鞍山高硅铁尾矿的增值化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁尾矿是钢铁行业的固体废弃物,目前我国铁尾矿的堆积量已达2.5×109t以上。铁尾矿既是一种危害,又是一种潜在的二次资源,因此对铁尾矿进行资源化、增值化利用对我国具有重要的战略意义。本文系统探讨了鞍山高硅铁尾矿增值化利用的途径和方式。
     首先,以铁尾矿为原料,研究了SiO2的常压碱浸出过程,确定了铁尾矿用碱(NaOH)浸出过程中,影响SiO2浸出率的主要因素为:铁尾矿和NaOH与水的固液比,浸出反应温度,浸出反应时间。以此为条件,研究了铁尾矿在碱溶液中浸取SiO2反应的动力学行为。结果表明:固液比1:2,反应温度110℃,反应时间6h,为铁尾矿中SiO2浸出反应的最佳条件。SiO2的常压碱浸出动力学过程可用界面反应模型来描述,其浸出反应动力学方程为1-(3-X)2/3+2(1-X)=k2//t,表观活化能约为14.2 kJ/mol,属于固体内扩散控制。研究了熔盐法分解铁尾矿的实验条件,结果表明:以铁尾矿和NaOH为原料,NaNO3为熔盐,在500℃下煅烧3h使铁尾矿中的惰性SiO2转变成活性的硅酸钠相。以碱浸出的硅酸钠溶液为原料,利用化学沉淀法制备了白炭黑。利用XRD、FT-IR、SEM、TEM和XRF对制取白炭黑的物相结构、粒度形貌和成分含量进行表征。结果表明:白炭黑产品的化学结构为无定型的水合二氧化硅,形貌近似为球状粒子,粒径在150nm以下,白炭黑的比表面积(BET)为108m2/g,SiO2纯度为92.3%,10%悬浮液中pH值为5.5~6.0,加热减量为5.42%,1000℃灼烧减量为6.16%。产品符合中国行业标准HG/T 3061-1999的要求。
     其次,以十六烷基三甲基溴化铵为模板剂,铁尾矿为硅源采用水热反应法合成出介孔分子筛MCM-41,并研究了晶化工艺(表面活性剂浓度、pH、晶化时间及晶化温度)对合成MCM-41的影响。采用XRD, BET, DTA-TG, HRTEM, SEM, FT-IR对合成的分子筛进行表征。结果表明:在CTAB/SiO2=0.10~0.60,pH=8~11的范围内均能合成出MCM-41分子筛,在CTAB/SiO2=0.15条件下合成MCM-41的有序度较好;随着晶化时间的延长,有利于提高MCM-41的结晶度,促进晶粒生长;升温对水热合成MCM-41晶化过程的促进作用很明显,但晶化温度过高(140℃)或晶化温度过低(25℃),均不能合成出MCM-41。对A3号样品进行结构表征得出:比表面积(BET)为489.3m2/g,有效孔体积(BJH)为1.339cc/g,孔壁厚为0.93nm,具有典型的按六方对称性排列的孔道结构,孔径在2~3nm变化。FT-IR、NMR证明了分子筛具有硅氧四面体骨架。
     系统研究了A3号分子筛样品对Cu2+、Cr6+、Zn2+三种金属离子及甲基橙的吸附性能,研究了吸附条件(吸附时间、吸附剂投加量、初始浓度、吸附温度)对分子筛吸附性能的影响,并探讨了吸附过程的表观吸附动力学模型及吸附等温模型。结果表明:增加吸附时间、吸附剂投加量、初始浓度、吸附温度都有利于分子筛对Cu2+、Cr6+、Zn2+三种金属离子及甲基橙的吸附。Cu2+、Cr6+、Zn2+三种金属离子及甲基橙的吸附过程都遵循二级表观吸附动力学模型;在吸附剂表面的吸附遵循Langmuir吸附等温线模型。
     最后,以鞍山铁尾矿为主要原料制备了BaO-Fe2O3-SiO2微晶玻璃,探讨了微晶玻璃组成、主晶相及其结晶动力学等问题,利用正交实验确定了微晶玻璃的适宜热处理制度。结果表明:微晶玻璃的晶化过程中初晶相为BaSi2O5, Ba2FeSi207是中间过渡相并随着温度的升高而消失,最终形成了主晶相BaFe12O19,次晶相为BaSi2O5的微晶玻璃。最佳的热处理工艺为:700℃核化3h,950℃晶化2h。随着热处理温度的升高,微晶玻璃的红外吸收带在800~700cm-1波长范围发生宽化,在1100~900cm-1和500~400cm-1波长范围发生分裂。玻璃结构中的[FeO4]向[FeO6]转化促进了玻璃的析晶,出现了BaFe12O19的红外特征吸收峰。晶体生长指数为2.8,属三维生长。在8.2~12.4GHz范围内的微波介电特性研究表明,介电损耗角正切值达到了0.44,而磁损耗正切值为0.017,具有较好的微波介电特性。
Iron ore tailings as a main solid waste in metallurgical industry had 2.5 billion tons in China, which was not only a kind of hazard but a potential secondary resource. Therefore, it has strategic meaning for our country to the complete and value-added utilization of iron ore tailings. In this dissertation, the approach and manner of value-added utilization of Anshan iron ore tailings with high silicon were completely and systemicly studied.
