有机—无机杂化光伏电池中的界面效应及调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以硅-共轭导电聚合物杂化光伏器件为基础,研究了硅/聚合物的界面形貌和界面钝化对器件性能的影响,深入讨论了硅/聚合物的界面效应。通过对硅/聚合物界面的调控,制备了高效稳定的硅纳米线阵列-有机杂化光伏器件。其中,硅纳米线阵列的制备采用金属辅助催化湿法化学刻蚀的方法;硅纳米线阵列的表面形貌可以通过一种简单的化学反应刻蚀的方法进行有效的调控;硅纳米线阵列表面的能级结构、缺陷态密度、载流子复合速率和化学稳定性可以通过利用不同的钝化层对其表面进行钝化来进行有效的调控。利用这种表面形貌、电学性能和化学稳定性可控的硅纳米线阵列分别与共轭导电聚合物聚3-己基噻吩(P3HT)和聚苯乙烯磺酸掺杂的聚3,4二氧乙烯噻吩(PEDOT:PSS)制备了高效稳定的有机/无机杂化光伏器件,光电转换效率超过10%。通过扫描电子显微镜、透射电子显微镜、紫外-可见分光光度计、X射线光电子能谱、瞬态光电压(光电流)衰减等测试手段对器件的工作原理以及硅/聚合物的界面效应进行了系统的分析和表征。结果表明,硅纳米线阵列的表面形貌和表面钝化是影响硅-聚合物杂化光伏器件性能的重要因素。利用合适表面形貌的硅纳米线阵列和对其表面进行有效的钝化修饰是制备高效率杂化光伏器件的先决条件。这是由于硅纳米线阵列的表面形貌和表面钝化主导了硅-聚合物杂化光伏器件中界面的载流子复合速率和载流子寿命。主要工作包括:
     1.采用金属辅助催化湿法化学反应刻蚀的方法制备了结构规整的硅纳米线阵列。通过对其进行氧化刻蚀反应使其表面形貌得到了有效的调控;通过对其表面进行不同的钝化处理使其表面的能级结构、缺陷态密度、载流子复合速率和化学稳定性得到了有效的调控。
     2.利用表面形貌、电学性能和化学稳定性可控的单晶硅基底与共轭导电聚合物P3HT制备了有机-无机杂化光伏器件。通过电流-电压测试、外量子效率光谱响应等测试手段考察了器件的光伏性能;通过扫描电子显微镜、紫外-可见分光光度计、紫外光电子能谱等测试手段考察了器件中的界面效应。结果表明,通过对基底的表面形貌控制和表面进行钝化可以有效地提高器件的光伏性能。
     3.利用不同表面形貌和不同表面钝化层的硅纳米线阵列和共轭导电聚合物P3HT制备了具有三维径向结构的杂化异质结光伏器件(HOT电池)。通过电流-电压测试、外量子效率光谱响应等测试手段考察了器件的光伏性能;通过对器件的暗电流拟合分析考察了器件的界面形貌和界面钝化对器件性能的影响。结果表明,硅纳米线阵列需要具有合适的密度使得聚合物能够更好地均匀覆盖其表面从而制备出高效率的光伏器件。
     4.利用不同表面形貌的硅纳米线阵列和导电共轭聚合物PEDOT:PSS制备了杂化肖特基异质结光伏电池。通过电流-电压测试和外量子效率光谱响应等测试手段考察了器件的光伏性能;通过对器件的暗电流拟合分析和瞬态光电压衰减测试分析了界面形貌与器件性能的关系以及器件中载流子的分离及传输的理论依据。结果表明,在这种基于硅纳米线阵列和PEDOT:PSS的杂化光伏器件中,硅纳米线阵列基底需要具有合适的硅线长度和密度使器件具有较高的陷光性能和较低的表面载流子复合速率,从而使得杂化光伏器件具有较好的光伏性能。
     5.采用不同的有机单分子层对硅纳米线阵列表面进行钝化修饰,利用略角反射-傅里叶转换红外光谱和X射线光电子能谱考察了其钝化效果。利用不同有机单分子层钝化修饰得到的具有不同钝化程度的硅纳米线阵列与共轭导电聚合物PEDOT:PSS制备了杂化肖特基光伏器件。通过电流-电压测试、外量子效率光谱响应等测试手段考察了器件的光伏性能;通过对器件的暗电流拟合分析和瞬态光电压(光电流)衰减测试分析了界面钝化与器件性能的关系以及器件中电荷的分离及传输的理论依据。结果表明,表面钝化程度完全的硅纳米线阵列基底具有较小的缺陷态密度和载流子复合速率,基于这种混合有机单分子层钝化修饰的硅纳米线阵列和PEDOT:PSS杂化光伏器件具有较高的效率和较好的稳定性。
This thesis was based on the silicon (Si)-conjugated polymer hybrid solar cells. Inthis thesis, the device performance influenced by the morphology and passivation ofsilicon substrates surfaces were investigated. The device with high performance andstability was fabricated by controling the interface of Si/polymer. Si nanowire arrays(SiNWs) were fabricated by metal-assisted chemical etching method, and their densitieswere tuned through slowly chemical etching. The surface density of trap states and thevelocity of surface carrier recombination were dramatically reduced utilizing a two-stepmethod of chloridization/alkylation. High efficiency of over10%and stableorganic/inorganic hybrid photovoltaic devices were fabricated based on the densitycontrollable, organic monolayer surface passivated SiNWs and poly(3-hexylthiophene)(P3HT) or poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)(PEDOT:PSS).Scanning electron microscope (SEM), transmission electron microscope (TEM),UV-Vis spectrophotometer (UV-Vis), X-ray photoelectron spectroscopy (XPS), transientphotovoltage (photocurrent) decay were used to analyse the interface engineeringsystematically. The results indicated that the surface morphology and passivation playimportant roles on device performance because they dominate the charge recombinationprocess. My works maily consist of following parts:
     1. Preparation of SiNWs with regular structure by metal-assisted chemical etchingmethod to fabricate. The controllable surface morphology of SiNWs was achievedthrough a simple and efficient chemical etching method. The controllable surface energydiagram, the density of trap states, charge recombination velocity and chemical stabilitywere achieved through the surface passivation.
     2. Fabrication of Si/P3HT hybrid photovoltaic devices with different surfacemorphology and passivation layer. The device performance was characterized bycurrenet-volatage (J-V) and external quantum efficiency (EQE), and the interfacemorphology were measured by SEM, TEM, and UV-Vis. The results indicated thatdevice performance could be enhanced by optimizing the surface morphology and passivaiton of Si substrates.
     3. Fabrication of devices with the structure of heterojuction with organic thinlayer were fabricated utilizing Si substrates and P3HT. SEM, TEM were used tocharacterize the device structure; J-V and EQE were used to evaluate the deviceperformance; the fitting of dark current was utilized to investigated the effect of deviceperformance influenced by the morphology and passivation of Si substrates surfaces.The results indicated that the desity of SiNWs should be suitable so as to formcontinuous organic films.
     4. Fabrication of hybrid Schottky heterojunction photovoltaic solar cells based onSiNWswith different morphology and PEDOT:PSS. The device structure wascharacterized by SEM, UV-Vis etc.; the device performance was characterized by J-Vand EQE test; the interface quality was investigated by fitting dark current and transientphotovoltage decay test. The results indicated that the density and length of SiNWsshould be suitbale to balance the light trpping and surface trap states.
     5. Passivation of the Si surfaces to suppress the charge recombination. The alkygroup coverage ratio was exactly demonstrated by grazing angle attenuated totalreflectance Fourier-transform infrared spectroscopy (GATR-FTIR) and XPS. HybridSchottky photovoltaic devices based on PEDOT:PSS and different coverage ratiopassivated SiNWs by varying organic monolayer were fabricated. The device structurewas characterized by SEM, TEM and UV-Vis. The device performance wascharacterized by J-V and EQE test; the interface engineering was investigated by fittingdark current and transient photovoltage (photocurrent) decay test. The results indicatedthat the mixed organic monolayer could passivate SiNWs surface completely andenhance the device performance efficiently.
引文
[1] Gruenspecht H., International energy outlook2011. Center for strategic andinternational studies,2010.
    [2] Goldemberg J., Johansson T. B., World energy assessment: United NationsPublications:2004.
    [3] Becquerel A., On electric effects under the influence of solar radiation. CR Acad. Sci,1839,9,711-714.
    [4] Ohl R. S., Light-sensitive electric device. US Patents:2402662,1946.
    [5] Kingsbury E. F., Ohl R. S., Photoelectric properties of ionically bombarded silicon.Bell Syst. Tech. J,1952,31,802-815.
    [6] Chapin D., Fuller C., Pearson G., A new silicon p‐n junction photocell for convertingsolar radiation into electrical power. J. Appl. Phys.,1954,25(5),676-677.
    [7] Prince M., Silicon solar energy converters. J. Appl. Phys.,1955,26(5),534-540.
    [8] Loferski J. J., Theoretical considerations governing the choice of the optimumsemiconductor for photovoltaic solar energy conversion. J. Appl. Phys.,1956,27(7),777-784.
