用于锂离子电池负电极的硅基复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固态可充电电池,特别是锂离子电池,是各种各样的电子设备的主要可携带电源。锂离子电池在应用方面的良好可靠性和高能量密度的进一步发展的关键是电极材料。近年来,硅材料作为锂离子电池负极材料取代目前的石墨材料的研究受到人们的广泛关注,主要原因是由于硅材料作为锂离子电池负极材料的高能量密度(比容量4200毫安·时/克,最大含锂的Li-Si系合金相Li22Si5)。然而,目前硅材料作为锂离子电池负极材料在实际商业应用方面遇到了极大的阻碍。主要原因在于,在锂离子插入和脱出硅负极材料的循环过程中,由于硅负极材料巨大的体积变化(~400%),导致材料粉化、能量密度迅速减小、循环性能极差。在最近几年,为克服这个问题,科学家们已经采取了许多有意义的策略。其中,硅纳米颗粒复合材料作为锂离子电池负极材料具有很多优势,如锂离子插入电极活性物质的扩散长度减少、整体电荷传播电阻的降低等动力学优点,受到人们的广泛关注。本博士论文研究工作,以硅为基础的纳米复合材料进行了研究,主要研究内容如下。
     碳包覆的硅纳米粒子复合材料制备、锂离子电池循环性能及其机理研究。应用多巴胺作为碳源包覆在100纳米硅颗粒表面,形成Si@C复合纳米结构作为锂离子电池负极材料。这样既可以达到抑制硅材料作为锂离子电池负极材料的体积膨胀问题,也避免了硅纳米颗粒的聚集现象。Si@C复合材料作为锂离子电池负电极在电流密度100毫安/克条件下,电池循环67次后的容量为376毫安·时/克。
     通过化学气相沉积(CVD)法,在硅(100纳米)表面生长碳纳米管,形成硅/CNT复合材料结构,并研究其锂离子电池电化学性能及其机理。这种复合材料表现出良好锂离子电池电化学循环稳定性;在100毫安/克的电流密度条件下,100次循环后容量为450毫安·时/克。这种相对提高的锂离子电池循环性能,可以归因于电极材料中维持了良好的导电网络,也由于硅纳米颗粒之间的碳纳米管高弹性性能,在锂离子插入和脱出硅材料的过程中,对硅材料的体积膨胀起到了良好的抑制作用。
     石墨烯包覆的硅纳米粒子复合材料的制备及其锂离子电化学性能研究。首先对硅@Si02的表面进行APS修饰和改性,达到使氧化石墨烯纳米片包覆在硅@SiO2(100纳米)表面的目的;然后高温退火使得包覆在纳米颗粒表面的氧化石墨烯纳米片还原成石墨烯,形成硅/石墨烯复合材料。这种硅基复合材料作为锂离子电池负极材料在电流密度166毫安/克条件下,100次循环后容量保持在426毫安·时/克。这一研究结果表面,硅/石墨烯复合材料作为锂离子电池负极材料比裸体硅纳米颗粒要好很多。主要原因在于硅/石墨烯复合材料的导电性能和弹性性能得到了很好的提升,有利于克服硅材料在锂离子插入和脱出过程中的体积膨胀问题。
Solid-state rechargeable batteries, especially, lithium ion batteries, are principle and promising power sources for a wide variety of electronics. Electrode material is a key for developing further lithium ion batteries, which are likely to require good reliability and high energy density. In recent years, silicon has attracted considerable attention as a potential Li-ion battery anode material to replace the current graphite anode due to its high capacity (specific capacity of4200mAhg corresponding to the Li22Si5, the maximum lithium containing alloy phase in the Li□Si system). However, the commercial application of the silicon anode in current lithium-ion batteries is hindered by the rapid capacity decay during cycling because of the enormous volume changes associated with the various phase transitions known to occur during the lithium alloying and de-alloying processes resulting in decrepitating of the particles comprising the electrode finally leading to electrode failure. Several strategies have been explored in recent years to overcome this problem. The use of nanoparticles in composite electrodes for lithium-ion batteries may have considerable kinetic advantages due to the reduction of the diffusion length for lithium-ion insertion into the active mass, and also because of the reduction of the overall charge transfer resistance of the electrodes. In this doctoral work, several silicon-based nanostructured composite materials were examined and characterized for possible application as anode materials for lithium-ion batteries.
     Carbon-coated silicon nanoparticles (Si@C) composite was synthesized by the polymerization of dopamine onto Si nanoparticles and carbonization of the polymer. Silicon nanoparticles were thus coated by amorphous carbon to reduce silicon volume expansion upon cycling, also to avoid aggregation of silicon nanoparticles. The composite material as anode in LIB retains a discharge capacity of376mAhg-1after67cycles, at current density100mAg-1. The main reason for this markedly improved electrochemical performance appears to be the beneficial effect of the carbon shell which enhances the dimensional stability of the silicon nanoparticles.
     Silicon-carbon nanotube (Si/CNT) composite was prepared by chemical vapor deposition (CVD), by growing CNTs onto silicon nanoparticles. This composite presents good cycling stability; it retains450mAhg-1after100cycles at current densities of100mA/g. This relative improve cycle performance can be ascribed to the maintenance of a good electronic conducting network due to the robust adherence of CNTs on Si and the excellent flexibility of CNTs, which can accommodate the severe volume change of Si upon lithium insertion and extraction.
