LAMP-2抗体介导中性粒细胞凋亡异常和胞外捕网在ANCA相关性血管炎中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     抗中性粒细胞胞浆抗体(ANCA)相关性血管炎(ANCA associated vasculitis, AAV)是一组累及多个器官系统的全身性自身免疫性疾病,主要包括韦格纳氏肉芽肿(Wegener’s granulomatosis,WG)、显微镜下多血管炎(microscopic polyangiitis, MPA)、变应性肉芽肿性血管炎(Churg-Strauss syndrome,CSS)和肾脏局限性血管炎(Renal-limitedvasculitis,RLV)。当肾脏受累时,通常表现为寡免疫复合物局灶节段坏死型肾小球肾炎(PiFSGN),该病进展迅猛、死亡率高,严重威胁人类健康。
     ANCA是针对中性粒细胞胞浆中抗原物质而产生的一组异质性自身抗体,是目前诊断ANCA相关性血管炎(AAV)的敏感血清学指标。ANCA特异性经典靶抗原主要包括:蛋白酶3(Proteinase3,PR3)和髓过氧化物酶(Myeloperoxidase,MPO)。目前的研究已经证实,ANCA对ANCA相关性血管炎(AAV)的发生有致病作用,它与中性粒细胞表面相对应靶抗原的结合是诱发该病的核心机制。在正常情况下,静息状态的中性粒细胞膜表面并不表达与ANCA相对应的靶抗原,而仅仅在中性粒细胞质内才有表达。只有经过炎性因子预处理或者刺激的中性粒细胞,这些靶抗原才会由胞质内转移并暴露到细胞膜表面,ANCA才能通过其Fab2段与中性粒细胞表面相应的靶抗原结合,从而激活中性粒细胞,产生局部炎症反应。
     邻近吞噬细胞对凋亡中性粒细胞及其细胞碎片的及时清除是消除炎性反应的必要条件,起着维持机体稳态的作用。如果机体对凋亡中性粒细胞的清除出现障碍,则会导致炎性疾病的发生。在ANCA相关性血管炎(AAV)患者的病变微血管周围及肾组织节段坏死区,聚集着大量未清除的激活状态中性粒细胞,以及位于胞外的溶酶体酶及其核碎片,这些中性粒细胞浸润及其细胞成分沉积的程度与肾脏损伤程度密切相关。有研究指出,中性粒细胞凋亡延迟,存活时间延长和过度激活,致使大量蛋白酶、炎性介质和氧自由基释放和分泌,可能是造成炎性反应过度和组织损害的关键原因,同时也增强了与血管内皮细胞黏附能力,破坏内皮细胞完整性,诱发并加重炎症反应。
     中性粒细胞胞外捕网(NETs)是新近发现的一种不同于凋亡、坏死以及自噬的死亡方式。通过将释放自身线粒体或核内染色质dsDNA骨架到胞外,形成网状结构,粘附、阻碍并杀死入侵病原体,以此起到防御病原体入侵的功能。然而,与此同时在释放到细胞外的染色质dsDNA骨架上也负载着多种抗微生物肽和自身抗原,如:髓过氧化酶(MPO),蛋白酶3(PR3),弹性蛋白酶(Elastase),组织蛋白酶G(Cathepsin G)以及乳铁蛋白(Lactoferrin,LF)等。这说明,发生中性粒细胞胞外捕网(NETs)为自身免疫性疾病的发生提供了危险的自身抗原,是造成自身免疫性疾病的重要原因之一。
     树突状细胞是机体免疫系统功能最强的抗原递呈细胞(Antigen-presenting cells,APC),在诱导机体免疫反应和维持耐受性过程中起着至关重要的作用,也是唯一能活化CD4~+T细胞的递呈抗原细胞。经树突状细胞激活后的CD4~+T细胞朝着Th17细胞分化,会打破免疫耐受。已证实,在ANCA相关性血管炎患者肾组织病理标本中,有大量不成熟的树突状细胞浸润,并且参与激活CD4~+Th17细胞增殖分化,促发了ANCA相关性血管炎(AAV)。
     溶酶体膜蛋白-2(LAMP-2)抗体是近年来发现的ANCA新亚型,其靶抗原与MPO、PR3的最大不同在于:LAMP-2不仅在静息的中性粒细胞胞内及细胞表面均有表达,并且能够自由地穿梭于细胞内外,为循环抗体的穿梭提供条件。LAMP-2抗体能直接通过与正常中性粒细胞表面靶抗原结合,激活中性粒细胞。目前已经证实,LAMP-2抗体普遍存在于寡免疫复合物局灶节段坏死性肾小球肾炎(PiFSGN)患者血清中,而且它与该型肾炎病变的相关性为PR3抗体和MPO抗体的两倍。但是LAMP-2抗体诱发ANCA相关血管炎的具体机制尚不清楚。
     本课题拟采用免疫磁珠分选法、流式细胞术、ELISA、免疫组织化学法、激光共聚焦等技术,观察LAMP-2抗体对中性粒细胞(中性粒细胞凋亡、中性粒细胞胞外捕网(NETs)形成)的影响,LAMP-2抗体作用的中性粒细胞对不成熟树突状细胞活化程度、细胞分泌炎性因子微环境对初始CD4~+T细胞向Th17分化的影响,以探讨LAMP-2抗体介导的中性粒细胞凋亡异常和胞外捕网在ANCA相关性血管炎发生中的免疫机制,为临床诊断、治疗ANCA相关性血管炎提供新的靶点和思路。
     实验方法
     第一部分
     1.通过免疫磁珠法,分选健康志愿者外周血CD14~+单核细胞,体外培养获得不成熟树突状细胞,并通过光学显微镜和流式细胞术检测对其进行鉴定。
     2.采用梯度密度离心法,分离出健康志愿者外周血中性粒细胞,并通过免疫荧光法和流式细胞术检测对其进行鉴定。
     3.通过流式细胞术检测, LAMP-2抗体直接刺激中性粒细胞24h后,中性粒细胞凋亡率的变化。
     4. LAMP-2抗体直接刺激中性粒细胞24h后,经过0.01M PBS缓冲液多次洗涤得到凋亡中性粒细胞,随后通过FITC-Annexin V标记这些凋亡中性粒细胞,将它们与树突状细胞共培养。采用激光共聚焦技术检测,树突状细胞能否吞噬凋亡中性粒细胞,建立树突状细胞-凋亡中性粒细胞荧光示踪吞噬体系。
     5.在树突状细胞-凋亡中性粒细胞荧光示踪吞噬体系中,结合树突状细胞表面活化标志(CD80、CD83、CD86和HLA-DR),通过流式细胞术检测,树突状细胞吞噬凋亡中性粒细胞后的表型变化。
     6.通过ELISA检测,LAMP-2抗体作用的凋亡中性粒细胞对树突状细胞分泌的细胞因子谱(IL-1β、IL-6、IL-23)的变化。
     7.通过免疫磁珠法,分选健康志愿者外周血初始CD4~+T细胞,并通过流式细胞术检测对其纯度进行鉴定。
     8.在上述处理组中性粒细胞与树突状细胞共培养体系中加入健康志愿者外周血来源初始CD4~+T细胞,通过流式细胞术检测以确定初始CD4~+T细胞的分化方向。
     第二部分
     1.通过免疫荧光法,鉴定LAMP-2抗体刺激中性粒细胞3h后,中性粒细胞胞外捕网(NETs)的形成,以及自身抗原(LAMP-2、MPO、PR3)的暴露情况。
     2.将PKH-26标记的树突状细胞,与SYTOX green标记的LAMP-2抗体诱发了胞外捕网的中性粒细胞共培养4h。采用激光共聚焦技术观察,经胞外捕网释放出的染色质丝状物与树突状细胞的接触情况。
     3.将PKH-26标记的树突状细胞与LAMP-2抗体诱发了胞外捕网的中性粒细胞共培养18h,采用FITC-PR3、MPO和LAMP-2单克隆抗体标记经胞外捕网暴露的自身抗原。采用激光共聚焦技术观察,树突状细胞能否摄入暴露在细胞外的自身抗原(LAMP-2、MPO、PR3),建立树突状细胞-自身抗原荧光示踪吞噬体系。
     4.在树突状细胞-自身抗原荧光示踪吞噬体系中,结合树突状细胞表面活化标志(CD80、CD83、CD86和HLA-DR),通过流式细胞术检测,树突状细胞摄入中性粒细胞胞外捕网(NETs)暴露出的自身抗原后表型的变化。
     5.通过ELISA,检测LAMP-2抗体介导的中性粒细胞胞外捕网对树突状细胞分泌的细胞因子谱(IL-1β、IL-6、IL-23)的变化。
     6.在上述处理组中性粒细胞与树突状细胞共培养体系中,加入健康志愿者外周血来源初始CD4~+T细胞,通过流式细胞术检测以确定初始CD4~+T细胞的分化方向。
     结果
     第一部分
     1.经LAMP-2抗体作用24h后,中性粒细胞凋亡率较自然凋亡对照组显著降低。
     2.不成熟树突状细胞吞噬了FITC-Annexin V标记的LAMP-2抗体作用的凋亡中性粒细胞。建立了树突状细胞-凋亡中性粒细胞荧光示踪吞噬体系。
     3.不成熟树突状细胞吞噬了LAMP-2抗体作用的凋亡中性粒细胞后,其表面标志(CD80、CD83、CD86和HLA-DR)升高。
     4. LAMP-2抗体作用的凋亡中性粒细胞促进树突状细胞分泌IL-1β、IL-6,未检测到IL-23。
     5. LAMP-2抗体作用的凋亡中性粒细胞与树突状细胞共培养体系,未检测到初始CD4~+T细胞向Th17细胞分化。
     第二部分
     1. LAMP-2抗体作用于健康志愿者外周血中性粒细胞3h,诱发中性粒细胞胞外捕网(NETs)的发生,释放的染色质dsDNA,并暴露自身抗原(MPO、PR3和LAMP-2)。
     2.不同时相点显示树突状细胞对自身抗原摄入的过程:4h时,LAMP-2抗体诱发中性粒细胞胞外捕网(NETs)“吐出”的染色质dsDNA丝状物,紧紧与不成熟树突状细胞相接触。18h时,不成熟树突状细胞已经摄入了经中性粒细胞胞外捕网(NETs)暴露在胞质外的自身抗原PR3、MPO和LAMP-2。建立了树突状细胞-自身抗原荧光示踪吞噬体系。
     3.树突状细胞摄入了中性粒细胞胞外捕网(NETs)暴露在胞质外的自身抗原后,其表面活化标志(CD80、CD83、CD86和HLA-DR)表达升高。
     4. LAMP-2抗体诱发的中性粒细胞胞外捕网(NETs),促进树突状细胞分泌IL-1β、IL-6、IL-23。
     5. LAMP-2抗体诱发胞外捕网的中性粒细胞(NETs)与树突状细胞共培养体系,引起初始CD4~+T细胞向Th17细胞分化。此外,在细胞上清中发现Th17细胞分泌的特异指标IL-17a。
     6.在加入DNase I破坏胞外捕网释放出的dsDNA染色质结构后,原本暴露在细胞外的自身抗原(LAMP-2、MPO、PR3)局限在细胞内;原本对树突状细胞表面标志活化作用和促进IL-1β、IL-6、IL-23分泌的作用和对初始CD4~+T细胞向Th17细胞分化的影响均消失。
     结论
     1. LAMP-2抗体刺激中性粒细胞后降低中性粒细胞的凋亡率。
     2.树突状细胞吞噬了LAMP-2抗体作用的凋亡异常中性粒细胞,建立了树突状细胞-凋亡中性粒细胞荧光示踪吞噬体系。
     3. LAMP-2抗体诱导的凋亡中性粒细胞,部分活化了树突状细胞,促进了IL-1β、IL-6分泌,但未检测到与Th17细胞增值存活相关的IL-23。未发现初始CD4~+T细胞向Th17细胞分化。
     4. LAMP-2抗体诱发中性粒细胞胞外捕网(NETs)形成,促使中性粒细胞胞浆抗原(MPO,PR3和LAMP-2)的释放和暴露。
     5.树突状细胞摄入了经中性粒细胞胞外捕网(NETs)暴露在外的自身抗原(MPO,PR3和LAMP-2),建立了树突状细胞-自身抗原荧光示踪体系。
     6.LAMP-2抗体诱发的中性粒细胞胞外捕网向树突状细胞呈递自身抗原,活化树突状细胞,体系中细胞因子谱发生变化,并导致初始CD4~+T细胞向Th17细胞分化。
Background
     Anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitis (ANCA associatedvasculitis, AAV) represents a group of systemic autoimmune diseases, including Wegener 'sgranulomatosis (WG), microscopic polyangiitis (MPA), Churg-Strauss syndrome (CSS) andrenal-limited vasculitis(RLV). When idneys are involved, they usually presentpauci-immune focal segmental necrotising glomerulonephritis (PiFSGN), which leads torapid and irreversible renal failure. It is acknowledged as a local clinical manifestation ofanti-neutrophil cytoplasmic autoantibody-associated system vasculitis (AAV).
     ANCAs are a heterogeneous group of autoantibodies produced by stiumulatingneutrophil cytoplasmic antigens, which are sensitive serological markers for diagnosis ofANCA-associated vasculitis (AAV). Myeloperoxidase (MPO) and Proteinase3(PR3) aretwo major ANCA antigens. The present study has confirmed that ANCAs play a pathogenicrole in ANCA-associated vasculitis (AAV), and it is the core pathogenic mechanism thatANCAs bind with target antigens on the surface of neutrophils. Neutrophils can beactivated when ANCAs recognize the conformational epitopes of MPO and PR3. Understeady circumstances, neutrophils do not express target antigens for ANCA on cell surfaces,but only in the cytoplasm of neutrophils. These target antigens would be transferred fromthe cytoplasm to the cell surface and exposed the binding antigens only when neutrophilswere primed or stimulated by inflammatory cytokines. In this case, ANCAs can bind withtarget antigens on neutrophil surface through their Fab2segment, and then neutrophilswould be activated, resulting in local inflammation.
