–mass spectrometric analysis of 11 glucocorticoid residues and an optimization of enzymatic hydrolysis conditions in bovine liver [J]. Analytica Chimica Acta, 2002, 473: 127–134.
    [161] DRAISCI R, MARCHIAFAVA C, PALLESCHI L, et al. Accelerated solvent extraction and liquid chromatography–tandem mass spectrometry quantization ofcorticosteroid residues in bovine liver [J]. Journal of Chromatography A, 2001, 753: 217–223.
    [162] SANGIORGI E, CURATOLO M, ASSINI W, et al. Application of neutral loss mode in liquid chromatography–mass spectrometry for the determination of corticosteroids in bovine urine [J]. Analytica Chimica Acta, 2003 483: 259–267.
    [163] BAIOCCHI C, BRUSSINO M, PAZZI M, et al. Separation and determination of synthetic corticosteroids in bovine liver by LC–Ion–Trap–MS–MS on porous graphite [J]. Chromatographia, 2003, 58: 11–14.
    [164] DEVENTER K, DELBEKE F T. Validation of a screening method for corticosteroids in doping analysis by liquid chromatography/tandem mass spectrometry [J]. Rapid Commun Mass Spectrom, 2003, 17: 2107–2114.
    [165] ARTHUR K E, WOLFF J C, CARRIER D J. Analysis of betamethasone, dexamethasone and related compounds by liquid chromatography/electrospray mass spectrometry [J]. Rapid Commun Mass Spectrom, 2004, 18: 678–684.
    [166] TAYLOR R L, GREBE S K, SINGH R J. Quantitative, highly sensitive liquid chromatography–tandem mass spectrometry method for detection of synthetic corticosteroids [J]. Clin Chem, 2004, 50: 2345–2352.
    [167] LUO Y, UBOH C E, SOMA L R, et al. Resolution, quantification and confirmation of betamethasone and dexamethasone in equine plasma by liquid chromatography/tandem mass spectrometry [J]. Rapid Commun Mass Spectrom, 2005, 19: 825–832.
    [168] LUO Y, UBOH C E, SOMA L R, et al. Simultaneous analysis of twenty–one glucocorticoids in equine plasma by liquid chromatography/tandem mass spectrometry [J]. Rapid Commun Mass Spectrom, 2005, 19: 1245–1256.
    [169] TOUBE M E, VAN ENGELEN M C, GEORGAKOPOULUS C, et al. Multi–detection of corticosteroids in sports doping and veterinary control usinghigh–resolution liquid chromatography/time–of–flight mass spectrometry [J]. Analytica Chimica Acta, 2007, 586: 137–146.
    [170] McDONALDA M, GRANELLI K, SJ?BERG P. Rapid multi–residue method for the quantitative determination and confirmation of glucocorticosteroids in bovine milk using liquid chromatography–electrospray ionization–tandem mass spectrometry [J]. Analytica Chimica Acta, 2007, 588: 20–25.
    [171] BAGNATI R, RAMAZZA V, ZUCCHI M, et al. Analysis of dexamethasone and betamethasone in bovine urine by purification with an "on–line" immunoaffinity chromatography–high–performance liquid chromatography system and determination by gas chromatography–mass spectrometry [J]. Analytical Biochemistry, 1996, 235: 119–126.
    [172] PENDILA M, ADAMS E, HOOGMARTENS J. Development of a liquid chromatographic method for ear drops containing neomycin sulphate, polymyxin B sulphate and dexamethasone sodium phosphate [J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36: 751–757.
    [173] MOYANO M A, ROSASCO M A, PIZZORNO M T, et al. Determination of chlorpheniramine maleate and dexamethasone in a tablet dosage form by liquid chromatography [J]. Journal of Association of Official Analytical Chemists International, 2005, 88: 1677–1683.
    [174]贺凌云,刘文芳,谢燕媚, et al.反相高效液相色谱法同时测定7种皮质激素[J].中南药学, 2006, 14: 331–333.
    [175] LIU H X, CHEN X L, ZHANG S S, et al. Separation and determination of dexamethasone sodium phosphate in cochlear perilymph fluid by liquid chromatography with ultraviolet monitoring and electrospray ionization mass spectrometry characterization [J]. Journal of Chromatography A, 2004, 805: 255–260.
