基于化学流变学的树脂传递模塑工艺过程的数值模拟及灵敏度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,树脂传递模塑工艺(Resin Transfer Molding, RTM)是一种发展很快的复合材料制备工艺。它是指先把按性能和结构要求设计好的增强纤维材料预制体制件置放在模具型腔内,然后使用注射设备在一定压力下,将低粘度树脂体系注入模具型腔中,树脂固化后成型为有纤维预制件支撑的产品工件。由于具有低成本和高生产效率等优势,RTM工艺在很多领域的应用在日益扩大,如航空航天、舰船、汽车、建筑等。
     树脂充填过程是RTM工艺成型过程中的关键环节,模具结构、纤维与树脂的材料性质、加热方式、边缘效应、树脂固化反应现象、工艺参数等都会影响产品的性能和质量。因此,综合考虑各种影响因素,深入研究树脂浸润机理以及动力学过程,将有助于建立复合材料制品制造的缺陷控制体系,从而提高产品质量、降低生产成本。
     本文以RTM工艺树脂流体的充填过程为研究对象,应用多门类学科知识,建立并分析在复杂外场条件下材料体系、工艺条件、材料结构形成与充填行为之间的数学函数关系;耦合求解不同的化学与物理场量方程;自主开发等温和非等温条件下树脂充流动过程的数值模拟核心程序;引入灵敏度分析方法,定量分析工艺及材料性能参数对树脂流场的影响程度及规律。
     主要工作与结论如下:
     针对纤维预制体具有双级多孔介质的特点,采用局部体积平均化理论推导了预制体内树脂的流动控制方程,此动量方程考虑了树脂流体惯性力与粘性力的作用,比一般学者使用的Darcy定律的应用范围更广;基于矩形截面通道的完全发展流动控制方程以及等效渗透率的数学表达式,改进了标准Navier-Stokes方程,获得了边缘区域内树脂的流动控制方程,此模型考虑了模腔厚度对树脂流场的影响;根据大分子链的递归性质,应用全概率理论,推导了逐步聚合反应和链式聚合反应时树脂体系重均分子量的数值计算式。上述方程结合树脂固化反应动力学模型以及化学流变场的基本控制方程,便可实现树脂浸润过程的数学建模。
     为了减少计算复杂性,采用单区域方法,树脂在纤维预制体内和边缘区域内的流动采用一组通用控制方程描述,此方法可避免显式列出这两个区域界面处的边界条件;考虑树脂相与空气相之间的相互作用,流体流动采用两相(树脂相和空气相)流动模型来处理,此方法可避免显式列出树脂流动前沿处的边界条件;应用有限体积法推导了相关场量控制方程的离散表达式;引入SIMPLE算法以及交错网格技术,便可实现压力场与速度场的耦合求解;采用直接积分法或向后差分方法,实现了固化反应动力学方程的离散;采用VOF/PLIC方法实时追踪充填过程中的树脂流动前沿的推进过程。上述方法为完整实施RTM工艺充填阶段的数值模拟提供关键技术支持。
     编写了RTM工艺树脂充填过程的数值模拟核心程序;采用唯象模型和分子模型分别描述两种树脂体系材料(双马来酰亚胺树脂体系和环氧树脂体系)在充填过程中的化学流变行为;模拟分析了树脂固化反应程度、相对分子量、流体粘度、树脂流场随时间的演变规律,以及固化反应、流体温度、充填速度和渗透率对树脂流动前沿、模腔内化学—物理场量分布的影响,获得许多有意义的认识。
     为了定性和定量地研究工艺及材料性能参数对RTM充填过程的影响,引入灵敏度分析方法,推导了相关流场物理量的灵敏度方程以及数学计算式,建立了树脂流动前沿形状的灵敏度表达式,确定了灵敏度方程与树脂流场控制方程的耦合求解方法;数值分析了在恒压和恒流速入口边界条件下,树脂温度、流体速度、注射压力、纤维预制体渗透率及边缘区域渗透率对充填时间和树脂流动前沿影响规律和程度,为提高充填效率与产品质量提出了有价值的建议。
     分析了RTM工艺充模过程中温度场与树脂流场之间的关系特点,考虑厚度方向上的热传导现象,建立了二维流场/三维温度场的耦合求解方法,推导了三维能量方程在空间域和时间域上的离散形式,编写了非等温充填过程数值模拟核心程序;模拟分析了空间节点温度、树脂固化反应程度及粘度随时间的演变规律,探讨了边缘效应以及热传导系数对相关物理量空间分布的影响规律。结果表明,边缘效应会加剧模腔内相关物理场量的不均匀分布。
Recently, Resin Transfer Molding(RTM) is a fast developing technology for manufacturing fiber reinforced composite, which involves that the controlled fabrics are preplaced in the mold cavity, and then the resin with low viscosity is injected under a proper injection pressure, following by a curing stage. As advantages of low cost and high production efficiency, RTM Processes has been applied more and more extensively in many fields, such as aerospace, automotive and architecture industries.