    [9] Wysocki J. J., Rappaport P., Effect of temperature on photovoltaic solar energyconversion. J. Appl. Phys.,1960,31(3),571-578.
    [10] Shockley W., Queisser H. J., Detailed balance limit of efficiency of p‐n junctionsolar cells. J. Appl. Phys.,1961,32(3),510-519.
    [11] Cusano D., CdTe solar cells and photovoltaic heterojunctions in II–VI compounds.Solid-State Electronics,1963,6(3),217-218.
    [12] Wolf M., Limitations and possibilities for improvement of photovoltaic solarenergy converters: part I: considerations for earth's surface operation. Proceedingsof the IRE,1960,48(7),1246-1263.
    [13] Mandelkorn J., McAfee C., Kesperis J., Schwartz L., Pharo W., Fabrication andcharacteristics of phosphorous‐diffused silicon solar cells. J. Electrochem. Soc.,1962,109(4),313-318.
    [14] Stein H., Gereth R., introduction rates of electrically active defects in n‐and p‐typesilicon by electron and neutron irradiation. J. Appl. Phys.,1968,39(6),2890-2904.
    [15] Gereth R., Fischer H., Link E., Mattes S., Pschunder W., Contribution to siliconsolar cell technology. Energy Conversion,1972,12(3),103-107.
    [16] Haynos J., Allison J., Arndt R., Meulenberg A. The COMSAT nonreflective siliconsolar cell: a second generation improved cell, Int. Conf. on Photovoltaic PowerGeneration,1974.
    [17] Rudenberg H. G., Radiant energy transducer. US Patents:3150999,1964.
    [18] Green M., Blakers A., Narayanan S., Taouk M., Improvements in silicon solar cellefficiency. Solar cells,1986,17(1),75-83.
    [19] Green M. A., Jianhua Z., Blakers A. W., Taouk M., Narayanan S.,25-percentefficient low-resistivity silicon concentrator solar cells. IEEE Electron Device L.,1986,7(10),583-585.
    [20] Blakers A., Green M.,20%efficiency silicon solar cells. Appl. Phys. Lett.,1986,48(3),215-217.
    [21] King R., Sinton R., Swanson R. In front and back surface fields for point-contactsolar cells. Photovoltaic Specialists Conference,1988,538-544.
    [22] Blakers A. W., Wang A., Milne A. M., Zhao J., Green M. A.,22.8%efficient siliconsolar cell. Appl. Phys. Lett.,1989,55(13),1363-1365.
    [23] Verlinden P., Swanson R., Crane R.,7000high‐eficiency cells for a dream. Prog.Photovolt: Res. Appl.,1994,2(2),143-152.
    [24] Zhao J., Wang A., Taouk M., Wenham S., Green M., King D.,20%efficientphotovoltaic module. IEEE Electron Device L.,1993,14(11),539-541.
    [25] Zhao J., Green M. A., Optimized antireflection coatings for high-efficiency siliconsolar cells. Electron Devices,1991,38(8),1925-1934.
    [26] Shi Z., Wenham S., Ji J. In mass production of the innovative PLUTO solar celltechnology, Photovoltaic Specialists Conference (PVSC),2009,001922-001926.
    [27] Tsunomura Y., Yoshimine Y., Taguchi M., Baba T., Kinoshita T., Kanno H., SakataH., Maruyama E., Tanaka M., Twenty-two percent efficiency HIT solar cell. Sol.Energy Mater. Sol. Cells,2009,93(6),670-673.
    [28] Taguchi M., Tanaka M., Matsuyama T., Matsuoka T., Tsuda S., Nakano S., Kishi Y.,Kuwano Y. Improvement of the conversion efficiency of polycrystalline siliconthin film solar cell, Proc. Fifth PVSEC,1990,689-692.
    [29] Taguchi M., Kawamoto K., Tsuge S., Baba T., Sakata H., Morizane M., UchihashiK., Nakamura N., Kiyama S., Oota O., HITTMcells—high-efficiency crystalline Sicells with novel structure. Prog. Photovolaics,2000,8(5),503-514.
    [30] Kurita K., Shingyouji T., Low surface recombination velocity on silicon wafersurfaces due to iodine-ethanol treatment. Jpn. J. Appl. Phys.,1999,38(part1),5710-5714.
    [31] Tanaka M., Taguchi M., Matsuyama T., Sawada T., Tsuda S., Nakano S., HanafusaH., Kuwano Y., Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT(artificially constructed junction-heterojunction with intrinsic thin-layer). Jpn. J.Appl. Phys.,1992,31(part1),3518-3522.
    [32] Sasaki M., Okamoto S., Hishikawa Y., Tsuda S., Nakano S., Characterization of thedefect density and band tail of an a-Si: H i-layer for solar cells by improved CPMmeasurements. Sol. Energy Mater. Sol. Cells,1994,34(1),541-547.
    [33] Hishikawa Y., Isomura M., Okamoto S., Hashimoto H., Tsuda S., Effects of thei-layer properties and impurity on the performance of a-Si solar cells. Sol. EnergyMater. Sol. Cells,1994,34(1),303-312.
    [34] Hishikawa Y., Nakamura N., Tsuda S., Nakano S., Kishi Y., Kuwano Y.,Interference-free determination of the optical absorption coefficient and the opticalgap of amorphous silicon thin films. Jpn. J. Appl. Phys.,1991,30(part1),1008-1014.
    [35] Sawada T., Terada N., Tsuge S., Baba T., Takahama T., Wakisaka K., Tsuda S.,Nakano S. High-efficiency a-Si/c-Si heterojunction solar cell, Photovoltaic EnergyConversion,1994,1219-1226.
    [36] Fan J., Palm B., Tsaur B. In optimal design of high-efficiency tandem cells, Conf.Rec. IEEE Photovoltaic Spec. Conf.;(United States), Lincoln Laboratory,Massachusetts Institute of Technology, Lexington, Massachusetts:1982.
    [37] Olson J., Gessert T., Al-Jassim M. GaInP2/GaAs-A current-and lattice-matchedtandem cell with a high theoretical efficiency, Photovoltaic Specialists Conference,1985,552-555.
    [38] King R., Law D., Edmondson K., Fetzer C., Kinsey G., Yoon H., Sherif R., KaramN.,40%efficient metamorphic GaInP GaInAs Ge multijunction solar cells. Appl.Phys. Lett.,2007,90,183516.
    [39] Bett A., Burger B., Dimroth F., Siefer G., Lerchenmuller H. High-concentration PVusing III-V solar cells, Photovoltaic Energy Conversion,2006,615-620.
    [40] Tang C., Two‐layer organic photovoltaic cell. Appl. Phys. Lett.,1986,48(2),183-185.
    [41] Sariciftci N., Smilowitz L., Heeger A., Wudl F., Photoinduced electron transferfrom a conducting polymer to buckminsterfullerene. Science,1992,258(5087),1474-1476.
    [42] Gustafsson G., Cao Y., Treacy G., Klavetter F., Colaneri N., Heeger A., Flexiblelight-emitting diodes made from soluble conducting polymers. Nature,1992,357(6378),477-479.
    [43] Brabec C. J., Shaheen S. E., Winder C., Sariciftci N. S., Denk P., Effect ofLiF/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett.,2002,80(7),1288-1290.
    [44] Brabec C. J., Organic photovoltaics: technology and market. Sol. Energy Mater.Sol. Cells,2004,83(2),273-292.
    [45] Li G., Shrotriya V., Huang J., Yao Y., Moriarty T., Emery K., Yang Y.,High-efficiency solution processable polymer photovoltaic cells byself-organization of polymer blends. Nat. Mater.,2005,4(11),864-868.
    [46] Ma W., Yang C., Gong X., Lee K., Heeger A. J., Thermally stable, efficientpolymer solar cells with nanoscale control of the interpenetrating networkmorphology. Adv. Funct. Mater.,2005,15(10),1617-1622.
    [47] Kim J. Y., Lee K., Coates N. E., Moses D., Nguyen T.-Q., Dante M., Heeger A. J.,Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007,317(5835),222-225.
    [48] He Y., Chen H.-Y., Hou J., Li Y., Indene C60Bisadduct: A new acceptor forhigh-performance polymer solar cells. J. Am. Chem. Soc.,2010,132(4),1377-1382.
    [49] He Z., Zhong C., Su S., Xu M., Wu H., Cao Y., Enhanced power-conversionefficiency in polymer solar cells using an inverted device structure. NaturePhotonics,2012,6(9),593-597.
    [50] Spear W., Le Comber P., Substitutional doping of amorphous silicon. Solid StateCommun.,1975,17(9),1193-1196.
    [51] Carlson D., Wronski C., Amorphous silicon solar cell. Appl. Phys. Lett.,1976,28(11),671-673.
    [52] Staebler D., Wronski C., Reversible conductivity changes in discharge‐producedamorphous Si. Appl. Phys. Lett.,1977,31(4),292-294.
    [53] Mickelsen R. A., Chen W. S., Methods for forming thin-film heterojunction solarcells from I-III-VI. sub.2. US Patents:4335266,1982.
    [54] Mickelsen R., Chen W. Polycrystalline thin-film CuInSe2solar cells,16thPhotovoltaic Specialists Conference,1982,781-785.