     Finally graphene encapsulated silicon nanoparticles (GE-Si) composite was prepared in a two-steps process; first self-assembling of APS modified Si@SiO2and graphene oxide (GO), secondly, reduction of the graphene oxide to graphene. The Si/graphene composites exhibit relative improved cycling performance,426mAhg-1after100cycles at current density166mAg, which is better than that of bare Si nanoparticles. The highly compliant and flexible graphene layers could offer enhanced stress and strain resilience during charge/discharge cycling and thereby improve the structural stability and integrity of the composite anodes.
引文
[1]J. M. Tarascon, M. Armand, Nature 414 (2001) 359.
    [2]S. J. Lee, J. K. Lee, S. H. Chung, H. Y. Lee, S. M. Lee, H. K. Baik, J. Power Sources 97-98(2001)191.
    [3]M. M. Thackeray, J. Electrochem. Soc.142 (1995) 2558.
    [4]G. M. Ehrlich, Lithium-Ion Batteries, in Handbook of Batteries, ed. Linden, D.; Reddy, T. B.,2002; 3rd ed.,35.1-35.94.
    [5]M. S. Whittingham, Chem. Rev.,104 2004) 427-4301.
    [6]B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo and R.P. Raffaelle, Energy Environ. Sci., 2(2009) 638-654.
    [7]D. Guyornard, J. M. Tarascom, Adv. Mater.6 (1994) 408.
    [8]F. Cheng, J. Liang, Z. Tao, J. Chen, Adv. Mater.23 (2011) 1695.
    [9]C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-VCH (1998),338-358.
    [10]Whittingham, M. S. Electrochemical energy storage and intercalation chemistry. Science 192 (1976) 1226.
    [11]A. Crepsi, C. Schmidt, J. Norton, K. Chen, P. J. skarstad, J. Electrochem. Soc.,148 1 (2001) A 30.
    [12]K. M. Abraham, D. M. Pasquariello, and F. J. Martin, J. Electrochem. Soc.133 (1986) 661.
    [13]B. M. L. Rao, R. W. Francis, H. A. Christopher, J. Electrochem. Soc.124 (1997) 1490-1492.
    [14]P. Sanchez, C. Belin, C. Crepy and A. De Guibert, J. Appl. Electrochem.19 (1989) 421.
    [15]A. S. Baranski, W. R. Fawest, J. Electrochem. Soc.129 (1982) 901.
    [16]J. O. Besenhard, P. Komenda, A. Paxines, E. Wudy and M. Josowices, Solid State Ionics 18 & 19 (1986) 823.
    [17]A. Anani, S. C. Baker, R. A. Huggins, J. Electrochem. Soc.134 (1987) 3098.
    [18]A. Anani, S. C. Baker, R. A. Huggins,J. Electrochem. Soc.135 (1988)2103.
    [19]M. Mohri, N. Yanagisawa, Y. Tajima, H. Tanaka, T. Milate, S. Nakajima, M. Yoshida, Y. Yoshimoto, T. Suzuki, H. Wada, J. Power Sources 26 (1989) 545.
    [20]R. Yazami, P. Touzain, J.Power Sources 9 (1983) 365.
    [21]K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull.,17 (1980)783.
    [22]T. Nagaura, K. Tozawa, Prog. Batteries Solar Cells,9 (1990) 209.
    [23]K. Ozawa, Solid State Ionics,69 (1994) 212.
    [24]P. Novak, D. goers, M. E. Spahr, Carbon materials in lithium-ion batteries, carbon Materials for Electrochemical Energy Storage Systems, (ed. F. beguin, E. Frackowiak) CRC press (2010).
    [25]J. L. godman, R. M. mank, J. H. Young, V. R. Koch, J. Electrochem. Soc.,127 (1980) 1461.
    [26]G. Feuillade, P. Perche, J. Appl. Electrochem.,5 (1975) 63-69.
    [27]M. Armand, Solid State Ionics,69 (1994) 309.
    [28]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature,438 (2005) 197.
    [29]S. Park, R. S. Ruoff, Nat. Nanotechn.,4 (2009) 217.
    [30]X. L. Li, X. R. Wang, L. Zhang, S. W. Lee, H. J. Dai, Science,319 (2008) 1229.
    [31]G. X. Wang, X. P. Shen, J. Yao, J. Park, Carbon,47 (2009) 2049.
    [32]C. Y. Wang, D. Li, C. O. Too, G. G. Wallace, Chem. Mater.,21 (2009) 2604.
    [33]b) P. Guo, H. H. Song, X. H. Chen, Electrochem. Comm.,11 (2009) 1320.
    [34]M. Endo, J. Nakamura, Y. Sasabe, T. Takahashi, M. Inagaki, Trans. IEE Jpn., A 115 (1995)349.
    [35]E. Frackowiak, F. Beguin, Carbon,40 (2002) 1775.
    [36]G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, W. Z. Li, J. Electrochem. Soc.,146 (1999) 1696.