     Firstly, using iron ore tailings as raw materials, the leaching process of SiO2 were investigated. The main factors, i.e. solid/liquid ratios, reaction temperatures, reaction time, that affect the leaching rate of iron ore tailings in sodium hydroxide were determined, and the digestion kinetics of iron ore tailings in sodium hydroxide was investigated correspondingly. The results showed that the optimum leaching ratio is obtained when the solid/liquid ratio is 1:2 under 110℃for 6h. The leaching kinetics of SiO2 can be represented by the interface reaction model, which was written as the following equation:1—(3—X)2/3+2(1—X)=k2//t. The apparent activation energy calculated for SiO2 leaching is about 14.2 kJ/mol, and the overall leaching rate appears to be controlled by the diffusion in solid. Experiment conditions of decomposition of iron ore tailings with molten salt method were investigated. The results showed that iron ore tailings were mixed with NaOH-NaNO3 and calcined at 500℃for 3 h to yield soluble sodium silicate. The iron ore tailings and NaOH were employed as raw materials, and NaNO3 as salts. The preparation of precipitated silica particle via chemical precipitation using sodium silicate from iron ore tailings and sodium hydroxide as starting materials was successfully demonstrated. The component, morphology and structure of the synthesized particles were characterized by XRD, FT-IR, SEM, TEM and XRF. The chemical structure of precipitated silica was hydrated silicon oxide through FT-IR analysis. The structure of precipitated silica was amorphous by XRD analysis. The SEM and TEM micrograph showed that the shape of precipitated silica particles was nearly spherical, and the average grain diameter was less than 150 nm. The SiO2 purity in the precipitated silica product was 92.3% by X-ray fluorescence analysis. Measured results of chemical and physical properties of precipitated silica as followed:the specific surface area was 114 m2/g, pH in the suspending liquid was 5.5-6.0, and loss on ignition at 1000℃was 6.16%. The product could be comparable with the requirements of HG/T 3061-1999 industrial product standard.
     Secondly, the mesoporous molecular sieve MCM-41 was synthesized by hydrothermal synthesis method with sodium silicate from iron ore tailings as silica source and hexadecyl trimethyl ammonium bromide (CTAB) as template. The effects of crystallization conditions, i.e. the ratios of CTAB/SiO2, pH values, crystallization time and crystallization temperatures on the formation of MCM-41, were investigated. The synthesized MCM-41 samples were characterized by XRD, BET, DTA-TG, HRTEM, SEM and FT-IR. The mesoporous molecular sieve MCM-41 was formed with CTAB/SiO2 of 0.05-0.6 and pH of 8-11. In the condition of CTAB/SiO2=0.15, the synthesized MCM-41 sample was ordered. The longer the crystallization time, the increase of relative crystallinity of MCM-41. It was favored for the increase of relative crystallinity with prolonging crystallization temperature. The MCM-41 was not formed when the crystallization temperature above 140℃or the crystallization temperature below 25℃. The A3 sample had surface area of 527 m2/g, BJH pore volume of 1.339 cc/g and pore wall thickness of 0.93nm. The pore structure of MCM-41 was well-ordered and symmetrical hexagonal structure, which pore diameter of MCM-41 was changed between 2nm to 3nm. Silicon-oxygen tetrahedron skeletons were confirmed by FT-IR、NMR.
     The effects of adsorption conditions on the adorption efficiency for Cu2+、Cr6+、Zn2+ and methyl orange (MO) by the MCM-41 absorbents were systemically stuied. The adsorption isothern model and adsorption kinetics medel were also explored.With these parameters increasing, such as the adsorbent time, adsorbent dose, initial concentration and adsorbent temperature, the efficiencies of the Cu2+、Cr6+、Zn2+ and MO were also increased.The adsorption kinetics of MCM-41 absorbents for the Cu2+、Cr6+、Zn2+ and MO were all corresponded to the modified pseudo-second-order equations, and the absorption isotherms was all satisfied to the Langmuir models.
     Finally, BaO-Fe2O3-SiO2 system glass-ceramics were synthesized from iron ore tailing of Anshan as starting material. Compositions of glass-ceramics, selection of main crystallization and crystallization kinetics were discussed. Utilizing the orthogonal experiment, the optimal formula and heat treatment schedule of foam glass- ceramics were decided. The initial crystalline phase of the sample was BaSi2O5 and Ba2FeSi2O7 as transition crystalline phase changed into BaFe12O19 with increasing of temperature. The final crystalline phases of the glass-ceramics were BaFe12O19 and BaSi2O5. With increasing of crystallization temperature, infrared absorption bands of the sample broaden within the range of 800-700cm-land were splitted within the range of 1100-900cm-1 and 500-400cm-1. It was suggested that the crystallization was accelerated by [FeO4] fundamental unit shifted to [FeO6] in the glass structure and BaFe12O19 as the final crystalline phase was observed. The index of crystal growth is 2.8 and it implies that crystals grow along three dimensional space. The complex dielectric constant and complex permeability dispersion were investigated in 8.2 GHz to 12.4GHz. The results show that maximum dielectric loss is 0.44, but magnetic loss is only 0.017. These new features make the composites be a kind of promising microwave absorber.
引文
1.徐慧忠.尾矿建材开发[M],北京:冶金工业出版社,2000,1—5.
    2.雷力,周兴龙,李家毓等.我国矿山尾矿资源综合利用现状与思考[J],矿业快报,2008,(9):5-8.
    3. Rane K S, Verenkar V M S, Sawant P Y. Dielectric behaviour of MgFe2O4 prepared from chemically beneficiated iron ore rejects[J], Bull Mater Sci,2001, 24(3):323-330.
    4. Matschullat J, Borba R P, Deschamps E. Human and environmental contamination in the iron quadrangle, Brazil [J], Appl Geochem,2000,15(2):193-201.
    5. Das S K, Kumar S, Ramachandraro P. Exploitation of iron ore tailing for the development of ceramic tiles[J], Waste Manag,2000,20(8):725-729.
    6. Sakthivel R, Das B, Satpati B, et al. Gold supported iron oxide—hydroxide derived from iron ore tailing for CO oxidation[J], Appl Surf Sci,2009,255(13-14):6577-6581.
    7. Li J, Wang Q, Liu J, et al. Synthesis process of forsterite refractory by iron ore tailings[J], J Environ Sci Suppl,2009,21:592-599.