    [55] Kazmerski L., White F., Morgan G., Thin‐film CuInSe2/CdS heterojunction solarcells. Appl. Phys. Lett.,1976,29(4),268-270.
    [56] Mickelsen R., Chen W. In development of a9.4%efficient thin-film CuInSe2/CdSsolar cell,15th Photovoltaic Specialists Conference,1981,800-804.
    [57] Gabor A. M., Tuttle J. R., Albin D. S., Contreras M. A., Noufi R., Hermann A. M.,High‐efficiency CuInxGa1-xSe2solar cells made from (Inx, Ga1-x)2Se3precursorfilms. Appl. Phys. Lett.,1994,65(2),198-200.
    [58] Contreras M. A., Egaas B., Ramanathan K., Hiltner J., Swartzlander A., Hasoon F.,Noufi R., Progress toward20%efficiency in Cu (In, Ga) Se2polycrystallinethin‐film solar cells. Prog. Photovolt: Res. Appl.,1999,7(4),311-316.
    [59] Ramanathan K., Contreras M. A., Perkins C. L., Asher S., Hasoon F. S., Keane J.,Young D., Romero M., Metzger W., Noufi R., Properties of19.2%efficiencyZnO/CdS/CuInGaSe2thin‐film solar cells. Prog. Photovolt: Res. Appl.,2003,11(4),225-230.
    [60] Repins I., Contreras M. A., Egaas B., DeHart C., Scharf J., Perkins C. L., To B.,Noufi R.,19.9%‐efficient ZnO/CdS/CuInGaSe2solar cell with81.2%fill factor.Prog. Photovolt: Res. Appl.,2008,16(3),235-239.
    [61] Gerischer H., Mindt W., The mechanisms of the decomposition of semiconductorsby electrochemical oxidation and reduction. Electrochim. Acta,1968,13(6),1329-1341.
    [62] O’Regan B., Grfitzeli M., A low-cost, high-efficiency solar cell based ondye-sensitized. Nature,1991,353,24.
    [63] Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physicsprinciples of planar and radial p-n junction nanorod solar cells. J. Appl. Phys.,2005,97(11),114302-114311.
    [64] Greenham N., Peng X., Alivisatos A., Charge separation and transport inconjugated-polymer/semiconductor-nanocrystal composites studied byphotoluminescence quenching and photoconductivity. Phys. Rev. B,1996,54(24),17628-17637.
    [65] Huynh W., Peng X., Alivisatos A., CdSe nanocrystal rods/poly (3-hexylthiophene)composite photovoltaic devices. Adv. Mater.,1999,11(11),923-927.
    [66] Huynh W. U., Hybrid nanorod-polymer solar cells. Science,2002,295(5564),2425-2427.
    [67] Liu C. Y., Holman Z. C., Kortshagen U. R., Hybrid solar cells from P3HT andsilicon nanocrystals. Nano Lett.,2008,9(1),449-452.
    [68] Sun B., Marx E., Greenham N. C., Photovoltaic devices using blends of branchedCdSe nanoparticles and conjugated polymers. Nano Lett.,2003,3(7),961-963.
    [69] Lewis N. S., Nocera D. G., Powering the planet: Chemical challenges in solarenergy utilization. Proc. Natl. Acad. Sci. U.S.A.,2006,103(43),15729-15735.
    [70] Green M., Recent developments in photovoltaics. Sol. Energ.,2004,76(1),3-8.
    [71] Garnett E., Yang P., Light trapping in silicon nanowire solar cells. Nano Lett.,2010,10(3),1082-1087.
    [72] Schmidt V., Riel H., Senz S., Karg S., Riess W., G sele U., Realization of a siliconnanowire vertical surround‐gate field‐effect transistor. Small,2005,2(1),85-88.
    [73] Tian B., Zheng X., Kempa T. J., Fang Y., Yu N., Yu G., Huang J., Lieber C. M.,Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature,2007,449(7164),885-889.
    [74] Chan C. K., Peng H., Liu G., McIlwrath K., Zhang X. F., Huggins R. A., Cui Y.,High-performance lithium battery anodes using silicon nanowires. Naturenanotechnology,2007,3(1),31-35.
    [75] Chockla A. M., Harris J. T., Akhavan V. A., Bogart T. D., Holmberg V. C.,Steinhagen C., Mullins C. B., Stevenson K. J., Korgel B. A., Silicon nanowirefabric as a lithium ion battery electrode material. J. Am. Chem. Soc.,2011,133(51),20914-20921.
    [76] Peng K., Jie J., Zhang W., Lee S.-T., Silicon nanowires for rechargeable lithium-ionbattery anodes. Appl. Phys. Lett.,2008,93(3),033105.
    [77] Peng K., Xu Y., Wu Y., Yan Y., Lee S. T., Zhu J., Aligned single‐crystalline sinanowire arrays for photovoltaic applications. Small,2005,1(11),1062-1067.
    [78] Sivakov V., Andr G., Gawlik A., Berger A., Plentz J., Falk F., Christiansen S.,Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cellparameters. Nano Lett.,2009,9(4),1549-1554.
    [79] Kendrick C. E., Yoon H. P., Yuwen Y. A., Barber G. D., Shen H., Mallouk T. E.,Dickey E. C., Mayer T. S., Redwing J. M., Radial junction silicon wire array solarcells fabricated by gold-catalyzed vapor-liquid-solid growth. Appl. Phys. Lett.,2010,97(14),143108.
    [80] Boettcher S. W., Warren E. L., Putnam M. C., Santori E. A., Turner-Evans D.,Kelzenberg M. D., Walter M. G., McKone J. R., Brunschwig B. S., Atwater H. A.,Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem.Soc.,2011,133(5),1216-1219.
    [81] Putnam M. C., Boettcher S. W., Kelzenberg M. D., Turner-Evans D. B., Spurgeon J.M., Warren E. L., Briggs R. M., Lewis N. S., Atwater H. A., Si microwire-arraysolar cells. Energy Environ. Sci.,2010,3(8),1037-1041.
    [82] Boettcher S. W., Spurgeon J. M., Putnam M. C., Warren E. L., Turner-Evans D. B.,Kelzenberg M. D., Maiolo J. R., Atwater H. A., Lewis N. S., Energy-conversionproperties of vapor-liquid-solid–grown silicon wire-array photocathodes. Science,2010,327(5962),185-187.
    [83] Hochbaum A. I., Yang P., Semiconductor nanowires for energy conversion. Chem.Rev.,2010,110(1),527.
    [84] Cui Y., Lauhon L. J., Gudiksen M. S., Wang J., Lieber C. M., Diameter-controlledsynthesis of single-crystal silicon nanowires. Appl. Phys. Lett.,2001,78(15),2214-2216.
    [85] Patolsky F., Zheng G., Lieber C. M., Fabrication of silicon nanowire devices forultrasensitive, label-free, real-time detection of biological and chemical species.Nature Protocols,2006,1(4),1711-1724.
    [86] Buin A., Verma A., Svizhenko A., Anantram M., Significant enhancement of holemobility in [110] silicon nanowires compared to electrons and bulk silicon. NanoLett.,2008,8(2),760-765.
    [87] Hong K.-H., Kim J., Lee S.-H., Shin J. K., Strain-driven electronic band structuremodulation of Si nanowires. Nano Lett.,2008,8(5),1335-1340.
    [88] Cloutier S. G., Hsu C. H., Kossyrev P. A., Xu J., Enhancement of radiativerecombination in silicon via phonon localization and selection‐rule breaking. Adv.Mater.,2006,18(7),841-844.
    [89] Lyons D. M., Ryan K. M., Morris M. A., Holmes J. D., Tailoring the opticalproperties of silicon nanowire arrays through strain. Nano Lett.,2002,2(8),811-816.
    [90] Ma D., Lee C., Au F., Tong S., Lee S., Small-diameter silicon nanowire surfaces.Science,2003,299(5614),1874-1877.
    [91] Smardon R., Srivastava G., Jenkins S., Electronic structure of a steppedsemiconductor surface: density functional theory of Si (114)-(2×1). Phys. Rev. B,2004,69(8),085303.
    [92] Wang N., Zhang Y., Tang Y., Lee C., Lee S., SiO2-enhanced synthesis of Sinanowires by laser ablation. Appl. Phys. Lett.,1998,73(26),3902-3904.
    [93] Shi W.-S., Peng H. Y., Zheng Y. F., Wang N., Shang N. G., Pan Z. W., Lee C. S.,Lee S. T., Synthesis of large areas of highly oriented, very long silicon nanowires.Adv. Mater.,2000,12(18),1343-1345.
    [94] Zhang R. Q., Lifshitz Y., Lee S. T., Oxide‐assisted growth of semiconductingnanowires. Adv. Mater.,2003,15(7‐8),635-640.
    [95] Wagner R., Ellis W., Vapor‐liquid‐solid mechanism of single crystal growth. Appl.Phys. Lett.,1964,4(5),89-90.
    [96] Renard V. T., Jublot M., Gergaud P., Cherns P., Rouchon D., Chabli A., JousseaumeV., Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Naturenanotechnology,2009,4(10),654-657.