    [176] DELAHAUT Ph, JACQUEMIN R, COLEMONTS Y, et al. Quantitative determination of several synthetic corticosteroids by gas chromatography–mass spectrometry after purification by immunoaffinity chromatography [J]. Journal of Chromatography B, 1997, 696: 203–215.
    [177] HIDALGO O H, LóPEZ M J, CARAZO E A, et al. Determination of dexamethasone in urine by gas chromatography with negative chemical ionization mass spectrometry [J]. Journal of Chromatography B, 2003, 788: 137–146.
    [178] GOROG S, GAZDAG M, KEMENES–BAKOS P. Analysis of steroids part 50. Derivatization of ketosteroids for their separation and determination by capillary electrophoresis [J]. Journal of Pharmaceutical and Biomedical Analysis, 1996, 14: 1115–1124.
    [179] BAEYENS V, VARESIO E, VEUTHEY J L, et al. Determination of dexamethasone in tears by capillary electrophoresis [J]. Journal of Chromatography B, 1997, 692: 222–226.
    [180] NOéS, BOHLER J, KELLER E, et al. Evaluation and optimisation of separation buffers for the determination of corticosteroids with micellar electrokinetic capillary chromatography (MECC) [J]. Journal of Pharmaceutical and Biomedical Analysis, 1998, 18: 911–918.
    [181] CHERKAOUIA S, BEKKOUCHEA K, CHRISTENA P, et al. Non–aqueous capillary electrophoresis with diode array and electrospray mass spectrometric detection for the analysis of selected steroidal alkaloids in plant extracts [J]. Journal of Chromatography A, 2001, 922: 321–328.
    [182] REGAN F, MORAN A, FOGARTY B, et al. Novel modes of capillary electrophoresis for the determination of endocrine disrupting chemicals [J]. Journal of Chromatography A, 2003, 1014: 141–152.
    [183] BRITZ–McKIBBIN P, TERABE S. On–line preconcentration strategies for trace analysis of metabolites by capillary electrophoresis [J]. Journal of Chromatography A, 2003, 1000: 917–934.
    [184] SANTAGATI N A, TROPEA S, RONSISVALLE G. Analysis of ecdysteroids by micellar electrokinetic chromatography with on–line preconcentration [J]. Journal of Chromatography A, 2005, 1081: 77–86.
    [185] SMYTH W F, RODRIGUEZ V. Recent studies of the electrospray ionisation behaviour of selected drugs and their application in capillary electrophoresis–mass spectrometry and liquid chromatography–mass spectrometry [J]. Journal of Chromatography A, 2007, 1159: 159–174.
    [186] Liu F K. Preconcentration and separation of neutral steroid analytes using a combination of sweeping micellar electrokinetic chromatography and a Au nanoparticle–coated solid phase extraction sorbent [J]. Journal of Chromatography A, 2008, 1215: 194–202.
    [187] MOHAMMADD A A, PETERSEN J R, BISSELL M G. Steroid clinical applications of capillary electrophoresis: Analysis by micellar electrokinetic capillary chromatography [M]. Totowa, New Jersey: Humana Press, 2008, 27: 177–187.
    [188] DU B, SONG S, SHI X, et al. Analysis of steroids by nonaqueous capillary electrophoresis [J]. Journal of Analytical Chemistry, 2009, 64: 59–64.
    [189] BAEYENSV, VARESIOB E, VEUTHEYB J L, et al. Determination of dexamethasone in tears by capillary electrophoresis. Journal of Chromatography B: Biomedical Sciences and Applications. 1997, 692(1): 222–226.
    [190] RAITH K, ALTHOFF E, BANSE J, et al. Two examples of rapid and simple drug analysis in pharmaceutical formulations using capillary electrophoresis: naphazoline, dexamethasone and benzalkonium in nose drops and nystatin in anoily suspension [J]. Electrophoresis, 1998, 19: 16–17.
    [191]郭丹,李国锋,杨西晓, et al.高效毛细管电泳法测定地塞米松磷酸钠脂质体中地塞米松磷酸钠的含量[J].药物分析杂志, 2004, 24(2): 117–119.
    [192]郭丹,陈娜娜,杨西晓, et al.高效毛细管电泳法测定肤炎康中地塞米松磷酸钠的含量[J].第一军医大学学报, 2004, 24(7): 839–840.