    8.彭会清,李军,罗鸣坤等.赤铁矿尾矿资源化及其应用研究[J],现代矿业,2009,482(6):47-49.
    9. Zhang S, Xue X, Liu X, et al. Current situation and comprehensive utilization of iron ore tailing resources[J], J Min Sci,2006,42(6):403-408.
    10.向鹏成,谢英亮.尾矿利用的经济性潜力分析[J],矿产保护与利用,2002,(1):50-54.
    11.徐凤平,周兴龙,胡天喜.我国尾矿资源利用现状及建议[J],云南冶金,2007,36(4):25—27.
    12.闫满志,白丽梅,张云鹏.我国铁尾矿综合利用现状问题及对策[J],矿业快报,2008,(7):9—13.
    13.张淑会,薛向欣,金在峰.我国铁尾矿的资源现状及其综合利用[J],材料与冶金学报,2004,3(4):9—13.
    14.王运敏,常前发.当前我国铁矿尾矿的资源状况利用现状及工作方向[J],金属矿山,1999,271,(1):1—6.
    15.刘东旭,苏伟.用选铁尾矿替代铁粉配料生产硅酸盐水泥熟料[J],水泥技术, 2007,(5):97-98.
    16.康惠荣,陈建兵,康遂平.用铁尾矿代替硫酸渣烧制水泥熟料的试验研究[J],水泥,2004,(1):23-24.
    17.孙贵信,周玉,孙薇.用铁矿尾矿配料生产优质水泥熟料[J],水泥,2006,(3):23-24.
    18.王金忠,吴村.铁尾矿配料的普通水泥熟料形成及其节能效果[J],沈阳建筑工程学院学报,2000,16(2):112-114.
    19.陈胜建.低硅铁尾矿微晶玻璃的研制[D],武汉:武汉理工大学,2004.
    20.张淑会.高硅铁矿石尾矿整体材料化利用研究[D],沈阳:东北大学,2007.
    21.许魁荣.尾矿资源二次利用的试验研究[J],矿产保护与利用,1992,(5):48—53.
    22.张杰.矿产资源的立体开发与综合利用[J],国外金属矿山,2001,(4):55—58.
    23.曹永民,王立久.尾矿铺地花砖[J],硅酸盐建筑制品,1989,(2):2-4.
    24.高维越,李景华.我国尾矿再生资源综合利用浅析[J],矿产综合利用,1994,(4):42-43.
    25.姚树刚,邢安石.三免尾矿砖研制报告[J],硅酸盐建筑制品,1993,(4):35—36
    26.章庆和,郭宇峰.蒸养尾矿砖的研制及机理分析[J],矿产保护与利用,1995,(5):45-47.
    27.林洪民.铁矿山尾矿的综合利用[J],矿产保护与利用,1992,(4):49-52.
    28.尹洪峰,王明利,任耘等.利用邯郸铁矿尾矿制备轻质隔热墙体材料[J],金属矿山,2006,(8):76-78.
    29.陈家珑,孙亚芸.用特细铁尾矿生产混凝土空心砌块[J],中国矿业,2003,12(1):65-66.
    30.杨青,潘宝峰,何云民.铁矿尾矿砂在公路基层中的应用研究[J],华东公路,2009,(4):78—80.
    31.常前发,王运敏.我国尾矿综合利用的现状及对策[J],中国矿业,1999,8(2):21-23.
    32.张淑会,薛向欣,刘然等.尾矿综合利用现状及其展望[J],矿冶工程,2005,25(3):44-47.
    33.张锦瑞.金属矿山尾矿综合利用与资源化[M],北京:冶金工业出版社,2002:2-53.
    34.田俊德,刘跃.从包钢选矿厂选铁尾矿中回收稀土研究概况与生产实践[J],稀土,1999,20(5):54-58.
    35.张宗华,张桂芳.选铁尾矿回收钛铁矿及硫化矿的工艺研究[J],稀有金属,2003,27(5):617-620.
    36.贺轶才.晋南选铁尾矿的综合回收利用[J],黄金地质,1998,4(1):78—80.
    37.谭欣,王福良,王荣生.油页岩脱油残渣制备白炭黑的试验研究[J],矿冶,2004,13(1):59-63.
    38.金辉.白炭黑生产工艺及应用[J],精细化工原料及中间体,2004,(6):25-27.
    39. Gunko V M, Voronin E F, Zarko V I, et al. Interaction of poly (vinyl pyrrolidone) with fumed silica in dry and wet powders and aqueous suspensions[J], Colloids Surf, 2004,233(1-3):63-78.
    40. Turov V V, Gunko V M, Tsapko M D, et al. Influence of organic solvents on interfacial water at surfaces of silica gel and partially silylated fumed silica[J], Appl Surf Sci,2004,229(1-4):197-213.
    41.戴志成,刘洪章.硅化合物的生产与运用[M],成都:成都科技大学出版社,1994:350.
    42. Juenger M C G, Ostertag C P. Alkali-silica reactivity of large silica fume-derived particles[J], Cem and Concr Res,2004,34(8):1389-1402.
    43. Kayali O, Zhu B. Corrosion performance of medium-strength and silica fume high-strength reinforced concrete in a chloride solution[J], Cem Concr Compos, 2005,27(1):117-124.
    44. Demirboga R, Gul R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of light weight concrete[J], Cem Concr Res, 2003,33(5):723-727.
    45.陈正平.白炭黑消光剂在溶剂型涂料中的应用[J],现代涂料与涂装,2004,(2):45-48.
    46.朱春雨,王惠玲,徐世增等.二氧化硅消光剂研究进展[J],无机盐工业,2005,37(6):14-17.
    47.王宝君,张培萍,李书法.白炭黑的应用与制备方法[J],世界地质,2006,25(1):100-103.