    [97] Wu Y., Cui Y., Huynh L., Barrelet C. J., Bell D. C., Lieber C. M., Controlledgrowth and structures of molecular-scale silicon nanowires. Nano Lett.,2004,4(3),433-436.
    [98] Holmes J. D., Johnston K. P., Doty R. C., Korgel B. A., Control of thickness andorientation of solution-grown silicon nanowires. Science,2000,287(5457),1471-1473.
    [99] Huang Z., Geyer N., Werner P., De Boor J., G sele U., Metal‐assisted chemicaletching of silicon: A Review. Adv. Mater.,2011,23(2),285-308.
    [100] Maiolo III J. R., Atwater H. A., Lewis N. S., Macroporous silicon as a model forsilicon wire array solar cells. J. Phys. Chem. C,2008,112(15),6194-6201.
    [101] Peng K.-Q., Wang X., Wu X., Lee S.-T., Fabrication and photovoltaic property ofordered macroporous silicon. Appl. Phys. Lett.,2009,95(14),143119.
    [102] Birner A., Wehrspohn R. B., G sele U. M., Busch K., Silicon-based photoniccrystals. Adv. Mater.,2001,13(6),377-388.
    [103] Hochbaum A. I., Fan R., He R., Yang P., Controlled growth of Si nanowire arraysfor device integration. Nano Lett.,2005,5(3),457-460.
    [104] Kayes B. M., Filler M. A., Putnam M. C., Kelzenberg M. D., Lewis N. S., AtwaterH. A., Growth of vertically aligned Si wire arrays over large areas. Appl. Phys.Lett.,2007,91(10),103110.
    [105] Choi Y.-K., King T.-J., Hu C., A spacer patterning technology for nanoscaleCMOS. Electron Devices, IEEE Transactions,2002,49(3),436-441.
    [106] Hsu C.-M., Connor S. T., Tang M. X., Cui Y., Wafer-scale silicon nanopillars andnanocones by Langmuir–Blodgett assembly and etching. Appl. Phys. Lett.,2008,93(13),133109.
    [107] Fossum J., Burgess E., High‐efficiency p+‐n‐n+back‐surface‐field silicon solarcells. Appl. Phys. Lett.,1978,33(3),238-240.
    [108] Godfrey R., Green M.,655mV open‐circuit voltage,17.6%efficient silicon MISsolar cells. Appl. Phys. Lett.,1979,34(11),790-793.
    [109] Linford M. R., Chidsey C. E. D., Alkyl monolayers covalently bonded to siliconsurfaces. J. Am. Chem. Soc.,1993,115(26),12631-12632.
    [110] Bansal A., Li X., Lauermann I., Lewis N., Yi S., Weinberg W., Alkylation of Sisurfaces using a two-step halogenation/Grignard route. J. Am. Chem. Soc,1996,118(30),7225-7226.
    [111] Webb L. J., Lewis N. S., Comparison of the electrical properties and chemicalstability of crystalline silicon (111) surfaces alkylated using grignard reagents orolefins with Lewis acid catalysts. J. Phys. Chem. B,2003,107(23),5404-5412.
    [112] Jaeckel B., Hunger R., Webb L. J., Jaegermann W., Lewis N. S., High-resolutionsynchrotron photoemission studies of the electronic structure and thermal stabilityof ch3-and c2h5-functionalized Si (111) surfaces. J. Phys. Chem. C,2007,111(49),18204-18213.
    [1] Lewis N. S., Nocera D. G., Powering the planet: Chemical challenges in solar energyutilization. Proc. Natl. Acad. Sci. U.S.A.,2006,103(43),15729-15735.
    [2] Green M., Recent developments in photovoltaics. Sol. Energ.,2004,76(1),3-8.
    [3] Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physicsprinciples of planar and radial p-n junction nanorod solar cells. J. Appl. Phys.,2005,97(11),114302-114311.
    [4] Boettcher S. W., Warren E. L., Putnam M. C., Santori E. A., Turner-Evans D.,Kelzenberg M. D., Walter M. G., McKone J. R., Brunschwig B. S., Atwater H. A.,Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem.Soc.,2011,133(5),1216-1219.
    [5] Chen H. C., Lin C. C., Han H. W., Tsai Y. L., Chang C. H., Wang H. W., Tsai M. A.,Kuo H. C., Yu P., Enhanced efficiency for c-Si solar cell with nanopillar array viaquantum dots layers. Opt. Express,2011,19(105), A1141-A1147.
    [6] Garnett E. C., Yang P., Silicon nanowire radial p n junction solar cells. J. Am.Chem. Soc.,2008,130(29),9224-9225.
    [7] Gunawan O., Wang K., Fallahazad B., Zhang Y., Tutuc E., Guha S., Highperformance wire‐array silicon solar cells. Prog. Photovolt. Res. Appl.,2011,19(3),307-312.
    [8] Kelzenberg M. D., Turner-Evans D. B., Putnam M. C., Boettcher S. W., Briggs R.M., Baek J. Y., Lewis N. S., Atwater H. A., High-performance Si microwirephotovoltaics. Energ. Environ. Sci.,2011,4(3),866-871.
    [9] Kim J., Hong A. J., Nah J. W., Shin B., Ross F. M., Sadana D. K., Three-dimensionala-si:h solar cells on glass nanocone arrays patterned by self-assembled snnanospheres. ACS nano,2011,6(1),265-271.
    [10] Peng K., Xu Y., Wu Y., Yan Y., Lee S. T., Zhu J., Aligned single-crystalline Sinanowire arrays for photovoltaic applications. Small,2005,1(11),1062-1067.
    [11] Shen X., Sun B., Yan F., Zhao J., Zhang F., Wang S., Zhu X., Lee S.,High-performance photoelectrochemical cells from ionic liquid electrolyte inmethyl-terminated silicon nanowire arrays. ACS nano,2010,4(10),5869-5876.
    [12] Tian B., Zheng X., Kempa T. J., Fang Y., Yu N., Yu G., Huang J., Lieber C. M.,Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature,2007,449(7164),885-889.
    [13] Sivakov V., Andr G., Gawlik A., Berger A., Plentz J., Falk F., Christiansen S.,Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cellparameters. Nano Letters,2009,9(4),1549-1554.
    [14] Ba os R., Manzano-Agugliaro F., Montoya F., Gil C., Alcayde A., Gómez J.,Optimization methods applied to renewable and sustainable energy: A review.Renewable and Sustainable Energy Reviews,2011,15(4),1753-1766.
    [15] Patolsky F., Zheng G., Lieber C. M., Fabrication of silicon nanowire devices forultrasensitive, label-free, real-time detection of biological and chemical species.Nature Protocols,2006,1(4),1711-1724.
    [16] Buin A., Verma A., Svizhenko A., Anantram M., Significant enhancement of holemobility in [110] silicon nanowires compared to electrons and bulk silicon. NanoLett.,2008,8(2),760-765.
    [17] Hong K.-H., Kim J., Lee S.-H., Shin J. K., Strain-driven electronic band structuremodulation of Si nanowires. Nano Lett.,2008,8(5),1335-1340.
    [18] Cloutier S. G., Hsu C. H., Kossyrev P. A., Xu J., Enhancement of radiativerecombination in silicon via phonon localization and selection rule breaking. Adv.Mater.,2006,18(7),841-844.
    [19] Lyons D. M., Ryan K. M., Morris M. A., Holmes J. D., Tailoring the opticalproperties of silicon nanowire arrays through strain. Nano Lett.,2002,2(8),811-816.
    [20] Ma D., Lee C., Au F., Tong S., Lee S., Small-diameter silicon nanowire surfaces.Science,2003,299(5614),1874-1877.
    [21] Smardon R., Srivastava G., Jenkins S., Electronic structure of a steppedsemiconductor surface: Density functional theory of Si (114)-(2×1). Phys. Rev. B,2004,69(8),085303.
    [22] Wang N., Zhang Y., Tang Y., Lee C., Lee S., SiO2-enhanced synthesis of Sinanowires by laser ablation. Appl. Phys. Lett.,1998,73(26),3902-3904.
    [23] Shi W.-S., Peng H. Y., Zheng Y. F., Wang N., Shang N. G., Pan Z. W., Lee C. S.,Lee S. T., Synthesis of large areas of highly oriented, very long silicon nanowires.Adv. Mater.,2000,12(18),1343-1345.
    [24] Zhang R. Q., Lifshitz Y., Lee S. T., Oxide‐assisted growth of semiconductingnanowires. Adv. Mater.,2003,15(7‐8),635-640.
    [25] Wagner R., Ellis W., Vapor‐liquid‐solid mechanism of single crystal growth.Appl. Phys. Lett.,1964,4(5),89-90.
    [26] Cui Y., Lauhon L. J., Gudiksen M. S., Wang J., Lieber C. M., Diameter-controlledsynthesis of single-crystal silicon nanowires. Appl. Phys. Lett.,2001,78(15),2214-2216.
    [27] Renard V. T., Jublot M., Gergaud P., Cherns P., Rouchon D., Chabli A., JousseaumeV., Catalyst preparation for CMOS-compatible silicon nanowire synthesis. Naturenanotechnology,2009,4(10),654-657.