    [37]J. Zhao, A. Buldum, J. Han, Phys. Rev. Lett.,85 (2000) 1706.
    [38]V. Meunier, J. Kephart, C. Roland, J. Berhole, Phys. Rev. Lett.,88 (2002) 075506.
    [39]W. Lu, D. D. L. Chung, Carbon,39 (2001) 493.
    [40]S. H. Yoon, C. W. Park, H. J. Yang, Y. Korai, I. Mochida, R. T. K. Baker, N. M. Rodriguez, Carbon,42 (2004) 21.
    [41]H. Shimoda, B. Gao, X. P. Tang, A. Kleinhammes, L. Fleming, Y. Wu, O. Zhou, Phys. Rev. Lett.,88 (2002) 015502.
    [42]Y. A. Kim, M. Kojima, H. Muramatsu, S. Umemoto, T. Watanabe, K. Yoshida, K. Sato, T. Ikeda, T. Hayashi, M. Endo, M. Terrones, M. S. Dresshaus, Small,2 (2006) 667.
    [43]K. Lin, Y. Xu, G. He, X. Wang, Mater. Chem. Phys.,99 (2006) 190.
    [44]A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, R. E. Smalley, J. Electrochem. Soc.,147 (2000) 2845.
    [47]M. Endo, Y. A. Kim, T. Terrones, M. S. Dresselhaus, Carbon Nanotubes and other Carbon Materials in Encyclopedia of Nanoscience and Nanotechnology. H. S. Nalwa, Editor-in-Chief. American Scientific Publishers, (2004).
    [48]W. J. Weydanz, M. Wohlfahrt-Mehrens, R. A. Huggins, in 9th International Meeting on Lithium Batteries, Edinburgh, Scotland,1998, p.237.
    [49]M. N. Obrovac, L. Christensen, Electrochem. Solid State Lett.,7 (2004) A93.
    [50]J. Wolfenstine, J. Power Sources,79 (1999) 111.
    [51]C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechn.,3 (2008) 31.
    [52]H. Li, X. J. Huang, L. Q. Chen, Z. G. Wu, Y. Liang, Electrochem. Solid State let.,2 (1999) 547.
    [53]H. Ma, F. Y. Cheng, J. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao, J. Liang, Adv. Mater.,19 (2007)4067.
    [54]S. Cahen, R. Janot, L. laffont-Dantras, and J. M. Tarascon, J. Electrochem. Soc.155 (2008) A512.
    [55]M. Holzapfel, H. Buqa, F. Krumeich, P. Novak, F. M. Petrat, C. Veit, Electrochem. Solid State Lett.,8 (2005) A516.
    [56]Y. S. Hu, R. Demir-Cakan, M. M. Titirici, J. O. Muller, R. Schlogl, M. Antonietti, J. Maier, Angew. Chem. Int. Ed.,47 (2008) 1645.
    [57]H. Kim, J. Cho, Nano Lett.,8 (2008) 3688.
    [58]S. H. Ng, J. Z. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, H. K. Liu, Angew. Chem. Int. Ed.,45 (2006) 6896.
    [59]J. Shu, H. Li, R. Z. Yang, Y. Shi, X. J. Huang, Electrochem. Commun.,8 (2006) 51.
    [60]A. M. Wilson, J. R. Dahn, J. electrochem. Soc.,142 (1995) 326.
    [61]Y. Ioda, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science,276 (1997) 1395.
    [62]H. Li, Q. Wang, L. Shi, L. Chen, X. Huang, Chem Mater.,14 (2002)103.
    [63]M. Behm, J. T. S. Irvine, Electrochim. Acta,47 (2002) 1727.
    [64]P. Limthongkull, H. Wang, E. Jud, Y. M. Chiang, J. Electrochem. Soc.,149 (2002) A1237.
    [65]M. Yoshio, H. wang, K. Fukuda, Angew. Chem., Int Ed.,42 (2003) 4203.
    [66]K. T. Lee, Y. S. Jung, S. M. Oh, J. Am. Chem. Soc.,125 (2003) 5652.
    [67]M. Winter, J. O. Besenhard, Electrochem. Acta,45 (1999) 31.
    [68]N. C. Li, C. R. Martin, B. Scrosati, Electrochem. Solid State Lett.,3 (2003) 316.
    [69]Y. Wang, J. Y. Lee, H. C. Zeng, Chem. Mater.,17 (2005) 3899.
    [70]Y. Wang, H. C. Zeng, J. Y. Lee, Adv. Mater.,18 (2006) 645.
    [71]Z. Ying, Q. Wan, H. Cao, Z. T. Song, S. L. Feng, Appl. Phys. Lett.,87 (2005) 113108.
    [72]M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, H. K. Liu, Angew. Chem. Int. Ed.,46 (2007) 750.
    [73]Y. Wang, J. Y. Lee, J. Phys. Chem. B,108 (2004) 17832.
    [74]Y. L. Zhang, Y. Liu, M. L.Liu, Chem. Mater.,18 (2006) 4643.
    [75]M. S. Park, Y. M. Kang, G. X. Wang, S. X. Dou, H. K. Liu, Adv. Funct. Mater.,18 (2008) 455.