     The resin filling process is the main step in RTM processes. Many factors, such as mold structure, characteristics of fiber and resin, manner of heating, edge effect, resin curing reaction, the processing parameters and so on, will influence the performance and quality of products. As a result, considering the various influencing factors, the mechanism and the dynamic process of resin infiltration should be investigated deeply, and then the defect control system of the advanced composites is established. Consequently, the performance of advanced composites can be improved and the production cost is reduced.
     In this paper, the resin flow process is researched, using multi-disciplines, the functional relationships among the materials systems, processing conditions, material microstructure and flow behavior are constructed and analyzed. The equations fulfilled by the different chemical and physical field variables were solved by an uncoupled algorithm. And then, the core programs for the numerical simulation of isothermal/non-isothermal RTM filling process is developed. The sensitivity analysis method is introduced, in the view of quantitatively analyzing the influencing law and degree of the processing parameters and materials properties on the resin flow patterns.
     The main work and conclusion were as follows:
     For the case of fiber preform that exhibit characteristics of dual-scale porous medium, the volume averaged method is introduced to deduce the governing equations in the preform, and the momentum equations contain the inertia and viscous terms, and its application is more extensive than that of the Darcy law. Based on the governing equations of fully developed flow in a rectangular duct and the formulation of the equivalent permeability, the modified Navier-Stokes equations are adopted to describe the resin flow in the edge channel, which considering the effect of the mold thickness on the flow patterns. Considering the different curing reaction mechanism, stepwise polymerizations and chain addition polymerizations, the weight-average molecular weight of resin is computed by employing the probability theory and the recursive nature of polymers. The above governing equations are integrated with the curing reaction kinetic equation and the chemorheological equation to model the resin infiltration process.
     In order to reduce the computational complexity, the single approach is adopted, therefore, the resin flow behavior in preform/edge area can be described by one set of general governing equations, and it can avoid giving the explicit formulation of the boundary conditions at these two areas. Considering the interaction between resin fluid and air fluid, the fluid filling process are treated as two-phase flow, this method can avoid giving the explicit formulation of resin flow front. The finite volume method is applied to deduce the discrete expressions of the related governing equations. The staggered grid and the SIMPLE algorithm are introduced to compute the pressure and velocity coupling. The direct numerical integration and backward difference method are used to discretize the curing kinetic model. The Volume of Fluid/Piecewise Linear Interface Construction approach is implemented to track the resin flow front advancement during the resin flow process. The above method is the critical technique for applying the numerical simulation of the RTM filling process.
     The core programs for the numerical simulation of RTM filling process is developed. The phenomenological model and a viscosity model based on the branching theory are used to describe the chemorheological behavior of BMI resin and Epoxy resin during the resin flow process, respectively. And then, the evolution of the curing degree, molecular weight, resin viscosity and flow patterns is simulated. And effects of curing reaction, fluid temperature, injection flow rate and permeability on flow patterns and distribution of curing degree and molecular weight in the mold cavity are analyzed. Some significant resluts are obtained.
     In order to qualitative and quantitative explore the effect of processing parameters and material properties on the resin flow infiltration, the sensitivity analysis method is introduced, the mathematical models of sensitivity equations for the related physical quantities are deduced, the sensitivity equation of the resin flow front shape is established, and the coupling solution method for the sensitivity equations is determined. Numerical simulations of the resin flow process under constant flow rate injection condition and under constant pressure injection condition are carried out separately. And then the influencing law and degree of the resin temperature, flow rate, injection pressure, fiber permeability and the permeability in the edge area on the filling time and resin flow front are investigated. The simulated results provide valuable suggestions for improving the flow efficiency and products quality.
     The relationship between the resin flow patterns and temperature field are analyzed. Considering the heat conduction in the thickness direction, the coupling resolution method is established for the 2-D flow field/3-D temperature field. The discrete expression of the 3-D energy equations in the time domain and space domain is deduced. And then the program codes for the non-isothermal resin flow process are complied. The evolution of temperature, curing degree and resin viscosity are analyzed, and the effects of edge effect and thermal conductivity on the distribution of related physical quantities are investigated. The studies show that the edge effect will aggravate a heterogeneous distribution of related physical quantities in the mold cavity.