    [28] Wu Y., Cui Y., Huynh L., Barrelet C. J., Bell D. C., Lieber C. M., Controlledgrowth and structures of molecular-scale silicon nanowires. Nano Lett.,2004,4(3),433-436.
    [29] Holmes J. D., Johnston K. P., Doty R. C., Korgel B. A., Control of thickness andorientation of solution-grown silicon nanowires. Science,2000,287(5457),1471-1473.
    [30] Huang Z., Geyer N., Werner P., De Boor J., G sele U., Metal‐assisted chemicaletching of silicon: A Review. Adv. Mater.,2011,23(2),285-308.
    [31] Maiolo III J. R., Atwater H. A., Lewis N. S., Macroporous silicon as a model forsilicon wire array solar cells. J. Phys. Chem. C,2008,112(15),6194-6201.
    [32] Fossum J., Burgess E., High efficiency p+nn+back surface field silicon solar cells.Appl. Phys. Lett.,1978,33(3),238-240.
    [33] Godfrey R., Green M.,655mV open‐circuit voltage,17.6%efficient silicon MISsolar cells. Appl. Phys. Lett.,1979,34(11),790-793.
    [1] Lewis N. S., Nocera D. G., Powering the planet: Chemical challenges in solar energyutilization. Proc. Natl. Acad. Sci. U.S.A.,2006,103(43),15729-15735.
    [2] Greenham N. C., Peng X. G., Alivisatos A. P., Charge separation and transport inconjugated-polymer/semiconductor-nanocrystal composites studied byphotoluminescence quenching and photoconductivity. Phys. Rev. B,1996,54(24),17628-17637.
    [3] Gunes S., Neugebauer H., Sariciftci N. S., Conjugated polymer-based organic solarcells. Chemical Reviews,2007,107(4),1324-1338.
    [4] Huynh W. U., Dittmer J. J., Alivisatos A. P., Hybrid nanorod-polymer solar cells.Science,2002,295(5564),2425-2427.
    [5] Saunders B. R., Turner M. L., Nanoparticle-polymer photovoltaic cells. Adv. ColloidInterface Sci.,2008,138(1),1-23.
    [6] Dayal S., Kopidakis N., Olson D. C., Ginley D. S., Rumbles G., Photovoltaic deviceswith a low band gap polymer and cdse nanostructures exceeding3%efficiency.Nano Lett.,2010,10(1),239-242.
    [7] Sun B. Q., Marx E., Greenham N. C., Photovoltaic devices using blends of branchedCdSe nanoparticles and conjugated polymers. Nano Lett.,2003,3(7),961-963.
    [8] Boucle J., Chyla S., Shaffer M. S. P., Durrant J. R., Bradley D. D. C., Nelson J.,Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2nanorods. Adv Funct. Mater.,2008,18(4),622-633.
    [9] Ravirajan P., Haque S. A., Durrant J. R., Bradley D. D. C., Nelson J., The effect ofpolymer optoelectronic properties on the performance of multilayer hybridpolymer/TiO2solar cells. Adv Funct. Mater.,2005,15(4),609-618.
    [10] Beek W. J. E., Wienk M. M., Janssen R. A. J., Efficient hybrid solar cells from zincoxide nanoparticles and a conjugated polymer. Adv. Mater.,2004,16(12),1009-1013.
    [11] McDonald S. A., Konstantatos G., Zhang S. G., Cyr P. W., Klem E. J. D., Levina L.,Sargent E. H., Solution-processed PbS quantum dot infrared photodetectors andphotovoltaics. Nat. Mater.,2005,4(2),138-142.
    [12] Cui D. H., Xu J., Zhu T., Paradee G., Ashok S., Gerhold M., Harvest of nearinfrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Appl. Phys.Lett.,2006,88(18),183111.
    [13] Sun B. Q., Zou G. F., Shen X. J., Zhang X. H., Exciton dissociation andphotovoltaic effect in germanium nanocrystals and poly(3-hexylthiophene)composites. Appl. Phys. Lett.,2009,94(23),233504.
    [14] Liu C. Y., Holman Z. C., Kortshagen U. R., Hybrid solar cells from P3HT andsilicon nanocrystals. Nano Lett.,2008,9(1),449-452.
    [15] Sailor M. J., Ginsburg E. J., Gorman C. B., Kumar A., Grubbs R. H., Lewis N. S.,Thin films of n-Si/poly-(CH3)3Si-cyclooctatetraene: conducting-polymer solar cellsand layered structures. Science,1990,249(4973),1146.
    [16] Krüger O., Kenyon C., Tan M. X., Lewis N. S., Behavior of Si photoelectrodesunder high level injection conditions. J. Phys. Chem. B,1997,101(15),2840-2849.
    [17] Li X., Zhu H., Wang K., Cao A., Wei J., Li C., Jia Y., Li Z., Wu D., Graphene onsilicon schottky junction solar cells. Adv. Mater.,2010,22(25),2743-2748.
    [18] Wei J. Q., Jia Y., Shu Q. K., Gu Z. Y., Wang K. L., Zhuang D. M., Zhang G., WangZ. C., Luo J. B., Cao A. Y., Wu D. H., Double-walled carbon nanotube solar cells.Nano Lett.,2007,7(8),2317-2321.
    [19] Jia Y., Wei J., Wang K., Cao A., Shu Q., Gui X., Zhu Y., Zhuang D., Zhang G., MaB., Wang L., Liu W., Wang Z., Luo J., Wu D., Nanotube-silicon heterojunctionsolar cells. Adv. Mater.,2008,20(23),4594-4598.
    [20] Lin C.-H., Chattopadhyay S., Hsu C.-W., Wu M.-H., Chen W.-C., Wu C.-T., TsengS.-C., Hwang J.-S., Lee J.-H., Chen C.-W., Chen C.-H., Chen L.-C., Chen K.-H.,Enhanced charge separation by sieve-layer mediation in high-efficiencyinorganic-organic solar cells. Adv. Mater.,2009,21(7),759-763.
    [21] Liu C. Y., Holman Z. C., Kortshagen U. R., Optimization of SiNC/P3HT hybridsolar cells. Adv. Funct. Mater.,2010,20(13),2157-2164.
    [22] Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physicsprinciples of planar and radial p-n junction nanorod solar cells. J. Appl. Phys.,2005,97(11),114302-114311.
    [23] Godfrey R., Green M.,655mV open-circuit voltage,17.6%efficient silicon MISsolar cells. Appl. Phys. Lett.,1979,34(11),790-793.
    [24] Fossum J., Burgess E., High‐e fficiency p+‐n‐n+back‐s urface‐field siliconsolar cells. Appl. Phys. Lett.,1978,33(3),238-240.
    [25] Linford M. R., Chidsey C. E. D., Alkyl monolayers covalently bonded to siliconsurfaces. J. Am. Chem. Soc.,1993,115(26),12631-12632.
    [26] Bansal A., Li X., Lauermann I., Lewis N., Yi S., Weinberg W., Alkylation of Sisurfaces using a two-step halogenation/Grignard route. J. Am. Chem. Soc,1996,118(30),7225-7226.
    [27] Peng K. Q., Yan Y. J., Gao S. P., Zhu J., Synthesis of large-area silicon nanowirearrays via self-assembling nanoelectrochemistry. Adv. Mater.,2002,14(16),1164.
    [28] Maldonado S., Plass K. E., Knapp D., Lewis N. S., Electrical properties ofjunctions between Hg and Si (111) surfaces functionalized with short-chain alkyls.J. Phys. Chem. C,2007,111(48),17690-17699.
    [29] Takabayashi S., Ohashi M., Mashima K., Liu Y., Yamazaki S., Nakato Y., Surfacestructures, photovoltages, and stability of n-Si(111) electrodes surface modifiedwith metal nanodots and various organic groups. Langmuir,2005,21(19),8832-8838.
    [30] Nakato Y., Tsubomura H., Silicon photoelectrodes modified with ultrafine metalislands. Electrochimica Acta,1992,37(5),897-907.
    [31] Michalak D. J., Gstrein F., Lewis N. S., The role of band bending in affecting thesurface recombination velocities for si (111) in contact with aqueous acidicelectrolytes. J. Phys. Chem. C,2008,112(15),5911-5921.
    [32] Salomon A., Boecking T., Chan C. K., Amy F., Girshevitz O., Cahen D., Kahn A.,How do electronic carriers cross Si-bound alkyl monolayers? Physical reviewletters,2005,95(26),266807.
    [33] Salomon A., Boecking T., Seitz O., Markus T., Amy F., Chan C., Zhao W., CahenD., Kahn A., What is the barrier for tunneling through alkyl monolayers? Resultsfrom n‐and p‐Si–Alkyl/Hg Junctions. Adv. Mater.,2007,19(3),445-450.
    [34] Salomon E., Kahn A., One-dimensional organic nanostructures: A novel approachbased on the selective adsorption of organic molecules on silicon nanowires.Surface Science,2008,602(13), L79-L83.