    [76]A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater., 4 (2005) 366.
    [77]F. Y. Cheng, J. Chen, J. Mater. Res.,21 (2006) 2744.
    [78]J. Sarradin, M. Ribes, A. Guessous, K. Elkacemi, Solid State Ionics,112 (1998) 35.
    [79]D. Larcher, C. Masquelier, D, Bonnin, Y. Chabre, V. Masson, J. B. Leriche, J. M. Tarascon, J.Electrochem. Soc.,150 (2003) A133.
    [80]J. Chen, L. Xu, W, Li, X. Gou, Adv. Mater 17 (2005) 582.
    [81]J. Li, H. M. Dahn, L. J. Krause, D. B. Le, J. R. Dahn, J. Electrochem. Soc.155 (2008) A812.
    [82]C. Z. Wu, P. Yin, X. Zhu, C. OuYang, Y. Xie, J. Phys. Chem. B,110 (2006) 17806.
    [83]C. Z. Wu, K. Yu, S. Zhang, Y. Xie, J. Phys. Chem., C 112 (2008) 11307.
    [84]S. Y. Zeng, K. B. Tang, T. W. Li, Z. H. Liang, D. Wang, Y. K. Wang, W. W. Zhou, J. Phys. Chem. C,111 (2007) 10217.
    [85]S. Y. Zeng, K. B. Tang, T. W:Li, Z, H, Liang, D. Wang, Y. X. Qi, W. W. Zhou, J. Phys. Chem.C,112(2008)4836.
    [86]F. Jiao, J. Bao, P. G. Bruce, Electrochem. Solid-State Lett.,10 (2007) A264.
    [87]K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. Meethong, P. T. Hammond, Y. M. Chiang, A. M. Belcher, Science,312 (2006) 885.
    [88]W. Y. Li, L. N. Xu, J. Chen, Adv. Funct. Mater.,15 (2005) 851.
    [89]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Adv. Mater.,20 (2008) 258.
    [90]Y. G. Li, B. Tan, Y. Y. Wu, Nano Lett.,8 (2008) 265.
    [91]T. He, D. R. Chen, X. L. Jiao, Y. Y. Xu, Y. X. Gu, Langmuir,19 (2004) 8404.
    [92]X. Wang, L. Li, Y. G. Zhang, S. T. wang, Z. D. Zhang, L. F. Fei, Y. T. Qian, Cryst. Growth Des.,6 (2006) 2163.
    [93]X. H. Huang, J. P. Tu, C. Q. Zhang, J. Y. Xiang, Electrochem. Commun.,9 (2007) 1180.
    [94]X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, D. Y. Song, J. Phys. Chem.B,108(2004)5547.
    [95]S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J. M. Tarascon, J. Elecrochem. Soc.,148 (2001) A285.
    [96]A. K. Padhi, K. S.Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc.,144 (1997) 1188.
    [97]J. M. tarascon, D. Guyomard, Electrochim. Acta,38 (1993) 1221.
    [98]J. M. tarascon, D. Guyomard, G. L. Baker, J. Power Sources,44 (1993) 689.
    [99]M. M. Thackeray, J. Electrochem. Soc.,142 (1995) 2558;
    [100]M. M. Thackeray, Y. Shao-Horn, A. J. Kahaian, K. D. Kepler, J. T. Vaughey, S. A. Hackney, Electrochem. Solid-State Lett.,1 (1998) 7.
    [101]D. H. Jang, Y. J. Shin, S. M. Oh, J. Electrochem. Soc.,143 (1996) 2204.
    [102]H. Huang, C. A. Vincent, P. G. Bruce, J. Electrochem. Soc.,146 (1999) 3649.
    [103]Y. J. Shin, A. Manthiram, J. Electrochem. Soc.,151 (2004) A204.
    [104]B. H. Deng, H. Nakamura, M. Yoshio, J. Power Sources,180 (2008) 864.
    [105]K. Mitzushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull.,15 (1980)783.
    [106]A. R. Armstrong, P. G. Bruce, Nature,381 (1996) 499.
    [107]F. Capitaine, P. Gravereau, C. Delmas, Solid State Ionics,89 (1996) 197.
    [108]G. Vitins, K. West, J. Electrochem. Soc.,144 (1997) 2587.
    [109]David L, Thomas BR, (2002) Handbook of Batteries,3rd edition, New York, London: McGraw-Hill.
    [110]Yazami, R. Electrochim. Acta,45 (1999) 87.
    [111]Tetsuya Kawamura, Shigeto Okada, Jun-ichi Yamaki, Journal of Power Sources., Vol. 156(2006)547-554.
    [112]M. Broussely, J. Power Sources,140 (1999) 81.
    [113]X Zhang, P. N. Ross, R. Kostecki, F. Kong, S. Sloop, J. B. Kerr, K. Striebel, E. J. Cairns, F. McLarnon, J. Electrochem Soc.,148 (2001) A463.
    [114]J. Li, H. M. Dahn, D. B. Le, J. R. Dahn,J. Electrochem Soc.,155 (2008) A812.
    [115]S. L. Chou, J. Z. Wang, C. Zhong, M. M. Rahman, H. K. Liu, S. X. Dou, Electrochimica Acta,54 (2009) 7519.