    48.杨本意,段先健,李仕华等.气相法白炭黑的应用技术[J],有机硅材料,2003,17(4):28-32.
    49.敬相海,周光.利用非金属矿物制备白炭黑现状及发展前景[J],中国非金属矿工业导刊,2002,(2):16-19.
    50. Jesionowski T. Preparation of colloidal silica from sodium metasilicate solution and sulphuric acid in emulsion medium[J], Colloids Surf, A: Physicochem Eng Aspects,2001,190:153-165.
    51.王平,李辽沙.粉煤灰制备白炭黑的探索性研究[J],中国资源综合利用,2004,(7):25-27.
    52. Jesionowski T. Characterization of silicas precipitated from solution of sodium metasilicate and hydrochloric acid in emulsion medium[J]. Powder Technol,2002, 127(1):56-65.
    53. Jesionowski T, Krysztafkiewicz A. Comparison of the techniques used to modify amorphous hydrated silicas[J], J Non-Cryst Solids,2000,277(1):45-57.
    54.赵宜新,杨海昆.气相法白炭黑产业现状及市场需求[J],上海化工,2001,26(10):19-22.
    55. Kalkan E, Akbulut S. The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners[J], Eng Geol, 2004,73(1-2):145-156.
    56.李宏涛,宋晓秋,解丛林.液相法白炭黑超细粉工业化及产品性能表征[J],化工装备技术,1999,20(4):16-18;
    57.邬洪源,黄海涛,赵桦萍.硫酸沉淀法从膨润土中提取白炭黑的研究[J],高师理科学刊,1999,19(3):41-43.
    58.吴雪文,张海波,韩团辉等.传统沉淀法制白炭黑的研究进展[J],无机盐工业,2006,38(4):9-11.
    59.胡庆福,李国庭,王金阁等.CO2沉淀法制取高补强白炭黑[J],非金属矿,2000,23(6):23-24.60.
    60.王佼,郑水林.用硅藻土制备超细自炭黑工艺中氨基硅烷的作用研究[J],非金属矿,2007,30(4):1-3.
    61.崔天顺,吴宏海,王虹.硅藻土合成白炭黑工艺研究.非金属矿[J],2004,27(6):34-36.
    62.翟玉祥.用粉煤灰制取白炭黑的工艺方法[J],黑龙江电力技术,1995,17(3):148-151.
    63.倪良,胡莹海,李晓燕等.粉煤灰气相—水解法制备纳米白炭黑[J],橡胶工业,2007,54(4):345-347.
    64.王平,李辽沙.粉煤灰制备白炭黑的探索性研究[J],中国资源综合利用,2004,(4):25-27.
    65.侯太鹏,刘英魁.用膨润土制备白炭黑试验研究[J],非金属矿,2000,23(1):26-28.
    66.汪明银.利用膨润土制备水合二氧化硅的研究[J],矿产保护与利用,1996,(2):30-32.
    67.陈庆春,王廷吉,周萍华等.硅灰石合成多孔二氧化硅工艺条件与产物性质研究[J],华东地质学院学报,2001,24(1):64-66.
    68.陈庆春,王廷吉,周萍华等.硅灰石合成高比表面积二氧化硅的工艺研究[J],化工矿物与加工,2000,(8):1-3.
    69.彭人勇.硅灰石制备多孔高比表面积二氧化硅机理探讨[J],中国粉体技术,2003,(6):11-14.
    70.潘群雄,王建,白红.锆硅渣制备白炭黑研究[J],非金属矿,2005,28(1):37-39.
    71.陈文利,欧阳贻德,姚本林,等.工业废弃物锆硅渣生产白炭黑[J],武汉化工学院学报,2002,24(4):25-26.
    72. Huang S, Jing S, Wang J F. Silica white obtained from rice husk in a fluidized bed[J], Powder Technol,2001,117(3):232-238.
    73.于欣伟,徐广惠,周英彦等.用稻壳、稻草、麦秸生产优质白炭黑的新技术[J],硅酸盐通报,1996,(3):48-51.
    74. Liou T H, Chang F W, Lo J J. Pyrolysis kinetics of acid-leached rice husk[J], Ind Eng Chem Res,1997,36(3):568-573.
    75.易发成,宋绵新,陈廷芳等.利用埃洛石粘土制备白炭黑的研究[J],非金属矿,1999,22(1):17-18.
    76.刘晓明,薛彦辉,张桂斋等.低温分解钾长石副产物制备白炭黑[J],非金属矿,2004,24(4):17-18.
    77.郑若峰.蛇纹石制轻质氧化镁和白炭黑[J],无机盐工业,1993,25(6):16.
    78.冯宗玉,薛向欣,李勇.油页岩灰陶粒吸附苯酚的实验研究[J],材料与冶金学报,2007,6(3):230-233.
    79.李勇,薛向欣,冯宗玉等.用油页岩渣制备白炭黑的工艺研究[J],过程工程学报,2007,7(4):751-754.
    80.李勇,薛向欣,冯宗玉等.生态化利用油页岩制备白炭黑和氧化铝[J],化工学报,2008,59(4):1051-1057.
    81.李勇,冯宗玉,薛向欣等.油页岩灰酸碱离解法制备白炭黑的工艺比较[J],硅酸盐通报,2008,27(1):6-11.
    82.崔益顺.沉淀白炭黑的制备及表面改性[J],无机盐工业,2006,38(11):21-22.
    83.陈庆春.聚乙二醇在硅灰石酸处理中的作用机理探讨[J],化工矿物与加工,2002,(1):10-12.
    84. Jesionowski T, Binkowski S, Krysztafkiewicz A. Adsorption of the selected organic dyes on the functionalized surface of precipitated silica via emulsion route[J], Dye Pigment,2005,65(3):267-279.
    85. Jesionowski T, Krysztafkiewicz A. Influence of silane coupling agents on surface properties of precipitated silicas[J], Appl Surf Sci,2001,172(1-2):18-32.