    [1] Lewis N. S., Nocera D. G., Powering the planet: chemical challenges in solar energyutilization. Proc. Natl. Acad. Sci. U.S.A.,2006,103(43),15729-15735.
    [2] Hoffmann W., PV solar electricity industry: Market growth and perspective. Sol.Energy Mater. Sol. Cells,2006,90(18-19),3285.
    [3] Lewis N. S., Toward cost-effective solar energy use. Science,2007,315(5813),798.
    [4] Green M. A., Third generation photovoltaics: advanced solar energy conversion.Springer Verlag:2003.
    [5] Green M. A., Solar cells: operating principles, technology, and system applications.Prentice-Hall, Englewood Cliffs,1982,1.
    [6] Peet J., Heeger A. J., Bazan G. C.,"Plastic" solar cells: self-assembly of bulkheterojunction nanomaterials by spontaneous phase separation. Acc. Chem. Res.,2009,42(11),1700.
    [7] Chen L. M., Hong Z., Li G., Yang Y., Recent progress in polymer solar cells:manipulation of polymer: fullerene morphology and the formation of efficientinverted polymer solar cells. Adv. Mater.,2009,21,1434.
    [8] Liang Y., Xu Z., Xia J., Tsai S. T., Wu Y., Li G., Ray C., Yu L., For the brightfuture°bulk heterojunction polymer solar cells with power conversion efficiencyof7.4%. Adv. Mater.,2010,22(20), E135.
    [9] Zhao J., Wang A., Green M. A., Ferrazza F.,19.8%efficient "honeycomb" texturedmulticrystalline and24.4%monocrystalline silicon solar cells. Appl. Phys. Lett.,1998,73,1991.
    [10] Ong P. L., Levitsky I. A., Organic/IV, III-V semiconductor hybrid solar cells.Energy,2010,3(3),313.
    [11] Warabisako T., Uematsu T., Muramatsu S., Tsutsui K., Ohtsuka H., Nagata Y.,Sakamoto M., Optimization of thermal processing and device design forhigh-efficiency c-Si solar cells. Sol. Energy Mater. Sol. Cells,1997,48(1-4),137.
    [12] Wang Q., Shaheen S. E., Williams E. L., Jabbour G. E., Hybrid organic-inorganicphotoconductive diode. Appl. Phys. Lett.,2003,83,3404.
    [13] Gowrishankar V., Scully S. R., McGehee M. D., Wang Q., Branz H. M., Excitonsplitting and carrier transport across the amorphous-silicon/polymer solar cellinterface. Appl. Phys. Lett.,2006,89(25),252102.
    [14] Price M. J., Foley J. M., May R. A., Maldonado S., Comparison of majority carriercharge transfer velocities at Si/polymer and Si/metal photovoltaic heterojunctions.Appl. Phys. Lett.,2010,97(8),083503.
    [15] Matsumoto Y., Estrada M., Nolasco J. C., Performance of p3ht/c-si hybrid solarcell. In proceedings of the33rd IEEE photovoltaic specialists conference, SanDiego, CA, USA,2008,1255.
    [16] Shiu S. C., Chao J. J., Hung S. C., Yeh C. L., Lin C. F., Morphology dependence ofsilicon nanowire/poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate)heterojunction solar cells. Chem. Mater.,2010,22(10),3108.
    [17] Zhang F., Sun B., Song T., Zhu X., Lee S., Air stable, efficient hybrid photovoltaicdevices based on poly (3-hexylthiophene) and silicon nanostructures. Chem. Mater.,2011,23(8),2084-2090.
    [18] Lin D. H., Shiu S. C., Huang J. S., Lin C. F. In effect of nanowire lengths onpolymer-Si nanowire hybrid solar cells, Photovoltaic Specialists Conference(PVSC),2010,000949.
    [19] Garnett E. C., Peters C., Brongersma M., Cui Y., McGehee M. In silicon nanowirehybrid photovoltaics, Photovoltaic Specialists Conference (PVSC),2010,000934.
    [20] Dimitrakopoulos C. D., Malenfant P. R. L., Organic thin film transistors for largearea electronics. Adv. Mater.,2002,14(2),99.
    [21] Jia Y., Cao A., Bai X., Li Z., Zhang L., Guo N., Wei J., Wang K., Zhu H., Wu D.,Achieving high efficiency silicon-carbon nanotube heterojunction solar cells byacid doping. Nano Lett.,2011,11(5),1901-1905.
    [22] Wei J. Q., Jia Y., Shu Q. K., Gu Z. Y., Wang K. L., Zhuang D. M., Zhang G., WangZ. C., Luo J. B., Cao A. Y., Wu D. H., Double-walled carbon nanotube solar cells.Nano Lett.,2007,7(8),2317-2321.
    [23] Garnett E., Yang P., Light trapping in silicon nanowire solar cells. Nano Lett.,2010,10(3),1082-1087.
    [24] Garnett E. C., Yang P. D., Silicon nanowire radial p-n junction solar cells. J. Am.Chem. Soc.,2008,130(29),9224-9225.
    [25] Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physicsprinciples of planar and radial p-n junction nanorod solar cells. J. Appl. Phys.,2005,97(11),114302-114311.
    [26] Kelzenberg M. D., Boettcher S. W., Petykiewicz J. A., Turner-Evans D. B., PutnamM. C., Warren E. L., Spurgeon J. M., Briggs R. M., Lewis N. S., Atwater H. A.,Enhanced absorption and carrier collection in Si wire arrays for photovoltaicapplications. Nat. Mater.,2010,9(3),239.
    [27] Shen X., Sun B., Yan F., Zhao J., Zhang F., Wang S., Zhu X., Lee S.,High-Performance Photoelectrochemical Cells from Ionic Liquid Electrolyte inMethyl-Terminated Silicon Nanowire Arrays. ACS Nano,2010,4(10),5869-5876.
    [28] Tsai S. H., Chang H. C., Wang H. H., Chen S. Y., Lin C. A., Chen S. A., Chueh Y.L., He J. H., Significant Efficiency Enhancement of Hybrid Solar Cells UsingCore–Shell Nanowire Geometry for Energy Harvesting. ACS nano,2011,5(12),9501-9510.
    [29] Sailor M. J., Ginsburg E. J., Gorman C. B., Kumar A., Grubbs R. H., Lewis N. S.,Thin films of n-Si/poly-(CH3)3Si-cyclooctatetraene: conducting-polymer solarcells and layered structures. Science,1990,249(4973),1146.
    [30] Chen H. C., Lin C. C., Han H. W., Tsai Y. L., Chang C. H., Wang H. W., Tsai M. A.,Kuo H. C., Yu P., Enhanced efficiency for c-Si solar cell with nanopillar array viaquantum dots layers. Opt. Express,2011,19(105), A1141-A1147.
    [31] Garnett E. C., Yang P., Silicon nanowire radial p n junction solar cells. J. Am.Chem. Soc.,2008,130(29),9224-9225.
    [32] Gunawan O., Wang K., Fallahazad B., Zhang Y., Tutuc E., Guha S., Highperformance wire‐array silicon solar cells. Prog. Photovolt. Res. Appl.,2011,19(3),307-312.
    [33] Kelzenberg M. D., Turner-Evans D. B., Putnam M. C., Boettcher S. W., Briggs R.M., Baek J. Y., Lewis N. S., Atwater H. A., High-performance Si microwirephotovoltaics. Energ. Environ. Sci.,2011,4(3),866-871.
    [34] Kim J., Hong A. J., Nah J. W., Shin B., Ross F. M., Sadana D. K.,Three-dimensional a-si: h solar cells on glass nanocone arrays patterned byself-assembled sn nanospheres. ACS nano,2011,6(1),265-271.
    [35] Peng K. Q., Yan Y. J., Gao S. P., Zhu J., Synthesis of large-area silicon nanowirearrays via self-assembling nanoelectrochemistry. Adv. Mater.,2002,14(16),1164.
    [1] Lewis N. S., Nocera D. G., Powering the planet: chemical challenges in solar energyutilization. Proc. Natl. Acad. Sci. U.S.A.,2006,103(43),15729-15735.
    [2] Green M., Recent developments in photovoltaics. Sol. Energ.,2004,76(1),3-8.
    [3] Zhao J., Wang A., Green M. A., Ferrazza F.,19.8%efficient "honeycomb" texturedmulticrystalline and24.4%monocrystalline silicon solar cells. Appl. Phys. Lett.,1998,73,1991-1993.
    [4] Garnett E. C., Yang P., Silicon nanowire radial p-n junction solar cells. J. Am. Chem.Soc.,2008,130(29),9224-9225.
    [5] Garnett E. C., Yang P., Light trapping in silicon nanowire solar cells. Nano Lett.,2010,10(3),1082-1087.
    [6] Liu C. Y., Holman Z. C., Kortshagen U. R., Hybrid solar cells from P3HT andsilicon nanocrystals. Nano Lett.,2008,9(1),449-452.
    [7] Yuan G., Zhao H., Liu X., Hasanali Z. S., Zou Y., Levine A., Wang D., Synthesis andphotoelectrochemical study of vertically aligned silicon nanowire arrays. Angew.Chem. Int. Ed.,2009,121(51),9860-9864.