     Apoptotic neutrophils and their cell debris which ingested by nearby phagocytoticcells and timely removed are imperative conditions to eliminate the inflammatory response,maintaining homeostasis. However, the obstacled clearance of apoptotic neutrophils wouldresult in inflammatory diseases. In patients with ANCA associated pauci-immune focalsegmental necrotising glomerulonephritis (PiFSGN), numbers of activated neutrophils andlysosomal enzymes, which released from its nuclear debris, are accumulated aroundinjuried capillaries. These neutrophils infiltration and cellular components deposit areclosely associated with kidney damages. Research indicates that many diseases incidence(such as SIRS, ARDS and MODS etc.) are due to neutrophil delayed apoptosis or apoptosisobstructions. A large number of adhesion molecules expressed on cell surface whenneutrophil apoptosis disorders or even delay, which enhance the ability of adhesion tovascular endothelial cells, destroy the integrity of endothelial cells, and induce theinflammatory response.
     Neutrophil extracellular traps (NETs) is a newly recognized mode of neutrophilcell-death, which extrudes its structures of decondensed chromatin decorated withantimicrobial peptides, such as myeloperoxidase (MPO), elastase, proteinase3(PR3),cathepsin G, lactoferrin and others. Recent studies have demonstrated that the formation ofneutrophil extracellular traps (NETs) also participate in pathogenesis of AAV. It couldtransfer cytoplasmic neutrophil autoantigens to dendritic cells, which induce ANCAassociated autoimmunity (AAV) in mice. And ANCA can be further effect on neutrophils bypromoting more neutrophil extracellular nets (NETs) formation, which results in a viciouscycle of autoimmune reactions.
     DCs act as the most powerful potent antigen-presenting cells and the only antigenspresentation cells to CD4~+T cells in human immune system, which play a vital role inmediation of immune response and maintaining tolerance. Th17cells are recognized assubsets of CD4~+T cell relevanting to autoimmune diseasese. It is proved that highercontents of Th17cells in serum of ANCA associated vasculitis patients than that in ANCAnegative vasculitis and healthy people. Th17cells participate in the occurrence of ANCAassociated vasculitis and tissue damage. Research has been confirmed that ithere are a lot of immature dendritic cell infiltrationn renal pathological specimens of patients withANCA-associated vasculitis, and involved in activation of Th17cell proliferation anddifferentiation.
     Human anti-lysosome-associated membrane protein2(LAMP-2) antibody, a newsubtype of ANCA family, is universal prevalence in patients with active disease of PiFSGNand capable to lead to PiFSGN in WKY rats, as well as activating human neutrophils orprovoking endothelium apoptosis in vitro. The results have clearly demonstrated thatanti-LAMP-2antibody plays a pathogenic role in the development of AAV. However, howanti-LAMP-2antibody leads to AAV remains unknown.
     This project intends to adopt magnetic activated cell sorting, flow cytometry, ELISA,immunohistochemistry and confocal laser scanning techniques to observe the influence ofanti-LAMP-2antibody on neutrophil (neutrophil apoptosis process, neutrophil extracellularnets (NETs) formation), and the effects of neutrophil treated by anti-LAMP-2antibody onactivation of immature dendritic cells, and the secretion of inflammatory cytokinesmicroenvironment on initial CD4~+T cells into Th17differentiation. Based on these findings,we aim to test the feasibility that anti-LAMP-2antibody induce apoptosis disturbance orneutrophils extracelluar traps formation in AAV.
     Materials and Methods
     Part1
     1. CD14~+monocytes were separated and purityed by immunomagnetic beads, werecultured to become immature dendritic cells in vitro, and were detected by opticalmicroscopy and flow cytometry.
     2. Density gradient centrifugation method was used to isolate neutrophils fromperipheral bloods of healthy volunteers and identification the neutrophils throughimmunofluorescence and flow cytometry.
     3. Neutrophils were in presense of Anti-LAMP-2antibody for24h, and then apoptosisrate changes of neutrophils were detected by flow cytometry.
     4. Apoptotic neutrophils labeled by FITC-Annexin V were cultured with immaturedendritic cells (DCs), and then the state of dendritic cells phagocyting apoptotic neutrophils were assayed by confocal detection.
     5. Neutrophils were stimulated by anti-LAMP-2antibody for24h, and their influenceson MFI of immature dendritic cells (DCs) activation markers (CD80, CD83, CD86andHLA-DR) were detected by flow cytometry.
     6. Neutrophils were stimulated by anti-LAMP-2antibody for24h, and their influenceson the secretion of (IL-1β, IL-6, IL-23) from dendritic cells were detected by ELISA.
     7. CD4~+T cells were separated and purifyed by immunomagnetic beads and then wereidentificated them through flow cytometry.
     8. CD4~+T lymphocytes were added into the coculture system of neutrophils anddendritic cell.5days later, we use of flow cytometry to determine whether CD4~+T cells toTh17cells or not.
     Part2
     1. Neutrophils were stimulated by anti-LAMP-2antibody for3h, and then neutrophilextracellular traps (NETs) formation, as well as the exposure of antigen (LAMP-2, MPO,PR3) was detected by immunofluorescence.
     2. Immature dendritic cells labeled with PKH-26were cultured with anti-LAMP-2antibody-induced neutrophilextracellular traps (NETs) stained with SYTOX green for4h,then the interaction of NETs with dendritic cells were observe by confocal detection.
     3. Immature dendritic cells labeled with PKH-26were cultured with anti-LAMP-2antibody-induced neutrophilextracellular traps(NETs) stained with FITC-PR3, MPO andLAMP-2monoclonal antibody for18h, then the stages of extracellular autoantigens(LAMP-2, MPO, PR3) transferred to dendritic cells were observe by confocal detection.
     4. Neutrophils were stimulated by anti-LAMP-2antibody for3h, and their influenceson MFI of immature dendritic cells (DCs) activation markers (CD80, CD83, CD86andHLA-DR) were detected by flow cytometry.