    [193]郭丹,陈娜娜,杨芳, et al.高效毛细管电泳法测定头孢克洛干混悬剂中头孢克洛的含量[J].中国新药杂志, 2004, 13(12): 1139–1141.
    [194]郭丹,陈娜娜,许重远.高效毛细管电泳法测定肤炎康霜中氯霉素和地塞米松磷酸钠[J].华西药学杂志, 2005, 20(1): 58–59.
    [195]郭丹,陈娜娜,杨芳.高效毛细管电泳法测定注射用头孢噻肟钠的含量[J].中国生化药物杂志, 2005, 26(4): 226–228.
    [196]杜斌,吴春丽,张振中. HPCE法测定地塞米松磷酸钠注射剂的含量[J].郑州大学学报(医学版), 2006, 41(1): 154–156.
    [197] CANDIOTI L V, ROBLES J C, MANTOVANI V E, et al. Multiple response optimization applied to the development of a capillary electrophoretic method for pharmaceutical analysis [J]. Talanta, 2006, 69: 140–147.
    [198]梁改玲,连莹.高效毛细管电泳法测定复方阿昔洛韦滴眼液的含量[J].华西药学杂志, 2006, 21(3): 286–287.
    [199] NEPOTE A J, VERA–CANDIOTTI L, WILLINER M R, et al. Development and validation of chemometrics–assisted spectrophotometry and micellar electrokinetic chromatography for the determination of four–component pharmaceuticals [J]. Analytica Chimica Acta, 2003, 489: 77–84.
    [200] SIREN H, SEPPANEN–LAAKSO T, ORE?I? M. Capillary electrophoresis with UV detection and mass spectrometry in method development for profiling metabolites of steroid hormone metabolism [J]. Journal of Chromatography B, 2008, 871: 375–382.
    [201] MALEK A, KHALEDI M G. Steroid analysis in single cells by capillary electrophoresis with collinear laser–induced fluorescence detection [J]. Analytical Biochemistry, 1999, 270, 50–58.
    [202] GALLEGO J M L, ARROYO J P. Micellar electrokinetic capillary chromatography as an alternative method for the determination of dexamethasone, trimethoprim, and polymyxin B [J]. Fresenius J Anal Chem, 2001, 370: 973–975.
    [203] BRITZ–McKIBBIN P, ICHIHASHI T, TSUBOTA K, et al. Complementary on–line preconcentration strategies for steroids by capillary electrophoresis [J]. Journal of Chromatography A, 2003, 1013: 65–76.
    [204] ZHANG L, CHEN J F, HE Y, et al. A new mixed micellar electrokinetic chromatography method for analysis of natural and synthetic anabolic steroids [J]. Talanta, 2009, 77: 1002–1008.
    [1] PAULUS A, KLOCKOW A. Detection of carbohydrates in capillary electrophoresis [J]. Journal of Chromatography A, 1996, 720: 353–376.
    [2] MOLNAR–PERL I. Role of chromatography in the analysis of sugars, carboxylic acids and amino acids in food [J]. Journal of Chromatography A, 2000, 891: 1–32.
    [3] BERNAL J L, NOZAL M J D, TORIBIO L, A et al. HPLC analysis of carbohydrates in wines and instant coffees using anion exchange chromatography coupled to pulsed amperometric detection [J]. Food Chemistry, 1996, 44: 507–511.
    [4] CHENG X, KAPLAN, L A. Improved analysis of dissolved carbohydrates in stream water with HPLC–PAD [J]. Analytical Chemistry, 2001, 73: 458–461.
    [5] GINNOCCARO E, WANG Y J, CHEN P Y. Comparison of two HPLC systems and an enzymatic method for quantification of soybean sugars [J]. Food Chemistry, 2008, 106: 324–330.
    [6] CHE F Y, SONG J F, ZENG R Z, et al. Analysis of 8–aminonaphthalene– 1,3,6–trisulfonate–derivatized oligosaccharides by capillary electrophoresis– electrospray ionization quadrupole ion trap mass spectrometry [J]. Journal of Chromatography A, 1999, 858: 229–238.
    [7] WOLFF M W, BAZIN H G, LINDHARDT R. Exoglycosidase based analysis of fluorescently labeled oligosaccharides by electrospray ionization mass spectrometry [J]. Biotechnoledge Technique, 1999, 13: 797–801.