    [116]A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov, and G. Yushm, ACS Appl. Mater. Interfaces,2 (11) (2010) 3004-3010.
    [117]I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, G. Yushin, Science,75 (2011) 334.
    [118]J. S. BrideL, T. Azais, M. Morcrette, M. Tarascon, D. Larcher, Chem. Mater.,22 (2010) 1229.
    [119]M.N. Obrovac, L.J. Krause, J Electrochem. Soc.,154 (2007) A103-A108.
    [120]H. Li, X. Huang, L. Chen, Z. Wu, Y. Liang, Electrochem. Solid-State Lett.2 (1999) 547-549
    [121][46] M. N. Obrovac, Leif Christensen, Electrochem. Solid-State Lett.,7 (2004), A93-A96.
    [122]T.D. Hatchard, J.R. Dahn, J. Electrochem. Soc.,151 (2004) A838-A842.
    [123]J. Li, J.R. Dahn, J. Electrochem. Soc.,154 (2007) A156-A161.
    [124]H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y. J. Mo, N. Pei, Solid State Ionics,135(2000) 181-191.
    [125]U. Kasavajjula, C. Wang, A.J. Appleby, J. Power Sources,163 (2007) 1003-1039.
    [126]N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, C. Chen,J.Power Sources,192 (2009)644-651.
    [127]C.K. Chan, R. Ruffo, S.S. Hong, Y. Cui, J. Power Sources,189 (2009) 1132-1140.
    [1]W.M. Zhang, J.S. Hu, Y.G. Guo, S.F. Zhang, L.S. Zhang, W.G. Song, L.J. Wan, Adv. Mater.,20(2008)1160.
    [2]J. Hassoun, G. Derrien, S. Panero, B. Scrosati, Adv. Mater.,20 (2008) 3169.
    [3]K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, Science,264 (1994) 556.
    [4]J.R. Dahn, T. Zheng, Y.H. Liu, J.S. Xue, Science,270 (1995) 590.
    [5]R. Yazami, Electrochimica Acta,45 (1999) 87.
    [6]A.M. Cao, J.S. Hu, H.P. Liang, L.J. Wan, Angew. Chem. Int. Ed.,44 (2005) 4391.
    [7]J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater.,17 (2005) 582.
    [8]Y.S. Hu, L. Kienle, Y.G. Guo, J. Maier,Adv. Mater.,18 (2006) 1421.
    [9]X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater.,18 (2006) 2325.
    [10]G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater.,19 (2007) 2336.
    [11]D. Larcher, S. Beattie, M. Morcrette, K. Edstrom, J.C. Jumas, J.M. Tarascon, J. Mater. Chem.,17 (2007)3759.
    [12]P.G. Bruce, B. Scrosati, J.M. Tarascon, Angew. Chem. Int. Ed.,47 (2008) 2930.
    [13]H. Kim, J. Cho, Nano Lett.,8 (2008) 3688.
    [14]Y.G. Wang, H.Q. Li, Y.Y. Xia,Adv. Mater.,18 (2006) 2619.
    [15]M.H. Park, K. Kim, J. Kim, J. Cho, Adv. Mater.,21 (2009) 1.
    [16]K. Amezawa, N. Yamamoto, Y. Tomii, Y. Ito, J. Electrochem. Soc.,145 (1998) 1986.
    [17]Y. Wang, J. R. Dahn, J. Electrochem. Soc.,153 (2006) A2188-A2191.
    [18]B. Gao, S. Sinha, L. Fleming, O. Zhou, Adv. Mater.,13 (2001) 816-819.
    [19]M. Green, E. Fielder, B. Scrosati, M.Wachtler, J. S. Moreno, Electrochem. Solid-State Lett.,6(2003)A75-A79.
    [20]J. Graetz, C. C. Ahn, R. Yazami, B. Fultz, Electrochem. Solid-State Lett.,6 (2003) A194.
    [21]H. Li, X. Huang, L. Chen, Z. Wu, Y. Liang, Electrochem. Solid-State Lett.,2 (1999) 547.
    [22]G. W. Zhou, H. Li, H. P. Sun, D. P. Yu, Y. Q. Wang, X. J. Huang, L. Q. Chen, Z. Zhang, Appl. Phys. Lett.,75 (1999) 2447-2449.
    [23]X. D.Wu, Z. X.Wang, L. Q. Chen, X. J. Huang, Electrochem. Commun.,5 (2003) 935.
    [24]J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie, Z. S. Wen, Electrochem. Solid-State Lett.,6(2003)A154-A156.
    [25]X. N. Zhang, P. X. Huang, G. R. Li, T. Y. Yan, G. L. Pan, X. P. Gao, Electrochem. Commun.,9 (2007) 713-717.
    [26]A. M. Wilson, J. R. Dahn, J. Electrochem. Soc.,142 (1995) 326-332.
    [27]T. Umeno, K. Fukuda, H. Wang, N. Dimov, T. Iwao, M. Yoshio, Chem. Lett., (2001) 1186-1187.