引文
[1]A. Hammami, R. Gauvin, F. Trochu. Modeling the edge effect in liquid composites modeling[J]. Composites Part A,1998,29(5-6):603-609.
    [2]T. J. Wang, C. H. Wu, L. J. Lee. In-plane permeability measurement and analysis in liquid composite molding[J]. Polymer Composites,1994, 15(4):278-288.
    [3]K. Han, L. Trevino, W. B. Young, L. J. Lee, M. J. Liou. Fiber mat deformation during mold filling in structural RIM[J]. In:Proceeding of the 46th SPI Conference, Washington, DC.1991.
    [4]S. K. Gupte, S. G. Advani. Flow near the permeable boundary of a porous medium:an experimental investigation using LDA[J]. Experiments in Fluids,1997,22(5):408-422.
    [5]S. K. Gupte, S. G. Advani. Flow near the permeable boundary of an aligned fiber preform:an experimental investigation using Laser Doppler Anemometry[J]. Polymer Composites,1997,18(1):114-124.
    [6]J. R. Weitzenbock, R. A. Shenoi, P. A. Wilson. Radial flow permeability measurement. Part A:theory[J]. Composites Part A,1999,30(6): 781-796.
    [7]C. Binetruy, B. Hilaire, J. Pabiot. Influence of fiber wetting in resin transfer molding:Scale effects[J]. Polymer Composites,2000,21(4): 548-557.
    [8]彭超义,曾竟成,肖加余,张长安,杜刚.RTM工艺数值模拟技术研究进展[J].宇航材料工艺,2003,(4):1-5.
    [9]N. D. Ngo. Computational developments for simulation based design: multi-disciplinary flow/thermal/cure/stress molding, analysis, and validation for Processing of composites:[PhD Dissertation]. Minnesota: University of Minnesota,2001.
    [10]杨俊英.树脂传递模塑工艺的数值模拟[D].山东大学博士学位论文,2007.
    [11]阎业海,赵彤,余云照.复合材料树脂传递模塑工艺及适用树脂[J].高分子通报,2001,(3):24-35.
    [12]李萍,陈祥宝.RTM技术的发展及其在航空工业的应用[J],材料工程, 1998,(1):46-48.
    [13]仲伟虹,梁志勇.RTM工艺及其在我国航空工业的应用前景[J],材料工程,1995,(1):9-11
    [14]张治菁,曹运红.树脂传递模塑工艺的发展及其在飞行器上的应用[J],飞航导弹,2002,(11):54-61
    [15]段宝,杨亚文,王雅杰.先进复合材料结构RTM技术现状及发展[J].沈阳航空工业学院学报,2000,17(3):18-21.
    [16]车剑飞,黄洁雯,杨娟.复合材料及其工程应用[M].北京:机械工业出版社,2006.
    [17]梁志勇,仲伟虹.复合材料成型新技术—RTM及其在汽车工业中的应用[J].c
    [18]高克强,李新华.RTM在汽车工业中的应用现状与发展前景[J].工程塑料应用,2000,28(9):32-36.
    [19]冯武.RTM工艺缺陷形成机理与控制方法研究[D].武汉理工大学硕士学位论文,2005.
    [20]李萍.RTM制品缺陷分析与表征[D].武汉理工大学硕士学位论文,2007.
    [21]高国强,薛忠民.RTM工艺过程缺陷产生机理分析[J].玻璃钢/复合材料,2001,1(2):26-29.
    [22]齐燕燕,刘亚青,张艳君.RTM主要缺陷的研究进展[J].工程塑料应用,2006,34(12):72-75.
    [23]李彩球,刘晓惠.RTM制品常见缺陷及其对策[J].玻璃钢/复合材料,2002,3:41-43.
    [24]V. M. Gonzalez. Studies of Reactive Polymer Processing with Fiberglass Reinforcement.[PhD Dissertation]. Minnesota:University of Minnesota, 1983.
    [25]M. V. Bruschke, S. G. Advani. A finite element/control volume approach to mold filling in anisotropic porous media[J]. Polymer Composites, 1990,11:398-405.
    [26]K. M. Pillai, S. G. Advani. A Model for Unsaturated Flow in Woven Fiber Preforms during Mold Filling in Resin Transfer Molding[J]. Journal of Composite Materials,1998,32(19):1753-1783
    [27]K. M. Pillai. Governing Equations for Unsaturated Flow in Woven Fiber Mats:Part 1 Isothermal Flows[J]. Composites Part A:Applied Science and Manufacturing,2002,33:1007-1019.