    [8] BAHR U, PFENNINGER A, KARAS M. High–Sensitivity Analysis of neutral underivatized oligosaccharides by nanoelectrospray mass spectrometry [J]. Analytical Chemistry, 1997, 69: 4530–4535.
    [9] BALDWIN R P. Recent advances in electrochemical detection in capillary electrophoresis [J]. Electrophoresis, 2000, 21: 4017–4028.
    [10] HOLLAND L A, LEIGH A M. Amperometric and voltammetric detection for capillary electrophoresis [J]. Electrophoresis, 2002, 23: 3649–3658.
    [11] CHEN F, EVANGELLSTA R A. Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis [J]. Analytical Biochemistry, 1995, 230: 273–280.
    [12] CIRINGH Y, LINDSEY S J. Analysis of sugar phosphates and related compounds using capillary zone electrophoresis with indirect UV detection [J]. Journal of Chromatography A, 1998, 816: 251–259.
    [13] SHEN Z J, WARREN C D, NEWBURG D S. High–perfor– mance capillary electrophoresis of sialylated oligosaccharides of human milk [J]. Analtical Biochemistry, 2000, 279: 37–45.
    [14] FRAYSSE N, VEROLLET C, COUDERC F, et al. Capillary electrophoresis as a simple and sensitive method to study polysaccharides of Sinorhizobium sp. NGR234 [J]. Electrophoresis, 2003, 24: 3364–3370.
    [15] LV Y, ZHANG Z, CHEN F. Chemiluminescence microfluidic system sensor on a chip for determination of glucose in human serum with immobilized reagents [J]. Talanta, 2003, 59: 571–576.
    [16] LI B, ZHANG Z, JIN Y. Chemiluminescence flow sensor for in vivo on–line monitoring of glucose in awake rabbit by microdialysis sampling [J]. Analytica Chimica. Acta, 2001, 432: 95–100.
    [17] WANG C Y, HUANG H J. Flow injection analysis of glucose based on its inhibition of electrochemiluminescence in a Ru(bpy)32+–tripropylamine system [J]. Analytica Chimica Acta, 2003, 498: 61–68.
    [18] F?HNRICH K A, PRAVDA M, GUILBAULT G G. Recent applications of electrogenerated chemiluminescence in chemical analysis [J]. Talanta 2001, 54: 531–559.
    [19] DU Y, YAN J, ZHOU W, et al. Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips [J]. Electrophoresis, 2004, 25: 3853–3859.
    [20] LEE H L, CHEN S C. Microchip capillary electrophoresis with amperomectric detection for several carbohydrates [J]. Talanta, 2004, 64: 210–216.
    [21] VICKERS J A, HENRY C S. Simplified current decoupler for microchip capillary electrophoresis with electrochemical and pulsed amperometric detection [J]. Electrophoresis, 2005, 26: 4641–4647.
    [22] LU W, CASSIDY R M. Pulsed amperometric detection of carbohydrates separated by capillary electrophoresis [J]. Analytical Chemistry, 1993, 65: 2878–2881.
    [23] COLóN L A, DADOO R, ZARE R N. Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode [J]. Analytical Chemistry, 1993, 65: 476–481.
    [24] WEBER P L. Capillary electrophoresis with pulsed amperometric detection of carbohydrates and glycopeptides [J]. Electrophoresis, 1996, 17: 302–309.
    [25] PRABHU S V, BALDWIN R P. Constant potential amperometric detection of carbohydrates at a copper–based chemically modified electrode [J]. Analytical Chemistry, 1989, 61: 852–856.
    [26] BODOR R, KANIANSKY D, MASáR M. Conductivity detection cell for capillary zone electrophoresis with a solution mediated contact of the separated constituents with the detection electrodes [J]. Journal of Chromatography A, 2001,916: 31–40.
    [27] ZEMANN A J. Conductivity detection in capillary electrophoresis [J]. Trends in Analytical Chemistry, 2001, 20: 346–354.
    [28] JARO? M, SOGA T, DE GOOR T V, et al. Conductivity detection in capillary zone electrophoresis: Inspection by peakmaster [J]. Electrophoresis, 2005, 26: 1948–1953.
    [29] GALLOWAY M, STRYJEWSKI W, HENRY A, et al. Contact conductivity detection in poly(methyl methacylate)–based microfluidic devices for Aanalysis of mono– and polyanionic molecules [J]. Analytical Chemistry, 2002, 74: 2407–2415.