    [28]G. X. Wang, J. Yao, H. K. Liu, Electrochem. Solid-State Lett.,7 (2004) A250-A253.
    [29]a)I. Kim, P. N. Kumta G. E. Blomgren, Electrochem. Solid-State Lett.,3 (1999) 493; b) I. Kim, G. E. Blomgren, P. N. Kumta, Electrochem. Solid-State Lett.,6 (2003) A157-A161.
    [30]a) M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, F.-M. Petrat, Chem. Commun., (2005) 1566-1568; b) M. Holzapfel, H. Buqa, F. Krumeich, P. Novak, F.-M. Petrat, C. Veit, Electrochem. Solid-State Lett.,8 (2005) A516-A520.
    [31]Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, Y. Takeda, Electrochem. Solid-State Lett.,7 (2004) A369-A372.
    [32]H. Uono, B.-C. Kim, T. Fuse,M.Ue, J.-I. Yamaki, J. Electrochem. Soc.,153 (2006) A1708-A1713.
    [33]D. Q. Shi, J. P. Tu, Y. F. Yuan, H. M. Wu, Y. Li, X. B. Zhao, Electrochem. Commun.,8 (2006) 1610-1614.
    [34]T. Zhang, J. Gao, H. P. Zhang, L. C. Yang, Y. P. Wu, H. Q.Wu, Electrochem. Commun., 9(2007)886-890.
    [35]a) L. Chen, K. Wang, X. Xie, J. Xie, Electrochem. Solid-State Lett.,9 (2006) A512-A515; b) V. Baranchugov, E. Markevich, E. Pollak, G. Salitra, D. Aurbach, Electrochem. Commun.,9 (2007) 796-800.
    [36]J. M. Tarascon, M. Armand, Nature,414 (2001) 359.
    [37]M. Winter, J. O Besenhard, M. E. Spahr, P. Novak, Adv. Mater.,10 (1998) 725.
    [38]R. Sides, N. C. Li, C. J. Patrissi, B. Scrosati, C. Martin, Mat. Res. Bull,27 (2002) 604.
    [39]A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk, Nat. Mater.,4 (2005) 366.
    [40]X.L. Yang, Z.Y. Wen, X.J. Zhu, S.H. Huang, Electrochem. Solid-State Lett.,8 (2005) A481.
    [41]S.-H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z.-P. Guo, H.-K. Liu, Angew. Chem. Int. Ed.,45 (2006) 6896.
    [42]H. Li, X.J. Huang, L.Q. Chen, Z.G. Wu, Y. Liang, Electrochem. Solid-State Lett.,2 (1999)547.
    [43]J. Niu, J.Y. Lee, Electrochem. Solid-State Lett.,5 (2002) A107.
    [44]C.S. Wang, G.T. Wu, X.B. Zhang, Z.F. Qi, W.Z. Li, J. Electrochem. Soc.,145 (1998) 2751.
    [45]I. Kim, P.N. Kumta, G.E. Blomgren, Electrochem. Solid-State Lett.,3 (2000) 493.
    [46]A. M. Wilson, J. R. Dahn, J. Electrochem. Soc.,142 (1995) 326-332.
    [47]Z. P. Guo, D. Z. Jia, L. Yuan, H. K. Liu, J. Power Sources,159 (2006) 332-335.
    [48]Yong-Sheng Hu, Rezan Demir-Cakan, Maria-Magdalena Titirici, Jens-Oliver Muller, Robert Schlogl, Markus Antonietti, and Joachim Maier, Angew. Chem. Int. Ed.,47 (2008) 1645-1649.
    [49]T. Umeno, K. Fukuda, H. Wang, N. Dimov, T. Iwao, M. Yoshio, Chem. Lett., (2001) 1186-1187.
    [50]S. H. Ng, J. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, H. K. Liu, Angew. Chem. 2006,118,7050-7053; Angew. Chem. Int. Ed.,45 (2006) 6896-6899;
    [51]H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science,318 (2007) 426-430.
    [52]J.H. Waite, M.L. Tanzer, Science,212(1981) 1038-1040.
    [53]J.H. Waite, Int. J. Adhes. Adhes.,7 (1987) 9-14.
    [54]Liang Zhang, Junjie Wu, Yongxin Wang, Yuhua Long, Ning Zhao, and Jian Xu, J. Am. Chem. Soc.,134 (2012) 9879-9881.
    [55]Y.-X. Yin, S. Xin, L.J. Wan, C.J. Li, and Y.-G. Guo, J. Phys. Chem. C,,115 (2011) 14148-14154.
    [56]Y.P. Wu, X.B. Dai, J.Q. Ma, Y.J. Chen. Lithium Ion Batteries:Practice and Applications, Chemical Industry Press, Beijing (2004).
    [57]P. Limthongkul, Y. Jang, N.J. Dudney, Y.M. Chiang. J. Power Sources,604 (2003) 119-121.
    [1]S. Iijima, Nature,354 (1991) 56.
    [2]V. A. Nalimova, D. E. Sklovsky, G. N. Bondarenko, H. Alvergnat-Gaucher, S. Bonnamy and F. Beguin, Synth. Met.,88 (1997) 89-93.
    [3]G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, Nature,393 (1998) 346-349.