     5. Neutrophils were stimulated by anti-LAMP-2antibody for3h, and their influenceson the secretion of (IL-1β, IL-6, IL-23) from dendritic cells were detected by ELISA.
     6. CD4~+T lymphocytes were added into the coculture system of neutrophils anddendritic cell.5days later, we use of flow cytometry to determine whether CD4~+T cells toTh17cells or not.
     Results
     Part1
     1. Neutrophil apoptosis rates were significantly decreased when they were in thepresence of anti-hLAMP-2antibody for24h.
     2. Apoptotic neutrophils labeled with FITC-Annexin V appeared in the cytoplasm ofimmature dendritic cells.
     3. Anti-LAMP-2antibody distrubed the process of neutrophil apoptosis, whichincreased the the surface activation markers (CD80, CD83, CD86and HLA-DR) ofdendritic cell; however, no significant changes of the activated phenotype (CD80, CD83,CD86and HLA-DR) were detected between anti-LAMP-2antibody treated neutrophilsgroup and routinely apoptotic group.
     4. Anti-LAMP-2antibody-induced abnormal neutrophil apoptosis promoted dendriticcells to secretion of IL-1β, IL-6, but no IL-23has been detected.
     5. CD4~+T lymphocytes were added into the coculture system of neutrophils anddendritic cell.5days later, we found that part of CD4~+T cells differenticate into Treg cells
     Part2
     1. Anti-LAMP-2antibody induced neutrophil extracellular traps (NETs) formation,exposing LAMP-2, MPO and PR3along with NETs.
     2. Neutrophils were aged for3h in the presence of anti-LAMP-2antibody, and thenNETs stings were found to interact with imDCs after4hours coculture. On18hourscoculture, imDC to uptook of NETs autoantigens stained along with a mAb to PR3, MPOand LAMP-2, including LAMP-2, MPO and PR3directly conjugated with FITC dye.
     3. Anti-LAMP-2antibody-induced NETs significantly increased the markers indicativeof maturation on dendritic cells (CD80, CD83, CD86and HLA-DR).
     4. Anti-LAMP-2antibody-induced NETs significantly increased the secretion of IL-1β,IL-6,IL-23by dendritic cells.
     5. CD4~+T lymphocytes were added into neutrophils and dendritic cell coculturesystem.5days later, Th17cells and the secretion of IL-17a were detected.
     6. It is believed that NETs are adequately digested by DNase I. When DNase I addedinto Anti-LAMP-2antibody induced NETs, all chromatin fibers exposed along with NETs were all vanished. The increases of markers indicative of maturation on dendritic cells byanti-LAMP-2antibody–induced NETs were disappeared. And the differentiation of Th17cells and the secretion of IL-17a were prevented by using DNase I.
     Conclusions:
     1. Anti-LAMP-2antibody descreases the apoptotic rates of neutrophils.
     2.Dendritic cells engulfs LAMP-2antibody-induced apoptotic neutrophils. Thephagocytosis fluorescent tracer system of dendritic cells-apoptotic neutrophil wasestablished.
     3. Anti-LAMP-2antibody distrubs the process of neutrophil apoptosis, which partlyincreases the MFI of dendritic cell surface activation markers, and promotes the secretionof IL-1β,IL-6.In this case, no na ve CD4~+T cells differentiate into Th17cells are founded.
     4. Anti-LAMP-2antibody induces neutrophil extracellular traps (NETs) formation andexposes intracellular autoantigens (MPO, PR3, and LAMP-2).
     5. Dendritic cells engulfs autoantigens released from LAMP-2antibody-induced NETs.The phagocytosis fluorescent tracer system of dendritic cells-autoantigens was established.
     6. PBMC-derived DCs are actived by anti-hLAMP-2antibody induced-NETs.Moreover, coculture supernatants set up the microenviroment leading CD4~+T cellsdifferentiate into Th17cells.
引文
1Kallenberg, C.G. and M.H. Zhao, Evolving concepts in pathogenesis and treatment of ANCA-associated systemicvasculitides. Nephrology (Carlton),2009.14(1): p.1-2.
    2Kallenberg, C.G., et al., Anti-neutrophil cytoplasmic antibodies: current diagnostic and pathophysiological potential.Kidney Int,1994.46(1): p.1-15.
    3Pfister, H., et al., Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase3(Wegener
    4autoantigen) are pathogenic in vivo. Blood,2004.104(5): p.1411-8.Xiao, H., et al., Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis andvasculitis in mice. J Clin Invest,2002.110(7): p.955-63.
    5Tervaert, J.W., et al., Prevention of relapses in Wegener's granulomatosis by treatment based on antineutrophilcytoplasmic antibody titre. Lancet,1990.336(8717): p.709-11.
    6Jennette, J.C., et al.,2012revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides.Arthritis Rheum,2013.65(1): p.1-11.
    7Finkielman, J.D., et al., Antiproteinase3antineutrophil cytoplasmic antibodies and disease activity in Wegenergranulomatosis. Ann Intern Med,2007.147(9): p.611-9.
    Hao, J., et al., A pro-inflammatory role of C5L2in C5a-primed neutrophils for ANCA-induced activation. PLoS One,2013.8(6): p. e66305.
    1Lee, C.Y., M. Herant, and V. Heinrich, Target-specific mechanics of phagocytosis: protrusive neutrophil response to
    2zymosan differs from the uptake of antibody-tagged pathogens. J Cell Sci,2011.124(Pt7): p.1106-14.Ohlsson, S.M., et al., Phagocytosis of apoptotic cells by macrophages in anti-neutrophil cytoplasmicantibody-associated systemic vasculitis. Clin Exp Immunol,2012.170(1): p.47-56.
    3Chilvers, E.R., et al., The function and fate of neutrophils at the inflamed site: prospects for therapeutic intervention. JR Coll Physicians Lond,2000.34(1): p.68-74.
    4van Rossum, A.P., P.C. Limburg, and C.G. Kallenberg, Activation, apoptosis, and clearance of neutrophils in Wegener'sgranulomatosis. Ann N Y Acad Sci,2005.1051: p.1-11.
    5Jimenez, M.F., et al., Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome.Arch Surg,1997.132(12): p.1263-9; discussion1269-70.
    Ren, Y., et al., Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance ofapoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum,2003.48(10): p.2888-97.
    1Huugen, D., et al., Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacteriallipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol,2005.167(1): p.47-58.
    2Kallenberg, C.G., P. Heeringa, and C.A. Stegeman, Mechanisms of Disease: pathogenesis and treatment ofANCA-associated vasculitides. Nat Clin Pract Rheumatol,2006.2(12): p.661-70.
    3Brinkmann, V., et al., Neutrophil extracellular traps kill bacteria. Science,2004.303(5663): p.1532-5.
    4Villanueva, E., et al., Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatorymolecules in systemic lupus erythematosus. J Immunol,2011.187(1): p.538-52.
    5Sangaletti, S., et al., Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloiddendritic cells toward ANCA induction and associated autoimmunity. Blood,2012.120(15): p.3007-18.
    6Martinez Valle, F., et al., DNase1and systemic lupus erythematosus. Autoimmun Rev,2008.7(5): p.359-63.
    1Steinman, R.M., The dendritic cell system and its role in immunogenicity. Annu Rev Immunol,1991.9: p.271-96.
    2Iwasaki, A. and R. Medzhitov, Regulation of adaptive immunity by the innate immune system. Science,2010.327(5963): p.291-5.
    3Steinman, R.M., et al., The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med,2000.191(3): p.411-6.
    4Sallusto, F., C.R. Mackay, and A. Lanzavecchia, The role of chemokine receptors in primary, effector, and memory
    5immune responses. Annu Rev Immunol,2000.18: p.593-620.Adorini, L., et al., Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cellsinhibiting allograft rejection and autoimmune diseases. J Cell Biochem,2003.88(2): p.227-33.
    6Ferraccioli, G. and G. Zizzo, The potential role of Th17in mediating the transition from acute to chronic autoimmuneinflammation: rheumatoid arthritis as a model. Discov Med,2011.11(60): p.413-24.
    7Bettelli, E., et al., Reciprocal developmental pathways for the generation of pathogenic effector TH17and regulatory Tcells. Nature,2006.441(7090): p.235-8.
    8Conforti-Andreoni, C., et al., Uric acid-driven Th17differentiation requires inflammasome-derived IL-1and IL-18. JImmunol,2011.187(11): p.5842-50.
    Mangan, P.R., et al., Transforming growth factor-beta induces development of the T(H)17lineage. Nature,2006.441(7090): p.231-4.
    1Wilde, B., et al., Dendritic cells in renal biopsies of patients with ANCA-associated vasculitis. Nephrol Dial Transplant,2009.24(7): p.2151-6.
    Kain, R., et al., Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med,2008.14(10): p.1088-96.
    1Akgul, C. and S.W. Edwards, Regulation of neutrophil apoptosis via death receptors. Cell Mol Life Sci,2003.60(11): p.2402-8.
    2Jimenez, M.F., et al., Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome.
    3Arch Surg,1997.132(12): p.1263-9; discussion1269-70.Mandi, Y., et al., Effects of tumor necrosis factor and pentoxifylline on ICAM-1expression on humanpolymorphonuclear granulocytes. Int Arch Allergy Immunol,1997.114(4): p.329-35.
    4Watts, R.A. and D.G. Scott, ANCA vasculitis: to lump or split? Why we should study MPA and GPA separately.Rheumatology (Oxford),2012.51(12): p.2115-7.
    5Hao, J., et al., A pro-inflammatory role of C5L2in C5a-primed neutrophils for ANCA-induced activation. PLoS One,2013.8(6): p. e66305.
    6Huugen, D., et al., Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacteriallipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol,2005.167(1): p.47-58.
    Kallenberg, C.G., P. Heeringa, and C.A. Stegeman, Mechanisms of Disease: pathogenesis and treatment ofANCA-associated vasculitides. Nat Clin Pract Rheumatol,2006.2(12): p.661-70.