    [30] GUIJT R M, EVENHUIS C J, MACKA M, et al. Conductivity detection for conventional and miniaturised CE systems [J]. Electrophoresis, 2004, 25: 4032–4057.
    [31]朱叔韬,肖其昌,陈洪渊, et al.毛细管电化学检测单糖的研究.分析测试学报, 1998, 17(3): 9–12.
    [32]叶建农,金薇,曹志广, et al.毛细管电泳法测定市售饮料中糖类物质的研究.分析试验室, 1999, 18(3): 23–26.
    [1]齐春会,张永祥,赵修南, et al.枸杞粗多糖的免疫活性[J].中国药理学与毒理学杂志, 2001, 15(3): 180–184.
    [2] WU S J, NG L T, LIN C C. Antioxidant activities of some common ingredients of traditional chinese medicine, Angelica sinensis, Lycium barbarum and Poria cocos [J]. Antioxidant Activities of Chinese Medicine,2004, 18: 1008–1012.
    [3]华南农业大学.果树栽培学各论Ⅱ[M].北京:农业出版社, 1991, 74–76.
    [4] HAN G R, MU C L, CHENG X F. Acta Pharmaeeutica Sinica, 1995, 30: 266–272.
    [5] CATALDI T R I, CENTONZE D, CASELLA I G, et al. Anion–exchange chromatography with electrochemical detection of alditols and sugars at a Cu20–carbon composite electrode [J]. Journal of Chromatography A, 1997, 773: 115–121.
    [6] MEDEIROS P M, SIMONEIT B R T. Analysis of sugars in environmental samples by gas chromatography–mass spectrometry [J]. Journal of Chromatography A, 2007, 1141: 271–278.
    [7] WAN E C H, YU J Z. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry [J]. Journal of Chromatography A,2006,1107: 175–181.
    [8]何进,张声华.枸杞及枸杞多糖研究(I) [J].食品科学, 1995, 16(2): 14–21.
    [9]李忠,罗琼,张声华.枸杞及枸杞多糖研究(II) [J].食品科学, 1996,17(9): 9–12.
    [10]甘璐,张声华.不同品种枸杞多糖四个级分的含量测定[J].中药材, 2001, 24(2): 107–108.
    [11]朱彩平,张声华.枸杞子水提物中多糖含量的测定[J].食品与发酵工业, 2005, 31(2): 111–113.
    [12]朱彩平,张民,张声华.枸杞多糖的组成及结构分析[J].中草药, 2005,37(6): 872–874.
    [13]杨晓萍,张声华.枸杞子糖类的研究[J].林产化学与工业, 1998, 18(2): 65–68.
    [14]冯美,宋长冰.枸杞果实发育过程中果实色素、糖含量的变化[J].北方园艺, 2005, 6: 68–69.
    [15] ESCAILLE F D, FALMAGNE J B. 13 Ion analysis using capillary electrophoresis [J]. Separation Science and Technology, 2008, 9: 317–355.
    [16] HORIE M, ISHIKAWA F, OISHI M, et al. Rapid determination of cyclamate in foods by solid–phase extraction and capillary electrophoresis [J]. Journal of Chromatography A, 2007, 1154(1–2): 423–428.
    [1]田红,刘定震.肾上腺糖皮质激素样品的采集及测定方法[J].生物学通报, 2002, 37(8): 47–48.
    [2]严发敏.激素及其副作用[M].上海:同济大学出版社出版. 1992: 261–272.
    [3] HUANG H Y, CHIU C W, HUANG I Y, et al. Analyses of benzophenones by capillary electrochromatography using methacrylate ester–based monolithic columns [J]. Journal of Chromatography A, 2005, 1089: 250–257.
    [4] HE S L, ZHAO Y F, ZHU Z W, et al. Comparative study for the analysis of parabens by micellar electrokinetic capillary chromatography with and without large–volume sample stacking technique [J]. Talanta, 2006, 69: 166–171.
    [5] HUANG H Y, LAI Y C, CHIU C W, et al. Comparing micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for the analysis of preservatives in pharmaceutical and cosmetic products [J]. Journal of Chromatography A, 2003, 993: 153–164.
    [6]王萍,丁晓静.胶束电动毛细管色谱快速测定化妆品中的防腐剂[J].色谱, 2005, 23: 315.