    [28]H Tan, K. M. Pillai. Effect of Fiber-Mat Anisotropy on 1D Mold Filling in LCM:A Numerical investigation[J]. Polymer Composites,2008, 29(8):869-882.
    [29]H Tan, K. M. Pillai. Numerical simulation of reactive flow in liquid composite molding using flux-corrected transport (FCT) based finite element/control volume (FE/CV) method[J]. International Journal of Heat and Mass Transfer,2010,53:2256-2271.
    [30]J. Slade, K. M. Pillai, S. G. Advani. Investigation of Unsaturated Flow in woven, braided and stitched fiber mats during mold filling in Resin Transfer Molding[J]. Polymer Composites,2001,22(4):491-505.
    [31]Simacek, Pavel and S. G. Advani, "A numerical model to predict fiber tow saturation during liquid composite molding, Composites Science and Technology,2003,63:1725-1736.
    [32]N. Kuentzer, P. Simacek, S. G. Advani, S. Walsh. Permeability characterization of dual scale fibrous porous media[J]. Composites Part A:Applied Science and Manufacturing,2006,37:2057-2068.
    [33]F. P. Zhou, N. Kuentzer, P. Simacek, S. G. Advani, S. Walsh. Analytic characterization of the permeability of dual-scale fibrous porous media[J]. Composites Science and Technology,2006,66(15): 2795-2803.
    [34]F. Zhou, J. Alms, S. G. Advani. A closed form solution for flow in dual scale fibrous porous media under constant injection pressure conditions[J]. Composites Science and Technology,2008,68(3-4): 699-708.
    [35]W. B. Young, K. Han, L. H. Fong, L. J. Lee, M. J. Liou. Flow Simulation in Molds with Preplaced Fiber Mats[J]. Polymer Composites,1991, 12(6):391-403.
    [36]W.B. Young. The Effect of Surface Tension on Tow Impregnation of Unidirectional Fibrous Preform in Resin Transfer Molding[J]. Journal of Composite Materials,1996,30(11):1191-1209.
    [37]R. Gauvin, F. Trochu. Comparison between numerical and experimental results for mold filling in resin transfer molding[J]. Plastics, Rubber and Composites Processing and Application,1993,19:151-157.
    [38]S. P. Li, R. Gauvin. Numerical-analysis of the resin flow in resin transfer molding[J]. Journal of Reinforced Plastics and Composites,1991,10: 314-327.
    [39]F. Trochu, R. Gauvin. Limitations of a boundary-fitted finite difference method for the simulation of the resin transfer molding Process[J]. Journal of Reinforced Plastics and Composites,1992,11(7):772-786.
    [40]F. Trochu, R. Gauvin, Z. Zhang. Simulation of mold filling in resin transfer molding by non-conforming finite elements[J]. In International Conference on Computer Aided Design in Composite Material Technology,1992, pp.109-120.
    [41]F. Trochu, R. Gauvin, D. M. Gao. Numerical analysis of the resin transfer molding Process by the finite element method[J]. Advances in Polymer Technology,1993,12:329-342.
    [42]A. Shojaei, S. R. Ghaffarian, S. M. H. Karimian. Numerical simulation of three-dimensional mold filling in resin transfer molding[J]. Journal of Reinforced Plastics and Composites,2003,22:1497-1529.
    [43]A. Shojaei, S. R. Ghaffarian, S. M. H. Karimian. Numerical simulation of three-dimensional mold filling Process in resin transfer molding using quasi-steady state and partial saturation formulations[J]. Composites Science and Technology,2002,62:861-879.
    [44]R. V. Mohan, N. D. Ngo, K. K. Tamma. On a pure fintie-element-based methodology for resin transfer mold filling simulations[J]. Polymer Engineering and Science,1999,39(1):26-43.
    [45]R. V. Mohan, N. D. Ngo, K. K. Tamma. Three-dimensional resin transfer molding:isothermal Process modeling and explicit tracking of moving fronts for thick geometrically complex composites manufacturing applications-Part 1[J]. Numerical Heat Transfer Part A,1999,35: 815-838.
    [46]R. V. Mohan, N. D. Ngo, K. K. Tamma, D. R. Shires. Three-dimensional resin transfer molding:Isothermal Process modeling and implicit tracking of moving fronts for thick, geometrically complex composites manufacturing applications-Part 2[J]. Numerical Heat Transfer Part A, 1999,35:839-858.