    [4]E. Frackowiak, S. Gaurier, H. Gaucher, S. Bonnamy and F. Beguin, Carbon,37 (1999) 61-69.
    [5]W. X. Chen, J. Y. Lee and Z. Liu, Carbon,41 (2003) 959-966.
    [6]J. Y. Eom, H. S. Kwon, J. Liu and O. Zhou, Carbon,42 (2004) 2589-2596.
    [7]E. Frackowiak and F. Beguin, Carbon,40 (2002) 1775-1787.
    [8]Z. P. Guo, Z. W. Zhao, H. K. Liu and S. X. Dou, Carbon,43 (2005) 1392-1399.
    [9]K. Lin, Y. Xu, G. He and X. Wang, Mater. Chem. Phys.,99 (2006) 190-196.
    [10]G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac and B. Simon, Chem. Phys. Lett.,312 (1999) 14-18.
    [11]G. Maurin and F. Henn, Encycl. Nanosci. Nanotechnol.,2 (2004) 773-792.
    [12]G. Maurin, F. Henn, B. Simon, J. F. Colomer and J. B. Nagy, Nano Lett.,1 (2000) 75-79.
    [13]I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu and H. Touhara, J. Electrochem. Soc.,149 (2002) A39-A44.
    [14]H. C. Shin, M. Liu, B. Sadanadan and A. M. Rao, J. Power Sources,112 (2002) 216-221.
    [15]S. Yang, H. Song, X. Chen, A. V. Okotrub and L. G. Bulusheva, Electrochim. Acta,52 (2007)5286-5293.
    [16]Z. Yang and H. Wu, Solid State Ionics,143 (2001) 173-180.
    [17]Z. H. Yang, Y. H. Zhou, S. B. Sang, Y. Feng and H. Q. Wu, Mater. Chem. Phys.,89 (2005)295-299.
    [18]J. Zhao, Q. Y. Gao, C. Gu and Y. Yang, Chem. Phys. Lett.,358 (2002) 77-82.
    [19]A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. Rinzler, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fischer and R. Smalley, Science, 273(1996)483487.
    [20]P. Dubot and P. Cenedese, Phys. Rev. B,63 (2001) 241402.
    [21]C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester and P. M. Deya, Chem. Phys. Lett.,374 (2003) 548-555.
    [22]C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester and P. M. Deya, Chem. Phys.,297 (2004) 85-91.
    [23]T. Kar, J. Pattanayak and S. Scheiner, J. Phys. Chem. A,105 (2001) 10397-10403.
    [24]Y. Liu, H. Yukawa and M. Morinaga, Commun. Mater. Sci.,30 (2004) 50-56.
    [25]V. Meunier, J. Kephart, C. Roland and J. Bernholc, Phys. Rev. Lett.,88 (2002) 075506.
    [26]K. Nishidate and M. Hasegawa, Phys. Rev. B,71 (2005) 245418.
    [27]K. Nishidate, K. Sasaki, Y. Oikawa, M. Baba and M. Hasegawa, J. Surf. Sci. Nanotechnol.,3 (2005) 358-361.
    [28]A. Udomvech, T. Kerdcharoen and T. Osotchan, Chem. Phys. Lett.,406 (2005) 161-166.
    [29]J. Yang, H. J. Liu and C. T. Chan, Phys. Rev. B,64 (2001) 085420.
    30] J. Zhao, A. Buldum, J. Han and J. P. Lu, Phys. Rev. Lett.,85 (2000) 1706.
    [31]M. Zhao, Y. Xia, X. Liu, T.Z., B. Huang, F. Li, Y. Ji and C. Song, Phys. Lett., A,340 (2005) 434-439.
    [32]M. Zhao, Y. Xia and L. Mei, Phys. Rev. B,71 (2005) 165413.
    [33]Z. Zhang, J. Peng and H. Zhang, Appl. Phys. Lett.,79 (2001) 3515-3517.
    [34]S. Berber, Y.-K. Kwon and D. Tomanek, Phys. Rev. Lett.,84 (2000) 4613-4616.
    [35]D.H. Robertson, D.W. Brenner, J.W. Mintmire, Phys. Rev. B,45 (1992)12592.
    [36]M.F. Yu, Phys. Rev. Lett.84 (2000) 5552
    [37]B.I. Yakobson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett.76 (1996) 2511.
    [38]X. Zhang, T. V. Sreekumar, T. Liu and S. Kumar, J. Phys. Chem. B,108 (2004) 16435-16440.
    [39]J. Y. Eom, J.-W. Park, H. S. Kwon and S. Rajendran, J. Electrochem. Soc.,153 (2006) A1678-A1684.
    [40]T. Kim, Y. H. Mo, K. S. Nahm and S. M. Oh, J. Power Sources,162 (2006) 1275-1281.
    [41]J. Shu, H. Li, R. Z. Yang, Y. Shi and X. J. Huang, Electrochem. Commun.,8 (2006) 51-54.
    [42]Pengfei Gao, Yanna Nuli, Yu-Shi He, Jiazhao Wang, Andrew I. Minett, Jun Yang and Jun Chen, Chem. Commun.,46 (2010) 9149-9151.