    86. Zurawska J, Krysztafkiewicz A, Jesionowski T. Effect of ammonium salts on dispersive and adsorptive parameters of silicas precipitated from sodium metasilicate solution[J], Colloid Surf A,2003,223(1-3):201-214.
    87. Krysztafkiewicz A, Jesionowski T, Binkowski S. Precipitated silicas modified with 3-aminopropyl triethoxysilane [J], Colloid Surf A,2000,173(1-3):73-84.
    88.程金树,李宏,汤李缨等.微晶玻璃[M],北京:化学工业出版社,2005:1-50.
    89.陆佩文.无机材料科学基础[M],武汉:武汉理工大学出版社,1996:90-94.
    90. Rounan L. Phlogopite-based glass ceramics[J], J Non-Cry Solds,1986,80(1-3): 600-604.
    91.干福熹.新技术领域中的硅酸盐材料[J],硅酸盐学报,1991,19(1):52-58.
    92. Komatsu T, Hirose C, Ohki T, et al. Superconducting-coupling nature at grain boundaries in Bi2Sr2CaCu2Ox glass-ceramics[J], J Am Ceram Soc,1990,73(12): 3569-3578.
    93. Klupsch T, Steinbeiss E, Miiller R, et al. Magnetic glass-ceramics preparation and properties [J], J Magn Magn Mater,1999,196-197:264-265.
    94. Ardelean I, Toderas M, Filip S. Influence of melting temperature on iron ions behavior in B2O3-BaO-Fe2O3 glass studies by magnetic susceptibility [J], J Magn Magn Mater,2004,272-276:339-341.
    95. Mirkazemi M, Marghussian V K, Beitollahi A. Crystallisation behaviour, micro-structure and magnetic properties of BaO-Fe2O3-B2O3-SiO2 glass ceramics[J], Ceram Int,2006,32:43-51
    96.龙文志.微晶玻璃及微晶玻璃幕墙[J],中国建材,2001,12(3):47-49.
    97.刘金彩,曾力群.建筑微晶玻璃的应用及发展前景[J],中国建材,2005,(5):51-53.
    98.刘建.富铁矿微晶玻璃的研究与开发[J],玻璃与陶瓷,2001,29,(6):53-57.
    99. Erol M, Kiicukbayrak S, Ersoy M A. Production of glass-ceramics obtained from industrial wastes by means of controlled nucleation and crystallization[J], J Chem Eng,2007,132(1-3):335-343.
    100.Toya T, Nakamura A, Kameshima Y, et al. Glass-ceramics prepared from sludge generated by a water purification plant[J], Ceram Int,2007,33(4):573-577.
    101.Rother B, Mucha A. Transparent glass-ceramics coatings property distribute of 3D parts[J], Surf Coat Technol,2000,124(2-3):128-134.
    102.柯尊斌,卢安贤,刘树江.可机械加工微晶玻璃应用研究的新进展[J],硅酸盐通报,2006,(1):49-51.
    103.马英仁.与金属封接的微晶玻璃[J],玻璃与搪瓷,1994,(2):49-54.
    104.印祥生.基板用玻璃[J],玻璃与搪瓷,1994,(2):33.
    105.张为军,堵永国,陈朝辉.微晶玻璃及其在电子元件中的应用[J],电子元件与材料,2002,21(8):26-28.
    106.Ebisawa Y, Miyaj F I, KokuboT, et al. Bioactivity of ferromagnetic glass-ceramics in the system FeO-Fe2O3-CaO-SiO2[J], Biomaterials,1997,18(19):1277-1284.
    107.Ohtsuki C, Kokubo T, Yamamuro T. Mechanism of apatite for mation on CaO-SiO2-P2O5 glasses in a simulated body fluid[J], J Non-Cryst Solids,1992, 143:84-92.
    108.王玥,田清波,岳雪涛等. CaO-MgO-Al2O3-SiO2-P2O5-(F)微晶玻璃的析晶及特征[J],人工晶体学报,2007,36(3):692-695.
    109.Balamurugan A, Balossier G, Kannan S, et al. Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass [J], Acta Biomater, 2007,3(2):255-262.
    110.刘小波.Na2O-Al2O3-SiO2系统霞石微品玻璃的化学稳定性的研究[J],玻璃与搪瓷,26(2):53-56.
    111.周时凤,徐时清,邱建荣.超宽带光放大用新型发光材料[J],硅酸盐学报,2006,34(9):1130-1136.
    112.Zarzyki J. Past and present of sol-gel science and technology [J], J Sol-Gel Sci Technol,1997,8(1-3):17-22.
    113.Hench L L, West J K. The sol-gel process[J], Che Rev,1990,90(1):33-72.
    114.周志刚.铁氧体磁性材料[M],北京:科学出版社,1981:1-60.
    115.都有为,罗河列.磁记录材料[M],北京:电子工业出版社,1992:80-115.
    116.Kreisel J, Tasset F, Pate M, et al. An investigation of the magnetic anisotropy change in BaFe12-2xTixCoxO19 single crystals[J], J Magn Magn Mater,2001,224(1): 17-29.
    117.阮圣平,吴风清,王永为等.钡铁氧体纳米复合材料的制备及其微波吸收性能[J],物理化学学报,2003,19(3):275-277.
    118.Yoshiyuki N, Kunihior S. Application of ferrite to electromagnetic wave absorber and its characteristics[J], IEEE Trans Microwave Theory Tech,1971,19(1):65-72.
    119.Komari H, Konishi Y. Wide band electromagnetic wave absorber with thin magnetic layers[J], IEEE Trans Broadcasitng,1994,40(4):219-222.
    120.王树恒.磁记录用钡铁氧体磁粉的开发和应用[J],磁记录材料,1997,3:53-55.