    [47]M. K. Um, W. I. Lee. Numerical simulation of resin transfer molding Process using boundary element method[J]. In 35th International SAMPE Symposium,1990, pp.1905-1916.
    [48]M. K. Um, W. I. Lee. A study on the mold filling Process in resin transfer molding[J]. Polymer Engineering and Science,1991,31:765-771.
    [49]S. Soukane, F. Trochu. Application of the level set method to the simulation of resin transfer molding[J]. Composites Science and Technology,2006,66(7-8):1067-1080.
    [50]V. A. F. Costa, M. S. A. Oliveira, A. C. M. Sousa. Numerical simulation of non-Darcian flows through spaces partially filled with a porous medium[J]. Computers Structures,2004,82(17-19):1535-1541.
    [51]V. A. F. Costa, L. A. Oliveira, B. R. Baliga, A. C. M. Sousa. Simulation of coupled flows in adjacent porous and open domains using a control-volume finite-element method[J]. Numerical Heat Transfer Part A,2004,45(7):675-697.
    [52]Z. Dimitrovova, S. G. Advani S G. Mesolevel analysis of the transition region formation and evolution during the liquid composite molding Process[J]. Computers and Structures,2004,82:1333-1347.
    [53]张少春,陆关兴,黄怿,张伟东.RTM充模过程的数值模拟[J].玻璃钢/复合材料,1996,6:1-5.
    [54]吕昶,薛元德.RTM工艺充模过程数值模拟及实验比较[J].复合材料学报,1999,16(1):131-136.
    [55]王柏臣,黄玉东,刘丽.固体火箭技术,树脂传递模塑(RTM)工艺树脂微观流动行为数值分析,2006,29(4):297-300.
    [56]李海晨,王彪,周振功.RTM工艺树脂流动过程数值模拟[J].复合材料学报,2002,19(2):18-23.
    [57]秦伟,李海晨,张志谦,吴晓宏.RTM工艺树脂流动过程数值模拟及实验比较[J].复合材料学报,2003,20(4):77-80.
    [58]谭华,晏石林,王继辉.RTM充模过程数值模拟的隐式有限元算法[J].固体力学学报,2004,25(3):349-354.
    [59]Junying Yang, Yuxi Jia, Sheng Sun, Dongjun Ma, Tongfei Shi, Lijia An. Mesoscopic simulation of the impregnating Process of unidirectional fibrous preform in resin transfer molding[J]. Materials Science and Engineering A,2006,515:435-436.
    [60]杨俊英,贾玉玺,孙胜,张爱敏,石彤非,安立佳.基于表面张力和流体压力耦合分析的树脂传递模塑过程的细观模拟[J].高分子材料科学与工程,2006,22(1):1-5.
    [61]Junying Yang, Yuxi Jia, Sheng Sun, Dongjun Ma, Tongfei Shi, Lijia An. Enhancements of the simulation method on the edge effect in resin transfer molding Processes[J]. Materials Science and Engineering A, 2008,478:384-389.
    [62]Junying Yang, Yuxi Jia, Yanyu Ding, Haidong He, Tongfei Shi, Lijia An.Edge effect in RTM Processes under constant pressure injection condition[J], Journal of Applied Polymer Science,2010,118(2): 1014-1019.
    [63]M. V. Bruschke, S. G. Advani. A numerical approach to model non-isothermal viscous flow through fibrous media with free surfaces[J]. International Journal for Numerical Methods in Fluids, 1994,19:575-603.
    [64]K. M. Pillai, M. S. Munagavalsa. Governing equations for unsaturated flow through woven fiber mats, Part 2:Nonisothermal reactive flows[J]. Composites Part A:Applied Science and Manufacturing,2004,35: 403-415.
    [65]R. S. Jadhav, K.M. Pillai. A Numerical Study of Heat Transfer during Unsaturated Flow in Dual-Scale Porous Media[J]. Numerical Heat Transfer, Part A:Applications,2003,43:385-407.
    [66]W.B. Young. Three Dimensional Nonisothermal Mold Filling Simulation in Resin Transfer Molding[J], Polymer Composites,1994,15(2): 118-127.
    [67]L. J. Lee, W. B. Young, R. J. Lin. Mold Filling and Cure Modeling of RTM and SRIM Processes[J]. Composite Structures,1994,27(1&2): 109-120.