    1van Rossum, A.P., P.C. Limburg, and C.G. Kallenberg, Activation, apoptosis, and clearance of neutrophils in Wegener'sgranulomatosis. Ann N Y Acad Sci,2005.1051: p.1-11.
    2Ren, Y., et al., Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance ofapoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum,2003.48(10): p.2888-97.
    3Kain, R., et al., Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med,2008.14(10): p.1088-96.
    4Steinman, R.M., The dendritic cell system and its role in immunogenicity. Annu Rev Immunol,1991.9: p.271-96.
    1Savill, J.S., et al., Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the
    2neutrophil leads to its recognition by macrophages. J Clin Invest,1989.83(3): p.865-75.Gille, C., et al., Clearance of apoptotic neutrophils is diminished in cord blood monocytes and does not lead to reducedIL-8production. Pediatr Res,2009.66(5): p.507-12.
    1Chilvers, E.R., et al., The function and fate of neutrophils at the inflamed site: prospects for therapeutic intervention. J
    2R Coll Physicians Lond,2000.34(1): p.68-74.van Rossum, A.P., P.C. Limburg, and C.G. Kallenberg, Activation, apoptosis, and clearance of neutrophils in Wegener'sgranulomatosis. Ann N Y Acad Sci,2005.1051: p.1-11.
    3Steinman, R.M., Linking innate to adaptive immunity through dendritic cells. Novartis Found Symp,2006.279: p.101-9; discussion109-13,216-9.
    4Donnelly, S., et al., Impaired recognition of apoptotic neutrophils by the C1q/calreticulin and CD91pathway insystemic lupus erythematosus. Arthritis Rheum,2006.54(5): p.1543-56.
    5Paunel-Gorgulu, A., et al., Stimulation of Fas signaling down-regulates activity of neutrophils from major traumapatients with SIRS. Immunobiology,2011.216(3): p.334-42.
    Abdgawad, M., et al., Decreased neutrophil apoptosis in quiescent ANCA-associated systemic vasculitis. PLoS One,2012.7(3): p. e32439.
    1Brinkmann, V., et al., Neutrophil extracellular traps kill bacteria. Science,2004.303(5663): p.1532-5.
    2Steinberg, K.P., et al., Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am JRespir Crit Care Med,1994.150(1): p.113-22.
    3Iwasaki, A. and R. Medzhitov, Regulation of adaptive immunity by the innate immune system. Science,2010.327(5963): p.291-5.
    4Steinman, R.M., et al., The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med,2000.191(3): p.411-6.
    Sallusto, F., C.R. Mackay, and A. Lanzavecchia, The role of chemokine receptors in primary, effector, and memoryimmune responses. Annu Rev Immunol,2000.18: p.593-620.
    1Acosta-Rodriguez, E.V., et al., Interleukins1beta and6but not transforming growth factor-beta are essential for thedifferentiation of interleukin17-producing human T helper cells. Nat Immunol,2007.8(9): p.942-9.
    2Wing, K. and S. Sakaguchi, Regulatory T cells exert checks and balances on self tolerance and autoimmunity. NatImmunol,2010.11(1): p.7-13.
    3Clayton, A.R., et al., Dendritic cell uptake of human apoptotic and necrotic neutrophils inhibits CD40, CD80, andCD86expression and reduces allogeneic T cell responses: relevance to systemic vasculitis. Arthritis Rheum,2003.48(8):p.2362-74.
    1Bluestone, J.A. and A.K. Abbas, Natural versus adaptive regulatory T cells. Nat Rev Immunol,2003.3(3): p.253-7.
    2Serhan, C.N., et al., Resolution of inflammation: state of the art, definitions and terms. FASEB J,2007.21(2): p.325-32.
    3Nathan, C., Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol,2006.6(3): p.173-82.
    4Kennedy, A.D. and F.R. DeLeo, Neutrophil apoptosis and the resolution of infection. Immunol Res,2009.43(1-3): p.25-61.
    Villanueva, E., et al., Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatorymolecules in systemic lupus erythematosus. J Immunol,2011.187(1): p.538-52.
    1Lekstrom-Himes, J.A. and J.I. Gallin, Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med,2000.343(23): p.1703-14.
    2Jaillon, S., et al., Neutrophils in innate and adaptive immunity. Semin Immunopathol,2013.35(4): p.377-94.
    3Brinkmann, V., et al., Neutrophil extracellular traps kill bacteria. Science,2004.303(5663): p.1532-5.
    4Villanueva, E., et al., Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatorymolecules in systemic lupus erythematosus. J Immunol,2011.187(1): p.538-52.
    5Kain, R., et al., A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescenticglomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2in neutrophil granulocytes and a related membraneprotein in glomerular endothelial cells. J Exp Med,1995.181(2): p.585-97.
    Abdgawad, M., et al., Decreased neutrophil apoptosis in quiescent ANCA-associated systemic vasculitis. PLoS One,2012.7(3): p. e32439.
    1Harper, L., et al., Neutrophil priming and apoptosis in anti-neutrophil cytoplasmic autoantibody-associated vasculitis.Kidney Int,2001.59(5): p.1729-38.
    2Sangaletti, S., et al., Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloiddendritic cells toward ANCA induction and associated autoimmunity. Blood,2012.120(15): p.3007-18.
    Kain, R., et al., Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med,2008.14(10): p.1088-96.
    1Cassatella, M.A., M. Locati, and A. Mantovani, Never underestimate the power of a neutrophil. Immunity,2009.31(5):p.698-700.
    2Brinkmann, V., et al., Neutrophil extracellular traps kill bacteria. Science,2004.303(5663): p.1532-5.
    3Beiter, K., et al., An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. CurrBiol,2006.16(4): p.401-7.
    4Fuchs, T.A., et al., Novel cell death program leads to neutrophil extracellular traps. J Cell Biol,2007.176(2): p.231-41.
    Kain, R., et al., Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med,2008.14(10): p.1088-96.
    1Hao, J., et al., A pro-inflammatory role of C5L2in C5a-primed neutrophils for ANCA-induced activation. PLoS One,2013.8(6): p. e66305.
    2Steinman, R.M., The dendritic cell system and its role in immunogenicity. Annu Rev Immunol,1991.9: p.271-96.
    3Steinman, R.M., et al., The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med,2000.191(3): p.411-6.
    4Sangaletti, S., et al., Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloiddendritic cells toward ANCA induction and associated autoimmunity. Blood,2012.120(15): p.3007-18.
    5Ferraccioli, G. and G. Zizzo, The potential role of Th17in mediating the transition from acute to chronic autoimmuneinflammation: rheumatoid arthritis as a model. Discov Med,2011.11(60): p.413-24.
    Nogueira, E., et al., Serum IL-17and IL-23levels and autoantigen-specific Th17cells are elevated in patients withANCA-associated vasculitis. Nephrol Dial Transplant,2010.25(7): p.2209-17.
    1Takeuchi, S., et al., Lysosomal-associated membrane protein-2plays an important role in the pathogenesis of primarycutaneous vasculitis. Rheumatology (Oxford),2013.52(9): p.1592-8.
    2Martinez Valle, F., et al., DNase1and systemic lupus erythematosus. Autoimmun Rev,2008.7(5): p.359-63.
    1Kallenberg, C.G. and M.H. Zhao, Evolving concepts in pathogenesis and treatment of ANCA-associated systemicvasculitides. Nephrology (Carlton),2009.14(1): p.1-2.
    2Chen, M. and C.G. Kallenberg, New advances in the pathogenesis of ANCA-associated vasculitides. Clin ExpRheumatol,2009.27(1Suppl52): p. S108-14.
    3Cristea, A., et al., Antineutrophil cytoplasmic autoantibodies (ANCA)--markers in diagnosis and monitoring systemicvasculitides. Rom J Intern Med,1995.33(1-2): p.37-46.
    van Paassen, P., J.W. Tervaert, and P. Heeringa, Mechanisms of vasculitis: how pauci-immune is ANCA-associatedrenal vasculitis? Nephron Exp Nephrol,2007.105(1): p. e10-6.
    1Kain, R., et al., Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med,2008.14(10): p.1088-96.
    2Mattei, M.G., et al., Two human lysosomal membrane glycoproteins, h-lamp-1and h-lamp-2, are encoded by geneslocalized to chromosome13q34and chromosome Xq24-25, respectively. J Biol Chem,1990.265(13): p.7548-51.
    3Eskelinen, E.L., et al., Unifying nomenclature for the isoforms of the lysosomal membrane protein LAMP-2. Traffic,42005.6(11): p.1058-61.Schneede, A., et al., Role for LAMP-2in endosomal cholesterol transport. J Cell Mol Med,2011.15(2): p.280-95.
    5Binker, M.G., et al., Arrested maturation of Neisseria-containing phagosomes in the absence of the lysosome-associatedmembrane proteins, LAMP-1and LAMP-2. Cell Microbiol,2007.9(9): p.2153-66.
    6Eskelinen, E.L., Roles of LAMP-1and LAMP-2in lysosome biogenesis and autophagy. Mol Aspects Med,2006.27(5-6): p.495-502.
    7Furuta, A., et al., Lysosomal storage and advanced senescence in the brain of LAMP-2-deficient Danon disease. ActaNeuropathol,2013.125(3): p.459-61.
    8Delogu, L.G., et al., Infectious diseases and autoimmunity. J Infect Dev Ctries,2011.5(10): p.679-87.
    Pendergraft, W.F.,3rd, et al., Autoimmunity is triggered by cPR-3(105-201), a protein complementary to humanautoantigen proteinase-3. Nat Med,2004.10(1): p.72-9.
    1Laudien, M., et al., Nasal carriage of Staphylococcus aureus and endonasal activity in Wegener s granulomatosis ascompared to rheumatoid arthritis and chronic Rhinosinusitis with nasal polyps. Clin Exp Rheumatol,2010.28(1Suppl57): p.51-5.
    Kain, R., et al., Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med,2008.14(10): p.1088-96.
    1Kain, R., et al., Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med,2008.14(10): p.1088-96.