    121.Lee C K, Speyer R F. Magnetic Susceptibility Studies of B2O3-BaO-Fe2O3 Glasses [J], Mod Phys Lett B,2002,16(13):485-490.
    122.Sohn S B, Choi S Y, Shim I B. Perparation of Ba-ferrite containing glass-ceramics in SiO2-BaO-Fe2O3 [J], J Magn Magn Mater,2002,239:533-536.
    123.Mirkazemi M, Marghussian V K, Beitollahi A. Crystallisation behaviour, micro-structure and magnetic properties of SiO2-BaO-B2O3-Fe2O3 glass ceramics[J], Ceram Int,2006,32:43-51.
    124.Haneda K, Kojima H. Effect of milling on the intrinsic coercivity of barium ferrite powders[J], J Am Ceram Soc,1974,7(2):68-71.
    125.Kaczmarek W A, Ninham B W. Preparation of high-coercivity of barium ferrite powders[J], J Appl Phys,1994,76:6065-6067.
    126.Jacobo S, Civale L, Blesa M. Evolution of the magnetic porperties during the thermal treatment of barium hexaeferrite precursors obatined by coprecpitation from barium hexafrrite(VI) solutions[J], J Mang Magn Mater,2003,260:37-41.
    127.Carp O, Barjega R, Segal E, et al. Nonconventional methods for obtaining hexaferrites Ⅱ.barium hexaferrite [J], Thermochimi Acta,1998,318:57-62.
    128.Guo Z B, Ding W P, Zhang J R. Preparation and magnetic properties of SrFe12O19 particles prepared by the salt-melt method[J], J Mang Magn Mater,1997,175(3): 333-336.
    129.Dimri C M, Kashyap C S, Dube D C. Electrical and magnetic properties of barium hexaferrite nanoparticle prepared by citrate precursor method[J], Ceram Int, 2004,30:1623-1626.
    130.Hnaeda K, Miyakawa C, Goto K. Preparation of small particles of SrFe12O19 with high coercivity by hdrolysis of metal-organic cmplex[J], IEEE Trans Magn,1987, 23(5):3134-3136.
    131.Licci F, Besagni T. Organic resin method for highly reactive and homogeneous hexaferrite powders[J], IEEE Trans on Magn,1984,20(5):1639-1641.
    132.Liu X, Wang J, Gan L M, et al. Improving the magnetic properties of hydro-thermally synthesized barium ferrite[J], J Magn Magn Mater,1999,195(2):452-459.
    133.Sugita N, Maekawa M, OhtaY, et al. Advances in fine magnetic particles for high density recording[J], IEEE Trans on Magn,1995,31(6):2854-2858.
    134.Koleva M, Atanasov P, Tomov R, et al. Pulsed laser deposition of barium hexaferrite (BaFe12O19) thin films[J], Appl Surf Sci,2000,154:485-491.
    135.Fox M A, Dulay M T. Heterogeneous photocatalysis[J], Chem Rev,1993,93(1): 341-357.
    136.Beck J S, Vartulli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J], J Am Chem Soc,1992,114(27): 10834-10843.
    137.Huo Q, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganicmolecular species into nanocomposite biphase arrays [J], Chem Mater, 1994,6(8):1176-1191.
    138.Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J], Nature,1992,359: 710-712.
    139.Attard G S, Glyde J C, Goltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica[J], Nature,1995,378:366-368.
    140.Huo Q, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J], Nature,1994,368:317-321.
    141.Firouzi A, Kumar D, Bull L M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies[J], Science,1995,267(5201):1138-1143.
    142.Matsumoto A, Chen H, Tsutsumi K, et al. Novel route in the synthesis of MCM-41 containing framework aluminum and its characterization[J], Microporous Mesoporous Mater,1999,32(1-2):55-62.
    143.Szegedi A, Popova M, Mavrodinova V, et al. Synthesis and characterization of Ni-MCM-41 materials with spherical morphology and their catalytic activity in toluene hydrogenation[J], Microporous Mesoporous Mater,2007,99(1-2):149-158.
    144.Yanagisawa T, Shimozu T, Kuroda K, et al. The preparation of alkyltrimethy-ammonium-kanemite complexes and their conversion to microporous materials[J], Bull Chem Soc Jpn,1990,63:988-992.
    145.宋春敏,阎子峰.介孔材料MCM-41的合成与性能表征[J],燃料化学学报,2001,29:12-14.
    146.宋春敏,阎子峰.高表面积MCM-41的合成与性能[J],物理化学学报,2002,18(3):279-283.
    147.Conner W C, Tompsett G, Lee K H, et al. Microwave synthesis of zeolites:1. reactor engineering[J], J phys Chem B,2004,108(37):13913-13920.
    148.Wud C G, Bein T. Microwave Synthesis of Molecular Sieve MCM-41 [J], Chem Commun,1996, (8):925-926.
    149.Park S E, Kim D S, Chang J S, et al. Synthesis of MCM-41 using microwave heating with ethylene glycol[J], Catal Today,1998,44(1-4):301-308.
    150.Tang X H, Liu S W, Wang Y Q, et al. Rapid synthesis of highly quality MCM-41 silica with ultrasound radiation[J], Chem Commun,2000, (21):2119-2120.
    151.闰明涛,吴刚.超声波合成介孔分子筛[J],无机化学学报,2004,20(2):219-224.
    152.Lin W Y, Chen J S, Sun Y, et al. Brimodal mesopore distribution in a silica prepared by calcining a wet surfactant-containing silicate gel[J], J Chem Soc Chem Commun,1995,2367-2368.
    153.王树国,吴东.MCM-41介孔分子筛的高压合成[J],物理化学学报,2001,17(7):659-661.
    154.Chatterjee M, Iwasaki T, Hayashi H, et al. Room-temperature formation of thermally stable aluminium-rich mesoporous MCM-41[J], Catal Lett,1998, 52(1-2):21-23.