    [68]W.B. Young. Thermal Behaviors of the Resin and Mold in the Process of Resin Transfer Molding[J]. Journal of Reinforced Plastics and Composites,1995, (4):10-332.
    [69]N. D. Ngo, K. K. Tamma. Non-isothermal three-dimensional developments and Process modeling of composites:Flow/thermal/cure formulations and experimental validations[J]. CMES-Computer Modeling in Engineering & Sciences,2000,1(3):57-72.
    [70]N. D. Ngo, K. K. Tamma. Non-isothermal '2-D flow/3-D thermal' development encompassing Process modelling of composites: flow/thermal/cure formulations and validations[J]. International Journal for Numerical Methods in Engineering,2001,50:1559-1585.
    [71]A. Shojaei, S. R. Ghaffarian, S. M. H. Karimian. Simulation of the three-dimensional non-isothermal mold filling Process in resin transfer molding[J]. Composites Science and Technology,2003,63:1931-1948.
    [72]A. W. Chan, S. T. Hwang. Modeling Nonisothermal Impregnation of Fibrous Media With Reactive Polymer Resin[J]. Polymer Engineering and Science,1992,32(5):310-318.
    [73]A. W. Chan, S. T. Hwang. Modeling Resin Transfer Molding of Polyimide(PMR-15)/Fiber Composites[J]. Polymer Composites,1993, 14:524-528.
    [74]A. W. Chan, S. T. Hwang.Modeling Resin Transfer Molding of Axisymmetric Composite Parts[J]. Journal of Material Processing and Manufacturing Science,1992,1:105-118.
    [75]Ruiz E, Trochu F. Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts[J]. Composites Part A:Applied Science and Manufacturing,2005,36:806-826.
    [76]戴福洪,张博明,杜善义,武湛君.厚截面构件RTM注射工艺树脂流动过程模拟[J].复合材料学报,2004,21(3):6-10.
    [77]施飞,董湘怀.非等温RTM工艺的数值模拟[J].复合材料学报2009,26(4)146-150.
    [78]S. Bickerton, S. G. Advani. Characterization and modeling of race-tracking in liquid composite molding Processes[J]. Composites Science and Technology,1999,59(15):2215-2229.
    [79]W. B. Young, C. L. Lai. Analysis of the edge effect in resin transfer molding[J]. Composites Part A,1997,28(9-10):817-822.
    [80]A. Hammami, R. Gauvin, F. Trochu, O. Touret, P. Ferland. Analysis of the edge effect on flow patterns in liquid composites molding[J]. Applied Composite Materials,1998,5(3):161-173.
    [81]A. Hammami, R. Gauvin, F. Trochu. Modeling the edge effect in liquid composites modeling[J]. Composites Part A,1998,29(5-6):603-609.
    [82]J. Ni, Y. Zhao, L. J. Lee, S. Nakamura. Analysis of two-regional flow in liquid composite molding[J]. Polymer Composites,1997,18(2): 254-269.
    [83]戴福洪,张博明,杜善义.RTM工艺注模过程边缘效应模拟分析[J].复合材料学报,2004,21(2):161-167.
    [84]祝颖丹,王继辉,田正刚,高国强.LCM充模过程中的边缘效应[J].复合材料学报,2005,22(4):6-10.
    [85]N. Kiuna, C. J. Lawrence, Q. P. V. Fontana, P. D. Lee, T. Selerland, P. D. M. Spelt. A model for resin viscosity during cure in the resin transfer moulding Process[J]. Composites Part A,2002,33,1497-1503.
    [86]M. Naffakh, M. Dumon, J. F. Gerard. Modeling the chemorheological behavior of epoxy/liquid aromatic diamine for resin transfer molding applications[J]. Journal of Applied Polymer Science,2006,102: 4228-4237.
    [87]C. L. Lee, K. H. Wei. Curing kinetics and viscosity change of a two-part epoxy resin during mold filling in resin-transfer molding Process[J]. Journal of Applied Polymer Science,2000,71:2139-2148.
    [88]J. Mijovic, J. D. Ott. Modelling of chemorheology of an amine epoxy system of the type used in advanced composites[J]. Journal of composite materials,1989,23:163-194.
    [89]石凤,段跃新,梁志勇,张佐光.RTM专用双马来酰亚胺树脂体系化学流变特性[J].复合材料学报,2006,23(1):56-62
    [90]路遥,段跃新,梁志勇,张佐光.钡酚醛树脂体系化学流变特性研究[J].复合材料学报,2002,19(5):33-37.