    2Roth, A.J., et al., Anti-LAMP-2antibodies are not prevalent in patients with antineutrophil cytoplasmic autoantibodyglomerulonephritis. J Am Soc Nephrol,2012.23(3): p.545-55.
    3Kain, R., L29. Relevance of anti-LAMP-2in vasculitis: why the controversy. Presse Med,2013.42(4Pt2): p.584-8.
    1Kain, R., L29. Relevance of anti-LAMP-2in vasculitis: why the controversy. Presse Med,2013.42(4Pt2): p.584-8.
    2Kessenbrock, K., et al., Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med,2009.15(6): p.623-5.
    1Steinman RM, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology,quantitation, tissue distribution. J Exp Med1973;137: p.1142–1162.
    2Steinman RM: Dendritic cells: understanding immunogenicity. Eur J Immunol2007;37(sup-pl1): p.S53–S60.
    3Palucka K, Banchereau J: Cancer immunotherapy via dendritic cells. Nat Rev Cancer2012;12: p.65–277.
    Liu YC, Simmons DP, Li X, Abbott DW, Boom WH, Harding CV: TLR2signaling depletes IRAK1and inhibitsinduction of type I IFN by TLR7/9. J Immunol2012;188: p.1019–1026.
    1Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM: Efficient targeting of protein antigen tothe dendritic cell receptor DEC-205in the steady state leads to antigen presentation on major histocom-patibility complexclass I products and peripheral CD8+T cell tolerance. J Exp Med2002;196: p.1627–1638.
    2Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, et al: Constitutive ablation of dendritic cells breaksself-tolerance of CD4+T cells and results in spontaneous fatal auto-immunity. J Exp Med2009;206: p.549–559.
    3Schildknecht A, Brauer S, Brenner C, Lahl K, Schild H, Sparwasser T, et al: FoxP3+regulatory T cells essentiallycontribute to periph-eral CD8+T-cell tolerance induced by steady state dendritic cells. Proc Natl Acad Sci USA2010;107: p.199–203.
    4Pulendran B, Tang H, Manicassamy S: Pro-gramming dendritic cells to induce T(H)2and tolerogenic responses. NatImmunol2010;11: p.647–655.
    5Lutz MB: Therapeutic potential of semimature dendritic cells for tolerance induction. Front Immunol2012;3: p.123.
    1Sporri R, Reis e Sousa C: Inflammatory mediators are insufficient for full dendritic cell activation and promoteexpansion of CD4+T cell populations lacking helper function. Nat Immunol2005;6: p.163–170.
    2Reis e Sousa C: Dendritic cells in a mature age. Nat Rev Immunol2006;6: p.476–483.
    3Rouard H, Marquet J, Leon A, Maison P, Haioun C, Copie-Bergman C, et al: IL-12secreting dendritic cells arerequired for opti-mum activation of human secondary lym-phoid tissue T cells. J Immunother2002;25: p.324–333.
    4Munn DH: Tolerogenic antigen-presenting cells. Ann NY Acad Sci2002;961: p.343–345.
    5Pletinckx K, Dohler A, Pavlovic V, Lutz MB: Role of dendritic cell maturity/costimulation for generation, homeostasis,and suppressive activity of regulatory T cells. Front Immunol2011;2: p.39.
    6Rutella S, Bonanno G, Pierelli L, Mariotti A, Capoluongo E, Contemi AM, et al: Granulo-cyte colony-stimulatingfactor promotes the generation of regulatory DC through induc-tion of IL-10and IFN-alpha. Eur J Immunol2004;34: p.1291–1302.
    7Pacciani V, Gregori S, Chini L, Corrente S, Chianca M, Moschese V, et al: Induction of anergic allergen-specificsuppressor T cells using tolerogenic dendritic cells derived from children with allergies to house dust mites. J AllergyClin Immunol2010;125: p.727–736.
    1Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, et al: High expression of ILT3and ILT4is a generalfeature of tolero-genic dendritic cells. Transpl Immunol2003;11: p.245–258.
    2Penna G, Amuchastegui S, Laverny G, Ador-ini L: Vitamin D receptor agonists in the treat-ment of autoimmunediseases: selective targe-ting of myeloid but not plasmacytoid dendr-itic cells. J Bone Miner Res2007;22(suppl2): p.V69–V73.
    3Hackstein H, Thomson AW: Dendritic cells: emerging pharmacological targets of immu-nosuppressive drugs. Nat RevImmunol2004;4: p.24–34.
    Griffith TS, Ferguson TA: Cell death in the maintenance and abrogation of tolerance: the five Ws of dying cells.Immunity2011;35: p.456–466.
    1Ferguson TA, Griffith TS: A vision of cell death: Fas ligand and immune privilege10years later. Immunol Rev2006;213: p.228–238.
    2Boisgerault F, Liu Y, Anosova N, Dana R, Benichou G: Differential roles of direct and indirect allorecognitionpathways in the rejection of skin and corneal transplants. Trans-plantation2009;87: p.16–23.
    34Wallet MA, Sen P, Tisch R: Immunoregulation of dendritic cells. Clin Med Res2005;3: p.166–175.Saas P, Angelot F, Bardiaux L, Seilles E, GarnacheOttou F, Perruche S: Phosphatidylserine expressing cell by productsin transfusion: a pro-inflammatory or an anti-inflammatory effect? Transfus Clin Biol2012;19: p.90–97.
    5Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, et al: Autoimmune disease and impaireduptake of apoptotic cells in MFG-E8-deficient mice. Science2004;304: p.1147–1150.
    6Kornete M, Piccirillo CA: Functional cross-talk between dendritic cells and Foxp3(+) regulatory T cells in themaintenance of immune tolerance. Front Immunol2012;3: p.165.
    7Maldonado RA, von Andrian UH: How tolerogenic dendritic cells induce regulatory T cells. Adv Immunol2010;108:p.111–165.
    Hurwitz AA, Watkins SK: Immune suppres-sion in the tumor microenvironment: a role for dendritic cell-mediatedtolerization of T cells. Cancer Immunol Immunother2012;61: p.289–293.
    1Sela U, Olds P, Park A, Schlesinger SJ, Stein-man RM: Dendritic cells induce antigen-spe-cific regulatory T cells thatprevent graft ver-sus host disease and persist in mice. J Exp Med2011;208: p.2489–2496.
    2Marin Gallen S, Clemente Casares X, Planas R, Pujol Autonell I, Carrascal J, Carrillo J, et al: Dendritic cells pulsedwith antigen specific apoptotic bodies prevent experimental type1diabetes. Clin Exp Immunol2010;160: p.207–214.
    3Popov I, Li M, Zheng X, San H, Zhang X, Ichim TE, et al: Preventing autoimmune arthritis using antigen specificimmature den-dritic cells: a novel tolerogenic vaccine. Arthritis Res Ther2006;8: p. R141.
    van Kooten C, Lombardi G, Gelderman KA, Sagoo P, Buckland M, Lechler R, et al: Den-dritic cells as a tool to inducetransplantation tolerance: obstacles and opportunities. Trans-plantation2011;91: p.2.
    [1] Kallenberg, C.G. and M.H. Zhao, Evolving concepts in pathogenesis and treatment ofANCA-associated systemic vasculitides. Nephrology (Carlton),2009.14(1): p.1-2.
    [2] Guillevin, L.,[Treatment of ANCA associated systemic necrotizing vasculitides]. BullAcad Natl Med,2008.192(6): p.1175-87; discussion1188.
    [3] Chen, M. and C.G. Kallenberg, New advances in the pathogenesis ofANCA-associated vasculitides. Clin Exp Rheumatol,2009.27(1Suppl52): p.S108-14.
    [4] Jennette, J.C., et al., Nomenclature of systemic vasculitides. Proposal of aninternational consensus conference. Arthritis Rheum,1994.37(2): p.187-92.
    [5] Hauer, H.A., et al., Determinants of outcome in ANCA-associated glomerulonephritis:a prospective clinico-histopathological analysis of96patients. Kidney Int,2002.62(5): p.1732-42.
    [6] De Lind van Wijngaarden, R.A., et al., Clinical and histologic determinants of renaloutcome in ANCA-associated vasculitis: A prospective analysis of100patients withsevere renal involvement. J Am Soc Nephrol,2006.17(8): p.2264-74.
    [7] Kallenberg, C.G., et al., Anti-neutrophil cytoplasmic antibodies: current diagnosticand pathophysiological potential. Kidney Int,1994.46(1): p.1-15.
    [8] Pfister, H., et al., Antineutrophil cytoplasmic autoantibodies against the murinehomolog of proteinase3(Wegener autoantigen) are pathogenic in vivo. Blood,2004.104(5): p.1411-8.
    [9] Xiao, H., et al., Antineutrophil cytoplasmic autoantibodies specific formyeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest,2002.110(7): p.955-63.
    [10] Tervaert, J.W., et al., Association between active Wegener's granulomatosis andanticytoplasmic antibodies. Arch Intern Med,1989.149(11): p.2461-5.
    [11] Tervaert, J.W., et al., Prevention of relapses in Wegener's granulomatosis by treatmentbased on antineutrophil cytoplasmic antibody titre. Lancet,1990.336(8717): p.709-11.
    [12] Jennette, J.C., et al.,2012revised International Chapel Hill Consensus ConferenceNomenclature of Vasculitides. Arthritis Rheum,2013.65(1): p.1-11.
    [13] Lionaki, S., et al., Classification of antineutrophil cytoplasmic autoantibodyvasculitides: the role of antineutrophil cytoplasmic autoantibody specificity formyeloperoxidase or proteinase3in disease recognition and prognosis. ArthritisRheum,2012.64(10): p.3452-62.
    [14] Finkielman, J.D., et al., Antiproteinase3antineutrophil cytoplasmic antibodies anddisease activity in Wegener granulomatosis. Ann Intern Med,2007.147(9): p.611-9.
    [15] Heeringa, P. and J.W. Tervaert, Pathophysiology of ANCA-associated vasculitides:are ANCA really pathogenic? Kidney Int,2004.65(5): p.1564-7.