    155.Gaydhankar T R, Samuel V, Jha R K. Room temperature synthesis of Si-MCM-41 using polymeric version of ethyl silicate as a source of silica[J], Mater Res Bull, 2007, (42):1473-1478.
    156.徐如人,庞文琴.分子筛与多孔材料化学[M],北京:科学出版社,2004:1-5.
    157.Gallis K W, Landry C C. Synthesis of MCM-48 by a phase transformation process[J], Chem Mater,1997,9(10):2035-2038.
    158.Yang P D, Zhao D Y, Margolese D I, et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework[J], Chem Mater,1999,11(10):2813-2826.
    159.Kim W J, Yoo C J, Hayhrst D T, et al. Synthesis of MCM-48 via phase transformation with direct addition of NaF and enhancement of hydrothermal stability by post-treatment in NaF solution[J], Microporous Mesoporous Mater, 2001,49(1-3):125-137.
    160.Mukhopadhyay K, Ghosh A, Kumar R. Heteropolyacids aided rapid and convenient sytheses of highly ordered MCM-41 and MCM-48:exploring the accelerated process by 29Si Mas NMR and powder x-ray diffraction studies[J], Chem Commun,2002, (20):2404-2405.
    161.Gao C B, Qiu H B, Zeng W, et al. Formation mechanism of anionic surfactant-templated mesoporous silica[J], Chem Mater,2006,18(16):3904-3914.
    162.Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants [J], Science,1995,269(5288): 1242-1244.
    163.Corma A. From microporous to mesoporous molecular sieve materials and their use in Catalysis[J], Chem Rev,1997,97(6):2373-2420.
    164.Huo Q S, Margolese D I, Ciesla U, et al. Organization of organic molecules with inorganic molecular species into nanocomposite diphase arrays [J], Chem Mater, 1994,6:1176-1191.
    165.Tanev P T, Pinnavaia T J. A neutral templating route to mesoporous molecular- sieves[J], Science,1995,267(5119):865-867.
    166.Steel A, Carr S W, Anderson M W. 14N NMR study of surfactant mesophases in the synthesis of mesoporous silicates[J], J Chem Soc, Chem Commun,1994: 1571-1572.
    167.Monnier A, Schiith F, Hua Q, et al. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J], Science,1993,261(5126): 1299-1303.
    168.Stucky G D, Huo Q S, Firouzi A,et al. Directed synthesis of organic/inorganic composite structures[J], Stud Surf Sci Catal,1997,105:23-28.
    169.Firouz A, Atef F, Oertli A G, et al. Alkaline lyotropic silicate-surfactant liquid crystals[J], J Am Chem Soc,1997,119(15):3596-3610.
    170.Chen X Y, Ding G Z, Chen H Y, et al. Formation at low surfactant concentrations and characterization of mesoporous MCM-41[J], Sci China SerB-Chem,1997, 40(3):278-285.
    171.Huo Q S, Leon R, Petroff P M, et al. Mesostructure design with gemini surfactants-supercage formation in a three-dimensional hexagonal array [J], Science,1995,268(5215):1324-1327.
    172.Stein A, Melde B J, Schroden R C. Hybrid inorganic-organic mesoporous silicates-nanoscopic reactors coming of age[J], Adv Mater,2000,12(19):1403-1419.
    173.Davidson A. Modifying the walls of mesoporous silieas prepared by supramolecular-templating[J], Curr Opin Colloid Interface Sci,2002,7(1-2):92-106.
    174.Cheng C F, Luan Z H, Klinowski J. The role of surfactant micelles in the synthesis of the mesoporous molecular sieve MCM-41[J], Langmuir,1995,11(7):2815-2819.
    175.Yoshitake H, Tatsumi T. Vanadium oxide incorporated into mesoporous titania with a BET surface area above 1000 m2/g: preparation, spectroscopic characterization, and catalytic oxidation[J], Chem Mater,2003,15(8):1695-1702.
    176.Lu W, Lu G, Luo Y, et al. A novel preparation method of ZnO/MCM-41 for hydro-genation of methyl benzoate[J], J Mol Catal A:Chem,2002,188:225-231.
    177.Takahashi H, Li B, Sasaki T, et al. Catalytic activity in organic solvents and stability of immobilized enzymes depend on the pore size and surface characteristics of mesoporous silica[J], Chem Mater,2000,12:3301-3305.
    178.Taguchi A, Schuth F. Ordered mesoporous materials in catalysis[J], Microporous Mesoporous Mater,2005,77(1):1-45.
    179.Selvam P, Bhatia S K, Chandrashekar G. S. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves[J], Ind Eng Chem Res,2001,40(15):3237-3261.
    180.Schiith F. Non-siliceous mesostructured and mesoporous materials[J], Chem Mater, 2001,13(10):3184-3195.
    181.Huber C, MollerK, Bein T. Reactivity of a trimethylstannyl molybdenum complex in mesoporous MCM-41 [J], J Chem Soc, Chem Commun,1994:2619-2620.
    182.Kozhevnikov I V, Sinnema A, Jansen R J J, et al. New acid catalyst comprising heteropoly acid on a mesoporous molecular-sieve MCM-41[J], Catal Lett,1995, 30(1-4):241-252.
    183.Sun Y Y, Zhu L, Lu H J, et al. Sulfated zirconia supported in mesoporpous materials[J], Appl Catal A Gen,2002,237(1-2):21-31.
    184.袁兴东,沈健,李国辉.SBA-15介孔分子筛表面的磺酸基改性及其催化性能[J],催化学报,2002,23:435-438.
    185.徐如人,庞文琴.分子筛与多孔材料化学[M],北京:科学出版社,2004:652-653.
    186.Wu C G, Bein T. Conducting polyaniline filaments in a mesoporous channel host[J], Science,1994,264(5166):1757-1759.