    [91]段跃新,张宗科,梁志勇,林云,赵渠森,孙冬生,谢富元.BMI树脂化学流变模型及RTM工艺窗口预报研究[J].复合材料学报,2001, 18(3):30-33.
    [92]张明,许亚洪,邢军,安学锋,益小苏.RTM用环氧3266树脂体系化学流变特性研究[J].材料工程,2005,(6):50-58.
    [93]石凤,段跃新,梁志勇.RTM工艺用酚醛树脂体系化学流变行为研究[J].宇航材料工艺,2005,(2):52—56.
    [94]梁志勇,段跃新,林云,肇研,路遥,张佐光.乙烯基酯树脂体系流变特性及RTM工艺窗口预报研究[J].材料工程,2001,(8):36-39.
    [95]林云,段跃新,梁志勇,邓燕平,张明习.RTM专用双马来酰亚胺树脂体系流变特性及模拟分析研究[J].航空学报,2000,16:76-80.
    [96]钟翔屿,洪义强,包建文,陈祥宝.氰酸酯树脂体系的流变特性研究[J].玻璃钢/复合材料,2006,4:38-40.
    [97]路遥,段跃新,梁志勇.双马来酰亚胺树脂化学流变特性研究[J].中国航空学报(英文版),2002,15(3):281.
    [98]段跃新,张宗科,梁志勇,林云,赵渠森,孙冬生,谢富元.BMI树脂化学流变模型及RTM工艺窗口预报研究[J].复合材料学报,2001,18(3):30-33.
    [99]石凤,段跃新,曾秀妮,梁志勇,张佐光.双酚A型环氧树脂/DDS固化剂体系的流变特性及其黏度模型研究[J].航空学报,2005,26(5):610-616
    [100]梁志勇,段跃新,林云,范欣愉,张佐光EPON862环氧树脂体系化学流变特性研究[J].复合材料学报,2001,18(1):16-19
    [101]齐会民,王春兰,高金淼,黄发荣,杜磊.RTM用含硅芳炔树脂的流变特性与固化反应动力学[J].玻璃钢/复合材料,2009,209(6):62-65.
    [102]石凤,段跃新,梁志勇,张佐光.RTM专用双马来酰亚胺树脂体系化学流变特性[J].复合材料学报,2006,33(1):56-62.
    [103]F. Shi, Y. X. Duan, Z. Y. Liang, Z. G. Zhang. Rheological behavior of a bismaleimide resin system for RTM Process[J]. Acta Materiae Compositae Sinica,2006,23:56-61.
    [104]B. J. Henz, K. K. Tamma, R. Kanapady, N. D. Ngo, P. W. Chung. Process modeling of composites by resin transfer molding:Sensitivity analysis for isothermal considerations[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2003,1(4):415-447.
    [105]B. J. Henz, K. K. Tamma, R. V. Mohan, N. D. Ngo. Process modeling of composites by resin transfer molding:Sensitivity analysis for non-isothermal considerations[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2005,15(7):631-653.
    [106]J. M. Lawrence, J. Barr, R. Karmakar, S. G. Advani. Characterization of preform permeability in the presence of race tracking[J]. Composites Part A,2004,35:1393-1405.
    [107]J. M. Lawrence, K. T. Hsiao, R. C. Don, P. Simacek, G. Estrada, E. M. Sozer, H. C. Stadtfeld, S. G. Advani. An approach to couple mold design and on-line control to manufacture complex composite parts by resin transfer molding[J]. Composites Part A,2002,33:981-990.
    [108]P. Simacek, S. G. Advani. A numerical model to predict fiber tow saturation during liquid composite molding[J]. Composites Science and Technology,2003,63:1725-1736.
    [109]S. Whitaker. Diffusion and dispersion in porous media[J]. AICHE Journal,1967,13(3):420-427.
    [110]J. C. Slattery. Momentum, Energy and Mass Transfer in Continua[M]. New York:McGraw-Hill,1972.
    [111]P. Cheng. Heat transfer in geothermal system[J]. Advance in Heat Transfer,1978,14:1-105.
    [112]C. T. Hsu, P. Cheng. Closure schemes of the macroscopic energy equation for convective heat transfer in porous media[J]. International Communications in Heat and Mass Transfer,1988,15(5):689-703.
    [113]C. T. Hsu, P. Cheng. Thermal dispersion in a porous medium[J]. International Journal of Heat and Mass Transfer,1990,33(8): 1587-1597.
    [114]贝尔(J. Bear)著,李竞生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [115]C. L. Tucker Ⅲ, R. B. Dessenberger. Flow and Rheology in Polymer Composite Manufacturing[M]. Elsevier, Amsterdam,1994.