    [16] Watts, R.A. and D.G. Scott, ANCA vasculitis: to lump or split? Why we should studyMPA and GPA separately. Rheumatology (Oxford),2012.51(12): p.2115-7.
    [17] Hao, J., et al., A pro-inflammatory role of C5L2in C5a-primed neutrophils forANCA-induced activation. PLoS One,2013.8(6): p. e66305.
    [18] Xiao, H., et al., The role of neutrophils in the induction of glomerulonephritis byanti-myeloperoxidase antibodies. Am J Pathol,2005.167(1): p.39-45.
    [19] Lee, C.Y., M. Herant, and V. Heinrich, Target-specific mechanics of phagocytosis:protrusive neutrophil response to zymosan differs from the uptake of antibody-taggedpathogens. J Cell Sci,2011.124(Pt7): p.1106-14.
    [20] Ohlsson, S.M., et al., Phagocytosis of apoptotic cells by macrophages inanti-neutrophil cytoplasmic antibody-associated systemic vasculitis. Clin ExpImmunol,2012.170(1): p.47-56.
    [21] Chilvers, E.R., et al., The function and fate of neutrophils at the inflamed site:prospects for therapeutic intervention. J R Coll Physicians Lond,2000.34(1): p.68-74.
    [22] Savill, J., et al., A blast from the past: clearance of apoptotic cells regulates immuneresponses. Nat Rev Immunol,2002.2(12): p.965-75.
    [23] van Rossum, A.P., P.C. Limburg, and C.G. Kallenberg, Activation, apoptosis, andclearance of neutrophils in Wegener's granulomatosis. Ann N Y Acad Sci,2005.1051:p.1-11.
    [24] Jimenez, M.F., et al., Dysregulated expression of neutrophil apoptosis in the systemicinflammatory response syndrome. Arch Surg,1997.132(12): p.1263-9; discussion1269-70.
    [25]林玲,方力争,王琦.重症急性胰腺炎外周血中性粒细胞凋亡与多器官功能障碍综合征.中国实用外科杂志,2003,23(9):552.
    [26] Courtney, P.A., et al., Increased apoptotic peripheral blood neutrophils in systemiclupus erythematosus: relations with disease activity, antibodies to double strandedDNA, and neutropenia. Ann Rheum Dis,1999.58(5): p.309-14.
    [27] Ren, Y., et al., Increased apoptotic neutrophils and macrophages and impairedmacrophage phagocytic clearance of apoptotic neutrophils in systemic lupuserythematosus. Arthritis Rheum,2003.48(10): p.2888-97.
    [28] Harper, L., et al., Antineutrophil cytoplasmic antibodies induce reactiveoxygen-dependent dysregulation of primed neutrophil apoptosis and clearance bymacrophages. Am J Pathol,2000.157(1): p.211-20.
    [29] Huugen, D., et al., Aggravation of anti-myeloperoxidase antibody-inducedglomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosisfactor-alpha. Am J Pathol,2005.167(1): p.47-58.
    [30] Harper, L. and C.O. Savage, Pathogenesis of ANCA-associated systemic vasculitis. JPathol,2000.190(3): p.349-59.
    [31] Harper, L., et al., IgG from myeloperoxidase-antineutrophil cytoplasmicantibody-positive patients stimulates greater activation of primed neutrophils thanIgG from proteinase3-antineutrophil cytosplasmic antibody-positive patients.Arthritis Rheum,2001.44(4): p.921-30.
    [32] Schreiber, A., F.C. Luft, and R. Kettritz, Membrane proteinase3expression andANCA-induced neutrophil activation. Kidney Int,2004.65(6): p.2172-83.
    [33] Yang, J.J., et al., Circumvention of normal constraints on granule protein geneexpression in peripheral blood neutrophils and monocytes of patients withantineutrophil cytoplasmic autoantibody-associated glomerulonephritis. J Am SocNephrol,2004.15(8): p.2103-14.
    [34] Yang, J.J., et al., Target antigens for anti-neutrophil cytoplasmic autoantibodies(ANCA) are on the surface of primed and apoptotic but not unstimulated neutrophils.Clin Exp Immunol,2000.121(1): p.165-72.
    [35] Kallenberg, C.G., P. Heeringa, and C.A. Stegeman, Mechanisms of Disease:pathogenesis and treatment of ANCA-associated vasculitides. Nat Clin PractRheumatol,2006.2(12): p.661-70.
    [36] Brinkmann, V., et al., Neutrophil extracellular traps kill bacteria. Science,2004.303(5663): p.1532-5.
    [37] Villanueva, E., et al., Netting neutrophils induce endothelial damage, infiltrate tissues,and expose immunostimulatory molecules in systemic lupus erythematosus. JImmunol,2011.187(1): p.538-52.
    [38] Sangaletti, S., et al., Neutrophil extracellular traps mediate transfer of cytoplasmicneutrophil antigens to myeloid dendritic cells toward ANCA induction and associatedautoimmunity. Blood,2012.120(15): p.3007-18.
    [39] Martinez Valle, F., et al., DNase1and systemic lupus erythematosus. Autoimmun Rev,2008.7(5): p.359-63.
    [40] Steinman, R.M., The dendritic cell system and its role in immunogenicity. Annu RevImmunol,1991.9: p.271-96.
    [41] Iwasaki, A. and R. Medzhitov, Regulation of adaptive immunity by the innate immunesystem. Science,2010.327(5963): p.291-5.
    [42] Joffre, O., et al., Inflammatory signals in dendritic cell activation and the induction ofadaptive immunity. Immunol Rev,2009.227(1): p.234-47.
    [43] Steinman, R.M., et al., The induction of tolerance by dendritic cells that have capturedapoptotic cells. J Exp Med,2000.191(3): p.411-6.
    [44] Steinman, R.M. and M.C. Nussenzweig, Avoiding horror autotoxicus: the importanceof dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A,2002.99(1):p.351-8.
    [45] Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity.Nature,1998.392(6673): p.245-52.
    [46] Banchereau, J., et al., Immunobiology of dendritic cells. Annu Rev Immunol,2000.18: p.767-811.
    [47] Sallusto, F., C.R. Mackay, and A. Lanzavecchia, The role of chemokine receptors inprimary, effector, and memory immune responses. Annu Rev Immunol,2000.18: p.593-620.
    [48] Steinman, R.M., D. Hawiger, and M.C. Nussenzweig, Tolerogenic dendritic cells.Annu Rev Immunol,2003.21: p.685-711.
    [49] Adorini, L., et al., Tolerogenic dendritic cells induced by vitamin D receptor ligandsenhance regulatory T cells inhibiting allograft rejection and autoimmune diseases. JCell Biochem,2003.88(2): p.227-33.
    [50] Ferraccioli, G. and G. Zizzo, The potential role of Th17in mediating the transitionfrom acute to chronic autoimmune inflammation: rheumatoid arthritis as a model.Discov Med,2011.11(60): p.413-24.
    [51] Furuzawa-Carballeda, J., M.I. Vargas-Rojas, and A.R. Cabral, Autoimmuneinflammation from the Th17perspective. Autoimmun Rev,2007.6(3): p.169-75.
    [52] Haider, A.S., et al., Identification of cellular pathways of "type1," Th17T cells, andTNF-and inducible nitric oxide synthase-producing dendritic cells in autoimmuneinflammation through pharmacogenomic study of cyclosporine A in psoriasis. JImmunol,2008.180(3): p.1913-20.
    [53] Raveney, B.J., S. Oki, and T. Yamamura, Nuclear receptor NR4A2orchestrates Th17cell-mediated autoimmune inflammation via IL-21signalling. PLoS One,2013.8(2):p. e56595.
    [54] Nogueira, E., et al., Serum IL-17and IL-23levels and autoantigen-specific Th17cellsare elevated in patients with ANCA-associated vasculitis. Nephrol Dial Transplant,2010.25(7): p.2209-17.
    [55] Kolls, J.K. and A. Linden, Interleukin-17family members and inflammation.Immunity,2004.21(4): p.467-76.
    [56] Bettelli, E., et al., Reciprocal developmental pathways for the generation ofpathogenic effector TH17and regulatory T cells. Nature,2006.441(7090): p.235-8.
    [57] Mangan, P.R., et al., Transforming growth factor-beta induces development of theT(H)17lineage. Nature,2006.441(7090): p.231-4.
    [58] Cornelissen, F., J.P. van Hamburg, and E. Lubberts, The IL-12/IL-23axis and its rolein Th17cell development, pathology and plasticity in arthritis. Curr Opin InvestigDrugs,2009.10(5): p.452-62.
    [59] Wing, K. and S. Sakaguchi, Regulatory T cells exert checks and balances on selftolerance and autoimmunity. Nat Immunol,2010.11(1): p.7-13.
    [60] Dong, C., TH17cells in development: an updated view of their molecular identity andgenetic programming. Nat Rev Immunol,2008.8(5): p.337-48.
    [61] Langrish, C.L., et al., IL-23drives a pathogenic T cell population that inducesautoimmune inflammation. J Exp Med,2005.201(2): p.233-40.
    [62] Conforti-Andreoni, C., et al., Uric acid-driven Th17differentiation requiresinflammasome-derived IL-1and IL-18. J Immunol,2011.187(11): p.5842-50.
    [63] Wilde, B., et al., Dendritic cells in renal biopsies of patients with ANCA-associatedvasculitis. Nephrol Dial Transplant,2009.24(7): p.2151-6.
    [64] Kain, R., et al., Molecular mimicry in pauci-immune focal necrotizingglomerulonephritis. Nat Med,2008.14(10): p.1088-96.
    [65] Segal, A.W. and A. Abo, The biochemical basis of the NADPH oxidase of phagocytes.Trends Biochem Sci,1993.18(2): p.43-7.
    [66] Akgul, C. and S.W. Edwards, Regulation of neutrophil apoptosis via death receptors.Cell Mol Life Sci,2003.60(11): p.2402-8.
    [67] Mandi, Y., et al., Effects of tumor necrosis factor and pentoxifylline on ICAM-1expression on human polymorphonuclear granulocytes. Int Arch Allergy Immunol,1997.114(4): p.329-35.