    [8] Chen L. M., Hong Z., Li G., Yang Y., Recent progress in polymer solar cells:manipulation of polymer: fullerene morphology and the formation of efficientinverted polymer solar cells. Adv. Mater.,2009,21,1434-1449.
    [9] Dennler G., Scharber M. C., Brabec C. J., Polymer-fullerene bulk heterojunctionsolar cells. Adv. Mater.,2009,21(13),1323-1338.
    [10] Kim J. Y., Lee K., Coates N. E., Moses D., Nguyen T. Q., Dante M., Heeger A. J.,Efficient tandem polymer solar cells fabricated by all-solution processing. Science,2007,317(5835),222-225.
    [11] Liu C. Y., Holman Z. C., Kortshagen U. R., Optimization of SiNC/P3HT hybridsolar cells. Adv. Funct. Mater.,2010,20(13),2157-2164.
    [12] Rand B. P., Genoe J., Heremans P., Poortmans J., Solar cells utilizing smallmolecular weight organic semiconductors. Prog. Photovoltaics,2007,15(8),659-676.
    [13] Chen L., Pan X., Zheng D., Gao Y., Jiang X., Xu M., Chen H., Hybrid solar cellsbased on P3HT and Si@MWCNT nanocomposite. Nanotechnology,2010,21,345201.
    [14] Dayal S., Reese M. O., Ferguson A. J., Ginley D. S., Rumbles G., Kopidakis N.,The effect of nanoparticle shape on the photocarrier dynamics and photovoltaicdevice performance of poly (3-hexylthiophene): CdSe nanoparticle bulkheterojunction solar cells. Adv. Funct. Mater.,2010,20(16),2629-2635.
    [15] Garnett E. C., Peters C., Brongersma M., Cui Y., McGehee M. In silicon nanowirehybrid photovoltaics, Photovoltaic Specialists Conference (PVSC), Hawaii,2010,000934-000938.
    [16] Greene L. E., Law M., Yuhas B. D., Yang P., ZnO-TiO2core-shell nanorod/P3HTsolar cells. J. Phys. Chem. C,2007,111(50),18451-18456.
    [17] Greenham N. C., Peng X., Alivisatos A. P., Charge separation and transport inconjugated-polymer/semiconductor-nanocrystal composites studied byphotoluminescence quenching and photoconductivity. Phys. Rev. B,1996,54(24),17628.
    [18] Huang J. S., Hsiao C. Y., Syu S. J., Chao J. J., Lin C. F., Well-alignedsingle-crystalline silicon nanowire hybrid solar cells on glass. Sol. Energy Mater.Sol. Cells,2009,93(5),621-624.
    [19] Huynh W. U., Dittmer J. J., Alivisatos A. P., Hybrid nanorod-polymer solar cells.Science,2002,295(5564),2425-2427.
    [20] Kuo C. Y., Gau C., Arrangement of band structure for organic-inorganicphotovoltaics embedded with silicon nanowire arrays grown on indium tin oxideglass. Appl. Phys. Lett.,2009,95,053302.
    [21] Li X., Zhu H., Wang K., Cao A., Wei J., Li C., Jia Y., Li Z., Wu D., Graphene onsilicon schottky junction solar cells. Adv. Mater.,2010,22(25),2743-2748.
    [22] Saunders B. R., Turner M. L., Nanoparticle-polymer photovoltaic cells. Adv.Colloid Interface Sci.,2008,138(1),1-23.
    [23] Shiu S. C., Chao J. J., Hung S. C., Yeh C. L., Lin C. F., Morphology dependence ofsilicon nanowire/poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate)heterojunction solar cells. Chem. Mater.,2010,22(10),3108-3113.
    [24] Tzolov M. B., Kuo T. F., Straus D. A., Yin A., Xu J., Carbon nanotube-siliconheterojunction arrays and infrared photocurrent responses. J. Phys. Chem. C,2007,111(15),5800-5804.
    [25] Zhang F., Sun B., Song T., Zhu X., Lee S., Air stable, efficient hybrid photovoltaicdevices based on poly (3-hexylthiophene) and silicon nanostructures. Chem. Mater.,2011,23,2084-2090.
    [26] Peng K. Q., Lee S. T., Silicon nanowires for photovoltaic solar energy conversion.Adv. Mater.,2010,23(2),1-18.
    [27] Lu W., Wang C., Yue W., Chen L., Si/PEDOT: PSS core/shell nanowire arrays forefficient hybrid solar cells. Nanoscale,2011,3(9),3631-3634.
    [28] Tang Y. B., Chen Z. H., Song H. S., Lee C. S., Cong H. T., Cheng H. M., Zhang W.J., Bello I., Lee S. T., Vertically aligned p-type single-crystalline GaN nanorodarrays on n-type Si for heterojunction photovoltaic cells. Nano Lett.,2008,8(12),4191-4195.
    [29] Wei W., Bao X. Y., Soci C., Ding Y., Wang Z. L., Wang D., Direct heteroepitaxy ofvertical InAs nanowires on Si substrates for broad band photovoltaics andphotodetection. Nano Lett.,2009,9(8),2926-2934.
    [30] Huynh W. U., Peng X., Alivisatos A. P., CdSe NanocrystalRods/Poly(3-hexylthiophene) Composite Photovoltaic Devices. Adv. Mater.,1999,11(11),923-927.
    [31] Sun B., Marx E., Greenham N. C., Photovoltaic devices using blends of branchedCdSe nanoparticles and conjugated polymers. Nano Lett.,2003,3(7),961-963.
    [32] Ginger D. S., Greenham N. C., Photoinduced electron transfer from conjugatedpolymers to CdSe nanocrystals. Phys. Rev. B,1999,59(16),10622.
    [33] Fan Z., Razavi H., Do J., Moriwaki A., Ergen O., Chueh Y. L., Leu P. W., Ho J. C.,Takahashi T., Reichertz L. A., Three-dimensional nanopillar-array photovoltaics onlow-cost and flexible substrates. Nat. Mater.,2009,8(8),648-653.
    [34] Peng K., Xu Y., Wu Y., Yan Y., Lee S. T., Zhu J., Aligned single crystalline Sinanowire arrays for photovoltaic applications. Small,2005,1(11),1062-1067.
    [35] Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physicsprinciples of planar and radial pn junction nanorod solar cells. J. Appl. Phys.,2005,97,114302.
    [36] Groenendaal L., Jonas F., Freitag D., Pielartzik H., Reynolds J. R., Poly (3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv.Mater.,2000,12(7),481-494.
    [37] Kirchmeyer S., Reuter K., Scientific importance, properties and growingapplications of poly (3,4-ethylenedioxythiophene). J. Mater. Chem.,2005,15(21),2077-2088.
    [38] Fan G. F., Zhu H. W., Wang K. L., Wei J. Q., Li X. M., Shu Q. K., Guo N., Wu D.H., Graphene/Silicon Nanowire Schottky Junction for Enhanced Light Harvesting.ACS Appl. Mater. Inter.,2011,3,721-725.
    [39] Werner J. H., Schottky barrier and pn-junctionI/V plots—small signal evaluation.Appl. Phys. A,1988,47(3),291-300.
    [40] Koleilat G. I., Levina L., Shukla H., Myrskog S. H., Hinds S., Pattantyus-AbrahamA. G., Sargent E. H., Efficient, stable infrared photovoltaics based on solution-castcolloidal quantum dots. ACS nano,2008,2(5),833-840.
    [41] Li Z., Gao F., Greenham N. C., McNeill C. R., Comparison of the operation ofpolymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: atransient photocurrent and photovoltage study. Adv. Funct. Mater.,2011,21,1419-1431.
    [42] Shuttle C., ORegan B., Ballantyne A., Nelson J., Bradley D., De Mello J., DurrantJ., Experimental determination of the rate law for charge carrier decay in apolythiophene: Fullerene solar cell. Appl. Phys. Lett.,2008,92(9),093311.
    [1] Lewis N. S., Nocera D. G., Powering the planet: chemical challenges in solar energyutilization. Proc. Natl. Acad. Sci. U.S.A.,2006,103(43),15729-15735.
    [2] Green M., Recent developments in photovoltaics. Sol. Energ.,2004,76(1),3-8.
    [3] Kayes B. M., Atwater H. A., Lewis N. S., Comparison of the device physicsprinciples of planar and radial p-n junction nanorod solar cells. J. Appl. Phys.,2005,97(11),114302-114311.
    [4] Boettcher S. W., Warren E. L., Putnam M. C., Santori E. A., Turner-Evans D.,Kelzenberg M. D., Walter M. G., McKone J. R., Brunschwig B. S., Atwater H. A.,Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem.Soc.,2011,133(5),1216-1219.
    [5] Chen H. C., Lin C. C., Han H. W., Tsai Y. L., Chang C. H., Wang H. W., Tsai M. A.,Kuo H. C., Yu P., Enhanced efficiency for c-Si solar cell with nanopillar array viaquantum dots layers. Opt. Express,2011,19(105), A1141-A1147.
    [6] Garnett E. C., Yang P., Silicon nanowire radial p n junction solar cells. J. Am.Chem. Soc.,2008,130(29),9224-9225.