    187.李晓芬,何静,马润雨等.青霉素酰化酶在介孔分子筛MCM-41上的固定化研究[J],化学学报,2000,58:167-171.
    188.高波,朱广山,傅学奇等.介孔分子筛的修饰及固定青霉素酰化酶的稳定性研究[J],高等学校化学学报,2006,27(10):1823-1826.
    189.高峰,赵建伟,张松等.中孔分子筛SBA-15作为液相色谱固定相以及在硫基化合物分离中的应用[J],高等学校化学学报,2002,23:1494-1497.
    190.Puanngam M, Unob F. Preparation and use of chemically modified MCM-41 and silica gel asselective adsorbents for Hg(Ⅱ) ions[J]. J Hazard Mater,2008,154(1-3): 578-587.
    191.Xu X H, Song C S, Andresen J M, et al. Preparation and characterization of novel CO2 "molecular basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41 [J], Microporous Mesoporous mater,2003,62(1-2): 29-45.
    192.Letant S E, van Buuren T W, Terminello L J. Nanochannel arrays on silicon platforms by electrochemistry [J], Nano Lett,2004,4(9):1705-1077.
    193.陈寿椿.重要无机化学反应[M],上海:上海科学技术出版社,1994:507.
    194.张联盟,黄学辉,宋晓岚.材料科学基础[M],武汉:武汉理工大学出版社, 2004:497-498.
    195.杨南如,岳文海.无机非金属材料图谱[M],武汉:武汉工业大学出版社,2000:169-170.
    196.许莹,沈毅.盐酸沉淀法制备纳米白炭黑[J],无机盐技术,2004,(2):17-19.
    197.何凯,陈宏刚.表面改性剂在碳酸化法制备白炭黑过程中的作用[J],过程工程学报,2006,6(3):402-407.
    198.Baruah M K, Kotoky P, Borah G C. Distribution and nature of organic and mineral bound elements in assam coals [J], Fuel,2003,82:1783-1791.
    199.朱炳辰.化学反应工程[M],北京:化学工业出版社,1993:223.
    200.蒋汉瀛.湿法冶金过程物理化学[M],北京:冶金工业出版社,1984:71-72.
    201.Saikia N, Sengupta P, Gogoi P K, et al. Kinetics of dehydroxylation of kaolin in presence of oil field effluent treatment plant sludge [J], Appl Clay Sci,2002,22(3): 93-102.
    202.Kumar P, Mal N, Oumi Y, Yamana K, Sano T. Mesoporous materials prepared using coal fly ash as the silicon and aluminum source [J]. J Mater Chem,2001,11: 3285-3290.
    203.Subotic B, Drzaj B. Zeolites, Synthesis, structure technology and application[J], Stud Surf Sci Catal,1985,24:199.
    204.马跃龙,陈涌英,彭少逸.分子筛晶核和晶体生长动力学研究Ⅳ.自成核体系中修正的Avrami模型[J],石油学报(石油加工),1997,13(4):54-60.
    205.Griselda A E, Liliana B P. Synthesis and characterization of Al-MCM-41 and Al-MCM-48 mesoporous materials [J], Catal Lett,2002,78(1-4):65-75.
    206.Araujo A S, Jaroniec M. Thermogravimetric monitoring of the MCM-41 synthesis[J], Thermochim Acta,2000,363(1-2):175-180.
    207.Aharoni C D, Sparks L, Levinson S. Kinetics of soil chemical reactions: relationships between empirical equations and diffusion models[J], Soil Sci Soc Am, 1991,55:1307-1310.
    208.Ho Y S, Mckay G. Pseudo-second order model for sorption process[J], Process Biochem,1999,34:451-465.
    209.Tian L. Zhou Y, Zhou W L. SiC-nanopraticle-reinforecd Si3N4 matrix composites [J], J Mater Sci,1998,33(3):797-802.
    210.俞冰,梁开明,顾守仁.CaO-P2O5-MgO-SiO2-F系可切削生物微晶玻璃的制备[J],硅酸盐学报,2002,30(1):77-81.
    211.Lee C K, Speyer R F. Glass formation and crystallization of barium ferrite in the Na2O-BaO-Fe2O3-SiO2 system[J], J Mater Sci,1994,29(5):1348-1351.
    212.Pereira F M M, Junior C A R, Santos M R P, et al. Structural and dielectric spectroscopy studies of the M-type barium strontium hexaferrite alloys (BaxSr1-xFe12O19)[J], J Mater Sc-Mate Electron,2008,19(7):627-638.
    213.Xu P, Han X J, Wang M J. Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique[J], J Phys Chem C, 2007,111(16):5866-5870.
    214.Xu P, Han X J, Jiang J J, et al. Synthesis and characterization of novel coralloid Polyaniline/BaFe12O19 nanocomposites[J], J Phys Chem C,2007,111(34):12603-12608.
    215.Ram S. Infrared study of the dynamics of boroxol rings in the crystallization of BaFe12O19 microcrystals in borate glasses[J], Phys Rev B,1995,51(10):6280-6286.
    216.Augis J A, Bennett J E. Calculation of the avrami parameters for heterogeneous solid state reactions using a modification of the kissinger method[J], J Therm Anal, 1978,13(2):283-292.
    217.Ray C S, Huang W H, Day D E. Crytallization kinetics of a lithia-silica glass:effect of sample characteristics and thermal analysis measurement techniques [J], J Am Ceram Soc,1991,74(1):60-66.
    218.Bansal N P, Doremus R H, Bruce A J, et al. Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry[J], J Am Ceram Soc, 1983,66(4):233-238.
    219.张海军,姚嘉,张良莹.BaFe12O19/SiO2-B2O3微晶玻璃陶瓷的制备和微波性能[J],材料研究学报,2002,16(1):31-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700