    [68] Fox, S., et al., Neutrophil apoptosis: relevance to the innate immune response andinflammatory disease. J Innate Immun,2010.2(3): p.216-27.
    [69] Savill, J.S., et al., Macrophage phagocytosis of aging neutrophils in inflammation.Programmed cell death in the neutrophil leads to its recognition by macrophages. JClin Invest,1989.83(3): p.865-75.
    [70] Gille, C., et al., Clearance of apoptotic neutrophils is diminished in cord bloodmonocytes and does not lead to reduced IL-8production. Pediatr Res,2009.66(5): p.507-12.
    [71] Steinman, R.M., Linking innate to adaptive immunity through dendritic cells.Novartis Found Symp,2006.279: p.101-9; discussion109-13,216-9.
    [72] Donnelly, S., et al., Impaired recognition of apoptotic neutrophils by theC1q/calreticulin and CD91pathway in systemic lupus erythematosus. ArthritisRheum,2006.54(5): p.1543-56.
    [73] Gaipl, U.S., et al., Inefficient clearance of dying cells and autoreactivity. Curr TopMicrobiol Immunol,2006.305: p.161-76.
    [74] Biffl, W.L., et al., Neutrophils are primed for cytotoxicity and resist apoptosis ininjured patients at risk for multiple organ failure. Surgery,1999.126(2): p.198-202.
    [75] Paunel-Gorgulu, A., et al., Stimulation of Fas signaling down-regulates activity ofneutrophils from major trauma patients with SIRS. Immunobiology,2011.216(3): p.334-42.
    [76] Neal, M.D., et al., Preinjury statin use is associated with a higher risk of multipleorgan failure after injury: a propensity score adjusted analysis. J Trauma,2009.67(3):p.476-82; discussion482-4.
    [77] Abdgawad, M., et al., Decreased neutrophil apoptosis in quiescent ANCA-associatedsystemic vasculitis. PLoS One,2012.7(3): p. e32439.
    [78] Steinberg, K.P., et al., Evolution of bronchoalveolar cell populations in the adultrespiratory distress syndrome. Am J Respir Crit Care Med,1994.150(1): p.113-22.
    [79] Acosta-Rodriguez, E.V., et al., Interleukins1beta and6but not transforming growthfactor-beta are essential for the differentiation of interleukin17-producing human Thelper cells. Nat Immunol,2007.8(9): p.942-9.
    [80] Clayton, A.R., et al., Dendritic cell uptake of human apoptotic and necroticneutrophils inhibits CD40, CD80, and CD86expression and reduces allogeneic T cellresponses: relevance to systemic vasculitis. Arthritis Rheum,2003.48(8): p.2362-74.
    [81] Bluestone, J.A. and A.K. Abbas, Natural versus adaptive regulatory T cells. Nat RevImmunol,2003.3(3): p.253-7.
    [82] Akbari, O., R.H. DeKruyff, and D.T. Umetsu, Pulmonary dendritic cells producingIL-10mediate tolerance induced by respiratory exposure to antigen. Nat Immunol,2001.2(8): p.725-31.
    [83] Serhan, C.N., et al., Resolution of inflammation: state of the art, definitions and terms.FASEB J,2007.21(2): p.325-32.
    [84] Nathan, C., Neutrophils and immunity: challenges and opportunities. Nat RevImmunol,2006.6(3): p.173-82.
    [85] Rossi, A.G., et al., Cyclin-dependent kinase inhibitors enhance the resolution ofinflammation by promoting inflammatory cell apoptosis. Nat Med,2006.12(9): p.1056-64.
    [86] Ren, Y., et al., Apoptotic cells protect mice against lipopolysaccharide-induced shock.J Immunol,2008.180(7): p.4978-85.
    [87] Kennedy, A.D. and F.R. DeLeo, Neutrophil apoptosis and the resolution of infection.Immunol Res,2009.43(1-3): p.25-61.
    [88] Patry, Y.C., et al., Rats injected with syngenic rat apoptotic neutrophils developantineutrophil cytoplasmic antibodies. J Am Soc Nephrol,2001.12(8): p.1764-8.
    [89] Lekstrom-Himes, J.A. and J.I. Gallin, Immunodeficiency diseases caused by defectsin phagocytes. N Engl J Med,2000.343(23): p.1703-14.
    [90] Jaillon, S., et al., Neutrophils in innate and adaptive immunity. Semin Immunopathol,2013.35(4): p.377-94.
    [91] Kain, R., et al., A novel class of autoantigens of anti-neutrophil cytoplasmicantibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membraneglycoprotein h-lamp-2in neutrophil granulocytes and a related membrane protein inglomerular endothelial cells. J Exp Med,1995.181(2): p.585-97.
    [92] Harper, L., et al., Neutrophil priming and apoptosis in anti-neutrophil cytoplasmicautoantibody-associated vasculitis. Kidney Int,2001.59(5): p.1729-38.
    [93] Di Carlo, E., et al., The intriguing role of polymorphonuclear neutrophils in antitumorreactions. Blood,2001.97(2): p.339-45.
    [94] Cassatella, M.A., M. Locati, and A. Mantovani, Never underestimate the power of aneutrophil. Immunity,2009.31(5): p.698-700.
    [95] Buchanan, J.T., et al., DNase expression allows the pathogen group A Streptococcusto escape killing in neutrophil extracellular traps. Curr Biol,2006.16(4): p.396-400.
    [96] Beiter, K., et al., An endonuclease allows Streptococcus pneumoniae to escape fromneutrophil extracellular traps. Curr Biol,2006.16(4): p.401-7.
    [97] Fuchs, T.A., et al., Novel cell death program leads to neutrophil extracellular traps. JCell Biol,2007.176(2): p.231-41.
    [98] Kessenbrock, K., et al., Netting neutrophils in autoimmune small-vessel vasculitis.Nat Med,2009.15(6): p.623-5.
    [99] Roth, A.J., et al., Anti-LAMP-2antibodies are not prevalent in patients withantineutrophil cytoplasmic autoantibody glomerulonephritis. J Am Soc Nephrol,2012.23(3): p.545-55.
    [100] Kain, R., et al., High prevalence of autoantibodies to hLAMP-2in anti-neutrophilcytoplasmic antibody-associated vasculitis. J Am Soc Nephrol,2012.23(3): p.556-66.
    [101] Takeuchi, S., et al., Lysosomal-associated membrane protein-2plays an important rolein the pathogenesis of primary cutaneous vasculitis. Rheumatology (Oxford),2013.52(9): p.1592-8.
    [1] Kallenberg, C.G. and M.H. Zhao, Evolving concepts in pathogenesis and treatment ofANCA-associated systemic vasculitides. Nephrology (Carlton),2009.14(1): p.1-2.
    [2] Guillevin, L.,[Treatment of ANCA associated systemic necrotizing vasculitides]. BullAcad Natl Med,2008.192(6): p.1175-87; discussion1188.
    [3] Chen, M. and C.G. Kallenberg, New advances in the pathogenesis ofANCA-associated vasculitides. Clin Exp Rheumatol,2009.27(1Suppl52): p.S108-14.
    [4] van Paassen, P., J.W. Tervaert, and P. Heeringa, Mechanisms of vasculitis: howpauci-immune is ANCA-associated renal vasculitis? Nephron Exp Nephrol,2007.105(1): p. e10-6.
    [5] Cristea, A., et al., Antineutrophil cytoplasmic autoantibodies (ANCA)--markers indiagnosis and monitoring systemic vasculitides. Rom J Intern Med,1995.33(1-2): p.37-46.
    [6] Kain, R., et al., Molecular mimicry in pauci-immune focal necrotizingglomerulonephritis. Nat Med,2008.14(10): p.1088-96.
    [7] Mattei, M.G., et al., Two human lysosomal membrane glycoproteins, h-lamp-1andh-lamp-2, are encoded by genes localized to chromosome13q34and chromosomeXq24-25, respectively. J Biol Chem,1990.265(13): p.7548-51.
    [8] Kain, R., et al., A novel class of autoantigens of anti-neutrophil cytoplasmicantibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membraneglycoprotein h-lamp-2in neutrophil granulocytes and a related membrane protein inglomerular endothelial cells. J Exp Med,1995.181(2): p.585-97.
    [9] Eskelinen, E.L., et al., Unifying nomenclature for the isoforms of the lysosomalmembrane protein LAMP-2. Traffic,2005.6(11): p.1058-61.
    [10] Schneede, A., et al., Role for LAMP-2in endosomal cholesterol transport. J Cell MolMed,2011.15(2): p.280-95.
    [11] Bosch, X., et al., Immunotherapy for antineutrophil cytoplasmic antibody-associatedvasculitis: challenging the therapeutic status quo? Trends Immunol,2008.29(6): p.280-9.
    [12] Binker, M.G., et al., Arrested maturation of Neisseria-containing phagosomes in theabsence of the lysosome-associated membrane proteins, LAMP-1and LAMP-2. CellMicrobiol,2007.9(9): p.2153-66.
    [13] Eskelinen, E.L., Roles of LAMP-1and LAMP-2in lysosome biogenesis andautophagy. Mol Aspects Med,2006.27(5-6): p.495-502.
    [14] Furuta, A., et al., Lysosomal storage and advanced senescence in the brain ofLAMP-2-deficient Danon disease. Acta Neuropathol,2013.125(3): p.459-61.
    [15] Cottinet, S.L., et al., Danon disease: intrafamilial phenotypic variability related to anovel LAMP-2mutation. J Inherit Metab Dis,2011.34(2): p.515-22.
    [16] Delogu, L.G., et al., Infectious diseases and autoimmunity. J Infect Dev Ctries,2011.5(10): p.679-87.
    [17] Pendergraft, W.F.,3rd, et al., Autoimmunity is triggered by cPR-3(105-201), a proteincomplementary to human autoantigen proteinase-3. Nat Med,2004.10(1): p.72-9.