    [7] Gunawan O., Wang K., Fallahazad B., Zhang Y., Tutuc E., Guha S., Highperformance wire‐array silicon solar cells. Prog. Photovolt. Res. Appl.,2011,19(3),307-312.
    [8] Kelzenberg M. D., Turner-Evans D. B., Putnam M. C., Boettcher S. W., Briggs R.M., Baek J. Y., Lewis N. S., Atwater H. A., High-performance Si microwirephotovoltaics. Energ. Environ. Sci.,2011,4(3),866-871.
    [9] Kim J., Hong A. J., Nah J. W., Shin B., Ross F. M., Sadana D. K., Three-dimensionala-si: h solar cells on glass nanocone arrays patterned by self-assembled snnanospheres. ACS nano,2011,6(1),265-271.
    [10] Peng K., Xu Y., Wu Y., Yan Y., Lee S. T., Zhu J., Aligned single‐crystalline sinanowire arrays for photovoltaic applications. Small,2005,1(11),1062-1067.
    [11] Peng K. Q., Lee S. T., Silicon nanowires for photovoltaic solar energy conversion.Adv. Mater.,2011,23(2),198-215.
    [12] Peng K. Q., Wang X., Wu X. L., Lee S. T., Platinum nanoparticle decorated siliconnanowires for efficient solar energy conversion. Nano Lett.,2009,9(11),3704-3709.
    [13] Shen X., Sun B., Yan F., Zhao J., Zhang F., Wang S., Zhu X., Lee S.,High-performance photoelectrochemical cells from ionic liquid electrolyte inmethyl-terminated silicon nanowire arrays. ACS nano,2010,4(10),5869.
    [14] Garnett E., Yang P., Light trapping in silicon nanowire solar cells. Nano Lett.,2010,10(3),1082-1087.
    [15] Oh J., Yuan H. C., Branz H. M., An18.2%-efficient black-silicon solar cellachieved through control of carrier recombination in nanostructures. NatureNanotechnology,2012,7(11),743-748.
    [16] Zhang F., Sun B., Song T., Zhu X., Lee S., Air stable, efficient hybrid photovoltaicdevices based on poly (3-hexylthiophene) and silicon nanostructures. Chem. Mater.,2011,23(8),2084-2090.
    [17] Zhang F., Han X., Lee S., Sun B., Heterojunction with organic thin layer for threedimensional high performance hybrid solar cells. J. Mater. Chem.,2012,22(12),5362-5368.
    [18] Tsai S. H., Chang H. C., Wang H. H., Chen S. Y., Lin C. A., Chen S. A., Chueh Y.L., He J. H., Significant efficiency enhancement of hybrid solar cells usingcore–shell nanowire geometry for energy harvesting. ACS nano,2011,5(12),9501-9510.
    [19] Shen X., Sun B., Liu D., Lee S. T., Hybrid heterojunction solar cell based onorganic–inorganic silicon nanowire array architecture. J. Am. Chem. Soc.,2011,133(48),19408-19415.
    [20] Jeong S., Garnett E. C., Wang S., Yu Z., Fan S., Brongersma M. L., McGehee M.D., Cui Y., Hybrid silicon nanocone–polymer solar cells. Nano Lett.,2012,12(6),2971-2976.
    [21] He L., Jiang C., Lai D., Wang H., Highly efficient Si-nanorods/organic hybridcore-sheath heterojunction solar cells. Appl. Phys. Lett.,2011,99,021104.
    [22] Fan G., Zhu H., Wang K., Wei J., Li X., Shu Q., Guo N., Wu D., Graphene/siliconnanowire Schottky junction for enhanced light harvesting. ACS Appl. Mater. Inter.,2011,3(3),721-725.
    [23] Groenendaal L., Jonas F., Freitag D., Pielartzik H., Reynolds J. R., Poly (3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv.Mater.,2000,12(7),481-494.
    [24] Kirchmeyer S., Reuter K., Scientific importance, properties and growingapplications of poly (3,4-ethylenedioxythiophene). J. Mater. Chem.,2005,15(21),2077-2088.
    [25] He L., Jiang C., Wang H., Lai D., Simple approach of fabricating high efficiency sinanowire/conductive polymer hybrid solar cells. IEEE Electr. Device L.,2011,32(10),1406-1408.
    [26] Lu W., Wang C., Yue W., Chen L., Si/PEDOT: PSS core/shell nanowire arrays forefficient hybrid solar cells. Nanoscale,2011,3(9),3631-3634.
    [27] Ono M., Tang Z., Ishikawa R., Gotou T., Ueno K., Shirai H., Efficient crystallinesi/poly (ethylene dioxythiophene): poly (styrene sulfonate): graphene oxidecomposite heterojunction solar cells. Appl. Phys. Express,2012,5(3),2301.
    [28] Shiu S. C., Chao J. J., Hung S. C., Yeh C. L., Lin C. F., Morphology dependence ofsilicon nanowire/poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate)heterojunction solar cells. Chem. Mater.,2010,22(10),3108-3113.
    [29] Zhang F., Song T., Sun B., Conjugated polymer–silicon nanowire array hybridSchottky diode for solar cell application. Nanotechnology,2012,23(19),194006.
    [30] Chen T.-G., Huang B.-Y., Liu H.-W., Huang Y.-Y., Pan H.-T., Meng H.-F., Yu P.,flexible silver nanowire meshes for high-efficiency microtextured organic-siliconhybrid photovoltaics. ACS Appl. Mater. Interfaces,2012,4(12),6857-6864.
    [31] Amy S. R., Michalak D. J., Chabal Y. J., Wielunski L., Hurley P. T., Lewis N. S.,Investigation of the reactions during alkylation of chlorine-terminated silicon (111)surfaces. J. Phys. Chem. C,2007,111(35),13053-13061.
    [32] Buriak J. M., Organometallic chemistry on silicon and germanium surfaces. Chem.Rev.,2002,102(5),1271-1308.
    [33] O’Leary L. E., Johansson E., Brunschwig B. S., Lewis N. S., Synthesis andcharacterization of mixed methyl/allyl monolayers on si (111). J. Phys. Chem. B,2010,114(45),14298-14302.
    [34] Vilan A., Yaffe O., Biller A., Salomon A., Kahn A., Cahen D., Molecules on Si:electronics with chemistry. Adv. Mater.,2009,22(2),140-159.
    [35] Pritchard H., Skinner H., The concept of electronegativity. Chem. Rev.,1955,55(4),745-786.
    [36] Puniredd S. R., Assad O., Haick H., Highly stable organic monolayers for reactingsilicon with further functionalities: the effect of the c c bond nearest the siliconsurface. J. Am. Chem. Soc.,2008,130(41),13727.
    [37] Johansson E., Boettcher S. W., O'Leary L. E., Poletayev A. D., Maldonado S.,Brunschwig B. S., Lewis N. S., Control of the pH-dependence of the band edges ofsi (111) surfaces using mixed methyl/allyl monolayers. J. Phys. Chem. C,2011,115(17),8594-8601.
    [38] Peng K. Q., Yan Y. J., Gao S. P., Zhu J., Synthesis of large-area silicon nanowirearrays via self-assembling nanoelectrochemistry. Adv. Mater.,2002,14(16),1164.
    [39] Greene L. E., Law M., Yuhas B. D., Yang P., ZnO-TiO2core-shell nanorod/P3HTsolar cells. J. Phys. Chem. C,2007,111(50),18451-18456.
    [40] Maldonado S., Plass K. E., Knapp D., Lewis N. S., Electrical properties ofjunctions between Hg and Si (111) surfaces functionalized with short-chain alkyls.J. Phys. Chem. C,2007,111(48),17690-17699.
    [41] Li X., Zhu H., Wang K., Cao A., Wei J., Li C., Jia Y., Li Z., Wu D.,Graphene‐on‐silicon Schottky junction solar cells. Adv. Mater.,2010,22(25),2743-2748.
    [42] Werner J. H., Schottky barrier and pn-junctionI/V plots—Small signal evaluation.Appl. Phys. A-Mater.,1988,47(3),291-300.
    [43] Li Z., Gao F., Greenham N. C., McNeill C. R., Comparison of the operation ofpolymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: atransient photocurrent and photovoltage study. Adv. Funct. Mater.,2011,21(8),1419-1431.
    [44] Shuttle C., ORegan B., Ballantyne A., Nelson J., Bradley D., De Mello J., DurrantJ., Experimental determination of the rate law for charge carrier decay in apolythiophene: Fullerene solar cell. Appl. Phys. Lett.,2008,92(9),093311.
    [45] Koleilat G. I., Levina L., Shukla H., Myrskog S. H., Hinds S., Pattantyus-AbrahamA. G., Sargent E. H., Efficient, stable infrared photovoltaics based on solution-castcolloidal quantum dots. ACS nano,2008,2(5),833-840.
    [46] Ip A. H., Thon S. M., Hoogland S., Voznyy O., Zhitomirsky D., Debnath R., LevinaL., Rollny L. R., Carey G. H., Fischer A., Hybrid passivated colloidal quantum dotsolids. Nat. Nanotechnol.,2012,7,577-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700