    [7] BOYCE M C,SPICKETT E E. Determination of additives in cosmetics by micellar electrokinetic capillary chromatography [J]. Journal of Liquid Chromatography & Related Technologies, 2000, 23(11): 1689–1697.
    [8] GUAN Y Q, CHU Q C, FU L, et al. Determination of antioxidants in cosmetics by micellar electrokinetic capillary chromatography withelectrochemical detection [J]. Journal of Chromatography A, 2005, 1074: 201–204.
    [9] DUTRA E A, SANTORO M I R M, MICKE G A, et al. Determination ofα–hydroxy acids in cosmetic products by capillary electrophoresis [J]. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40: 242–248.
    [10]曲晓明.高效毛细管电泳测定化妆品中果酸[J].中国公共卫生, 2001, 17: 1141.
    [11] FUJIYA N M, TAVARES M F M. Analysis of underivatized amino acids in protein hydrolysates for cosmetic application by capillary electrophoresis [J]. Journal of Separation Science, 2003, 26: 562–568.
    [12] WANG C C,WU S M. Simultaneous determination of l–ascorbic acid, ascorbic acid–2–phosphate magnesium salt, and ascorbic acid–6–palmitate in commercial cosmetics by micellar electrokinetic capillary electrophoresis [J]. Analytica Chimica Acta, 2006, 576: 124–129.
    [13]侯晋,周钰明.毛细管电泳法进行化妆品中砷的形态分析[J].化学分析计量, 2004, 13: 48–49.
    [14] UCHINO T, IKARASHI Y, TOKUNAGA H. Studies for analyzing the prohibited ingredients such as selenium disulfide in cosmetics [J]. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku, 2006, 124: 49–52.
    [15] Validation of analytical procedures: test and methodology. ICH Harmonised Tripartite Guideline. Geneva: IFPMA, 1994.
    [1] LITTER M. Farmacología experimentaly clínica [M]. El Ateneo: Buenos Aires, 1986.
    [2] Olympic Movement Antidoping Code [R]. International Olympic Committee, Lausanne, 2003.
    [3] PENA–GARCíA–BRIOLES D, GONZALO–LUMBRERAS R, IZQUIERDO–HORNILLOS R, et al. Method development for betamethasone and dexamethasone by micellar liquid chromatography using cetyltrimethyl ammonium bromide and validation in tablets Application to cocktails [J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 36: 65–71.
    [4] DE WASCH K, DE BRABANDER H F, VAN DE WIELE M, et al. Differentiation between dexamethasone and betamethasone in a mixture using multiple mass spectrometry [J]. Journal of Chromatography A, 2001, 926: 79–86.
    [5] PUJOS E, FLAMENT–WATON M M, PAISSE O, et al. Comparison of the analysis of corticosteroids using different techniques [J]. Analytical and Bioanalytical Chemistry, 2005, 381: 244–254.
    [6] TAYLOR M R, TEALE P. Gradient capillary electrochromatography of drug mixtures with UV and electrospray ionisation mass spectrometric detection [J]. Journal of Chromatography A, 1997, 768: 89–95.
    [7] SPIKMANS V, LANE S J, SMITH N W. Capillary Electrochromatography of Complex Plasma Matrix on a C18/SCX Column Using UV–Vis and Mass Spectrometric Detection [J]. Chromatographia, 2000, 51: 18–24.
    [8] BABAR Md E S, SONG E J, HASAN Md N, et al. Experimental design optimization of the capillary electrophoresis separation of leucine enkephalin and its immune complex [J]. Journal of Separation Science, 2007, 30: 324–328.
    [9] LOUKASA Y L, SABBAH S, SCRIBA G K E. Method development and validation for the chiral separation of peptides in the presence of cyclodextrins using capillary electrophoresis and experimental design [J]. Journal of Chromatography A, 2001, 931: 141–152.
    [10] CAPELLA–PEIRO M E, BOSSI A, ESTEVE–ROMERO J. Optimization by factorial design of a capillary zone electrophoresis method for the simultaneous separation of antihistamines [J]. Analytical Biochemistry, 2006, 352: 41–49.
    [11] LIN Y H, YANG Y H, WU S M. Experimental design and capillary electrophoresis for simultaneous analysis of arbutin, kojic acid and hydroquinone in cosmetics [J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44: 279–282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700