    [18] Laudien, M., et al., Nasal carriage of Staphylococcus aureus and endonasal activity inWegener s granulomatosis as compared to rheumatoid arthritis and chronicRhinosinusitis with nasal polyps. Clin Exp Rheumatol,2010.28(1Suppl57): p.51-5.
    [19] Roth, A.J., et al., Anti-LAMP-2antibodies are not prevalent in patients withantineutrophil cytoplasmic autoantibody glomerulonephritis. J Am Soc Nephrol,2012.23(3): p.545-55.
    [20] Kain, R., L29. Relevance of anti-LAMP-2in vasculitis: why the controversy. PresseMed,2013.42(4Pt2): p.584-8.
    [21] Kain, R. and A.J. Rees, What is the evidence for antibodies to LAMP-2in thepathogenesis of ANCA associated small vessel vasculitis? Curr Opin Rheumatol,2013.25(1): p.26-34.
    [22] Takeuchi, S., et al., Lysosomal-associated membrane protein-2plays an important rolein the pathogenesis of primary cutaneous vasculitis. Rheumatology (Oxford),2013.
    [23] Clark, S.R., et al., Platelet TLR4activates neutrophil extracellular traps to ensnarebacteria in septic blood. Nat Med,2007.13(4): p.463-9.
    [24] Kessenbrock, K., et al., Netting neutrophils in autoimmune small-vessel vasculitis.Nat Med,2009.15(6): p.623-5.
    [1] Steinman RM, Cohn ZA: Identification of a novel cell type in peripheral lymphoidorgans of mice. I. Morphology, quantitation, tissue distribution. J Exp Med1973;137:p.1142–1162.
    [2] Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature1998;392: p.245–252.
    [3] Steinman RM: Dendritic cells: understanding immunogenicity. Eur J Immunol2007;37(sup-pl1): p.S53–S60.
    [4] Granucci F, Zanoni I, Feau S, Capuano G, Ricciardi Castagnoli P: The regulatory roleof dendritic cells in the immune response. Int Arch Allergy Immunol2004;134:p.179–185.
    [5] Palucka K, Banchereau J: Cancer immunotherapy via dendritic cells. Nat Rev Cancer2012;12: p.65–277.
    [6] Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, et al: Subsets ofhuman dendritic cell precursors express dif-ferent toll-like receptors and respond todif-ferent microbial antigens. J Exp Med2001;194: p.863–869.
    [7] Liu YC, Simmons DP, Li X, Abbott DW, Boom WH, Harding CV: TLR2signalingdepletes IRAK1and inhibits induction of type I IFN by TLR7/9. J Immunol2012;188:p.1019–1026.
    [8] Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM:Efficient targeting of protein antigen to the dendritic cell receptor DEC-205in thesteady state leads to antigen presentation on major histocom-patibility complex class Iproducts and peripheral CD8+T cell tolerance. J Exp Med2002;196: p.1627–1638.
    [9] Legge KL, Gregg RK, Maldonado-Lopez R, Li L, Caprio JC, Moser M, et al: On therole of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity. JExp Med2002;196: p.217–227.
    [10] Ohnmacht C, Pullner A, King SB, Drexler I, Meier S, Brocker T, et al: Constitutiveablation of dendritic cells breaks self-tolerance of CD4+T cells and results inspontaneous fatal auto-immunity. J Exp Med2009;206: p.549–559.
    [11] Dhodapkar MV, Steinman RM: Antigen-bearing immature dendritic cells inducepep-tide-specific CD8(+) regulatory T cells in vivo in humans. Blood2002;100:p.174–177.
    [12] Schildknecht A, Brauer S, Brenner C, Lahl K, Schild H, Sparwasser T, et al: FoxP3+regulatory T cells essentially contribute to periph-eral CD8+T-cell tolerance inducedby steady state dendritic cells. Proc Natl Acad Sci USA2010;107: p.199–203.
    [13] Rouard H, Marquet J, Leon A, Maison P, Haioun C, Copie-Bergman C, et al: IL-12secreting dendritic cells are required for opti-mum activation of human secondarylym-phoid tissue T cells. J Immunother2002;25: p.324–333.
    [14] Pulendran B, Tang H, Manicassamy S: Pro-gramming dendritic cells to induce T(H)2and tolerogenic responses. Nat Immunol2010;11: p.647–655.
    [15] Lutz MB: Therapeutic potential of semimature dendritic cells for tolerance induction.Front Immunol2012;3: p.123.
    [16] Sporri R, Reis e Sousa C: Inflammatory mediators are insufficient for full dendriticcell activation and promote expansion of CD4+T cell populations lacking helperfunction. Nat Immunol2005;6: p.163–170.
    [17] Menges M, Rossner S, Voigtlander C, Schindler H, Kukutsch NA, Bogdan C, et al:Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induceantigen-specific protection of mice from autoimmunity. J Exp Med2002;195: p.15–21.
    [18]Reis e Sousa C: Dendritic cells in a mature age. Nat Rev Immunol2006;6: p.476–483.
    [19]Kalantari T, Kamali-Sarvestani E, Ciric B, Karimi MH, Kalantari M, Faridar A, et al:Generation of immunogenic and tolerogenic clinicalgrade dendritic cells. Immunol Res2011;51: p.153–160.
    [20]Munn DH: Tolerogenic antigen-presenting cells. Ann NY Acad Sci2002;961: p.343–345.
    [21]Pletinckx K, Dohler A, Pavlovic V, Lutz MB: Role of dendritic cellmaturity/costimulation for generation, homeostasis, and suppressive activity ofregulatory T cells. Front Immunol2011;2: p.39.
    [22]Rutella S, Bonanno G, Pierelli L, Mariotti A, Capoluongo E, Contemi AM, et al:Granulo-cyte colony-stimulating factor promotes the generation of regulatory DCthrough induc-tion of IL-10and IFN-alpha. Eur J Immunol2004;34: p.1291–1302.
    [23]Pacciani V, Gregori S, Chini L, Corrente S, Chianca M, Moschese V, et al: Induction ofanergic allergen-specific suppressor T cells using tolerogenic dendritic cells derivedfrom children with allergies to house dust mites. J Allergy Clin Immunol2010;125: p.727–736.
    [24]Manavalan JS, Rossi PC, Vlad G, Piazza F, Yarilina A, Cortesini R, et al: Highexpression of ILT3and ILT4is a general feature of tolero-genic dendritic cells. TransplImmunol2003;11: p.245–258.
    [25]Penna G, Amuchastegui S, Laverny G, Ador-ini L: Vitamin D receptor agonists in thetreat-ment of autoimmune diseases: selective targe-ting of myeloid but notplasmacytoid dendr-itic cells. J Bone Miner Res2007;22(suppl2): p. V69–V73.
    [26]Hackstein H, Thomson AW: Dendritic cells: emerging pharmacological targets ofimmu-nosuppressive drugs. Nat Rev Immunol2004;4: p.24–34.
    [27]Kushwah R, Oliver JR, Zhang J, Siminovitch KA, Hu J: Apoptotic dendritic cellsinduce tolerance in mice through suppression of dendritic cell maturation and inductionof antigen-specific regulatory T cells. J Immunol2009;183: p.7104–7118.
    [28]Griffith TS, Ferguson TA: Cell death in the maintenance and abrogation of tolerance:the five Ws of dying cells. Immunity2011;35: p.456–466.
    [29]Ferguson TA, Griffith TS: A vision of cell death: Fas ligand and immune privilege10years later. Immunol Rev2006;213: p.228–238.
    [30]Boisgerault F, Liu Y, Anosova N, Dana R, Benichou G: Differential roles of direct andindirect allorecognition pathways in the rejection of skin and corneal transplants.Trans-plantation2009;87: p.16–23.
    [31]Wallet MA, Sen P, Tisch R: Immunoregulation of dendritic cells. Clin Med Res2005;3:p.166–175.
    [32]Saas P, Angelot F, Bardiaux L, Seilles E, GarnacheOttou F, Perruche S:Phosphatidylserine expressing cell by products in transfusion: a pro-inflammatory or ananti-inflammatory effect? Transfus Clin Biol2012;19: p.90–97.
    [33]Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, et al:Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice.Science2004;304: p.1147–1150.
    [34]Kornete M, Piccirillo CA: Functional cross-talk between dendritic cells and Foxp3(+)regulatory T cells in the maintenance of immune tolerance. Front Immunol2012;3: p.165.
    [35]Bimczok D, Rau H, Wundrack N, Naumann M, Rothkotter HJ, McCullough K, et al:Choleratoxin promotes the generation of semimature porcine monocyte-deriveddendritic cells that are unable to stimulate T cells. Vet Res2007;38: p.597–612.
    [36]Maldonado RA, von Andrian UH: How tolerogenic dendritic cells induce regulatory Tcells. Adv Immunol2010;108: p.111–165.
    [37]Hurwitz AA, Watkins SK: Immune suppres-sion in the tumor microenvironment: a rolefor dendritic cell-mediated tolerization of T cells. Cancer Immunol Immunother2012;61: p.289–293.
    [38]Sela U, Olds P, Park A, Schlesinger SJ, Stein-man RM: Dendritic cells induceantigen-spe-cific regulatory T cells that prevent graft ver-sus host disease and persist inmice. J Exp Med2011;208: p.2489–2496.
    [39]Marin Gallen S, Clemente Casares X, Planas R, Pujol Autonell I, Carrascal J, Carrillo J,et al: Dendritic cells pulsed with antigen specific apoptotic bodies prevent experimentaltype1diabetes. Clin Exp Immunol2010;160: p.207–214.
    [40]Popov I, Li M, Zheng X, San H, Zhang X, Ichim TE, et al: Preventing autoimmunearthritis using antigen specific immature den-dritic cells: a novel tolerogenic vaccine.Arthritis Res Ther2006;8: p. R141.
    [41]Steinman RM, Banchereau J: Taking dendritic cells into medicine. Nature2007;449: p.419–426.
    [42]van Kooten C, Lombardi G, Gelderman KA, Sagoo P, Buckland M, Lechler R, et al:Den-dritic cells as a tool to induce transplantation tolerance: obstacles andopportunities. Trans-plantation2011;91: p.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700