    [43]T. Kim, Y. H. Mo, K. S. Nahm and S. M. Oh, J. Power Sources,162 (2006) 1275-1281.
    [44]Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, J. Phys. Chem. B,105 (2001) 11424
    [45]C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, J. Phys. Chem. B,106 (2002) 2429.
    [46]Y.-X. Yin, S. Xin, L.J. Wan, C.J. Li, and Y.-G. Guo, J. Phys. Chem. C,,115(2011) 14148-14154
    [47]A.S. Claye, J.E. Fischer, C.B. Huffman, A.G. Rinzler, R.E. Smalley, J. Electrochem. Soc.,147 (2000)2845
    [48]R. Ruffo, S. S. Hong, C. K. Chan, R. A. Huggins and Y. Cui, J. Phys. Chem. C,113 (2009)11390-11398.
    [49]M. Gaberscek, J. Moskon, B. Erjavec, R. Dominko, J. Jamnik, Electrochem. Solid State Lett., 11(2008)A170-A174.
    [50]J.M. Atebamba, J. Moskon, S. Pejovnik, M. Gaberscek, J. Electrochem. Soc.,157 (2010) A1218-A1228.
    [1]A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nature Materials,6 (2007) 183.
    [2]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669.
    [3]M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb Carbon:A Review of Graphene. Chem. Rev.,110(2010) 132-145.
    [4]C. Lee, X. D. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science,321 (2008) 385.
    [5]G.X. Wang, X.P. Shen, J. Yao, J. Park, Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries, Carbon,47 (2009) 2049-2053.
    [6]M. Liang, L. Zhi, Graphene-Based Electrode Materials for Rechargeable Lithium Batteries, J. Mater. Chem.,19 (2009) 5871-5878.
    [7]G. Zhou, D.W. Wang, F. Li, L. Zhang, N. Li, Z.S. Wu, L. Wen, G.Q. Lu, H.M. Cheng, Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chem. Mater.2010, ASAP. DOI:10.1021/CM101032x.
    [8]M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Insertion Electrode Materials for Rechargeable Lithium Batteries, Adv. Mater.,10 (1998) 725.
    [9]Y. H. Liu, J. S. Xue, T. Zheng, J. R. Dahn, Carbon,34 (1996) 193.
    [10]E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries., Nano Lett.,8 (2008)2277.
    [11]J. K. Lee, K. B. Smith, C. M. Hayner, H. H. Kung, Silicon Nanoparticles-Graphene Paper Composite for Li Ion Battery Anodes, Chem. Commun.,46 (2010) 2025.
    [12]S. M. Paek, E. Yoo, I. Honma, Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure, Nano Lett.,9 (2009),72; b) J. Yao, X. P. Shen, B. Wang, H. K. Liu, G. X. Wang, In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries, Electrochem. Commun.,11 (2009) 1849.
    [13]D. H. Wang, D.W. Choi, J. Li, Z. G. Yang, Z. M. Nie, R. Kou, D. H. Hu, C. M. Wang, L. V. Saraf, J. G. Zhang, I. A. Aksay, J. Liu, Self-Assembled Tio2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion, Acs Nano,3 (2009) 907.
    [14]S. B. Yang, G. L. Cui, S. P. Pang, Q. Cao, U. Kolb, X. L. Feng, J. Maier, K. Mullen, Fabrication of Cobalt and Cobalt Oxide/Graphene Composites:Towards High-Performance Anode Materials for Lithium Ion Batteries, ChemSusChem.,3 (2010) 236.
    [15]M. D. Stoller, S. J. Park, Y.W. Zhu, J. H. An, R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett.,8 (2008) 3498.
    [16]A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau,. Superior thermal conductivity of single-layer graphene, Nano Lett.,8 (2008) 902.
    [17]D. W. Boukhvalov, M. I. Katsnelson, Chemical functionalization of graphene,J. Phys. Condens. Matter,21(2009) 344205.
    [18]M. Segal, Selling graphene by the ton, Nat. Nano,4 (2009) 612.
    [19]B. C. Brodie, Ann. Chim. Phys.,59 (1860) 466.
    [20]S. Park, R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol.,4 (2009)217.
    [21]S. Yang, X. Feng, S. Ivanovici, K. Mullen, Fabrication of Graphene-Encapsulated Oxide Nanoparticles:Towards High-Performance Anode Materials for Lithium Storage, Angew. Chem. Int. Ed.,49 (2010) 8408.
    [22]M. Green, E. Fielder, B. Scrosati, M. Wachtler, & J. S. Moreno, Structured silicon anodes for lithium battery applications, Electrochem. Solid-State Lett.,6 (2003) A75-A79.
    [23]Tetsuya Kawamura, Shigeto Okada, Jun-ichi Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells, Journal of Power Sources,156 (2006) 547-554.
    [24]G. X. Wang, X. P. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries, Carbon,47 (2009) 2049.
    [25]C. Y. Wang, D. Li, C. O. Too, G. G. Wallace, Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries, Chem. Mater.,21 (2009) 2604.
    [26]P. Guo, H. H. Song, X. H. Chen, Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries, Electrochem. Comm.,11 (2009) 1320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700