    [116]J. D. Anderson. Computational Fluid Dynamics[M]. Beijing:Tsinghua University Press and McGraw-Hill Beijing office,2002.
    [117]B. Alakus. Finiter element fluid flow computations through porous media employing quasi-linear and nonlinear viscoelastic models:[PhD Dissertation]. Minnesota:University of Minnesota,2001.
    [118]F. M. White. Viscous fluid flow[M]. McGraw-Hill,1974, pp.123.
    [119]戴蓬勃,陈锋.浅谈热固性塑料固化反应动力学的研究[J].塑料技术,1997,17(3):16-19.
    [120]程鹏,吕建,王建,徐晓伟.环氧电工塑料的固化反应动力学研究环氧电工塑料的固化反应动力学研究[J].热固性树脂,2009,24(2):32-35.
    [121]P. J. Flory. Principles of Polymer Chemistry[M]. Cornell University Press,1953, Ch 8.
    [122]F. Lopez-Serrano, J. M. Castro, C. W. Macosko, M. Tirrell. Recursive approach to copolymerization statistics[J]. Polymer,21(3):263-273.
    [123]C. W. Macosko, D. R. Miller. A New Derivation of Average Molecular Weights of Nonlinear Polymers[J]. Macromolecules,1976, 9(2):199-206.
    [124]E. Ozizmir, O. George. Kinetics of step polymerization with reactants of unequal functional group reactivity.Journal of Polymer Science: Polymer Chemistry Edition 1980,18(3):1089-1097.
    [125]余鼎声.逐步聚合反应统计理论进展—递归计算法[J].高分子通报,1990,(1):27-33.
    [126]吴其晔.高分子材料流变学[M].北京:高等教育出版社,2002.
    [127]刘萌戈,周持兴.化学反应中聚合物流变动力学的研究进展.高分子材料科学与工程[J],2005,21(4):42-45.
    [128]W. D. Richards, R. K. Prud'homme. The viscosity of concentrated polymer solutions containing low molecular weight solvents[J]. Journal of Applied Polymer Science,1986,31(3):763-776.
    [129]张国芳.自由基聚合反应基础过程的数值模拟与优化设计[D].山东大学博士学位论文,2009.
    [130]S. D. Lipshitz, C.W. Macoscko. Rheological changes during a urethane network polymerization[J]. Polymer Engineer and Science,1976,16: 803-810.
    [131]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社2001.
    [132]T. C. Jue. Numerical analysis of vortex shedding behind a porous square cylinder[J]. International Journal of Numerical Methods for Heat and Fluid Flow,2004,14(5):649-663.
    [133]B. Goyeau, D. Lhuillier, D. Gobin, M. G. Velarde. Momentum transport at a fluid-porous interface[J]. International Journal of Heat and Mass Transfer,2003,46:4071-4081.
    [134]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [135]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.
    [136]D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows[J]. Journal of Computational Physics,1999,152:423-456.
    [137]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
    [138]尹明仁,段跃新,李丹,梁志勇,张佐光.视窗化RTM工艺充模过程模拟仿真技术研究[J].复合材料学报,2001,18(4):17-22.
    [139]S. Bickerton, S. G. Advani, Characterization of corner and edge permeabilities during mould filling in resin transfer moulding. In: Proceedings of the ASME AMD-MD, June 1995.
    [140]M Broekaert. Modified MDI-prepolymers improve the initial physical properties and reduce the 'in-service' time of aromatic polyurea coatings. Proceedings of 6th Nurnnberg Congress-Creative advances in coatings technology.2001:761.
    [141]M. Arasa, X. Ramis, J. M. Salla, A. Mantecon, A. Serra. Anionic copolymerization of DGEBA with two bicyclic bis(γ-lactone) derivatives using tertiary amines as initiators. Polymer,2009,50(10): 2228-2236.
    [142]罗建,系统灵敏度理论导论[M],西安:西北工业大学出版社,1990: 60—90
    [143]V. R. Voller, S. Peng, Y. F. Chen. Numerical solution of transient, free surface problems in porous media[J]. International Journal for Numerical Methods in Engineering,1996,39(47):2889-2906.
    [144]史德军.胡福增,卢红,徐云龙.RTM一维单向流动模型的理论概况及研究[M].玻璃钢/复合材料,2004,(1):3-5.
    [145]H. T. Chiu, B. Yu. S. C. Chen, L. J. Lee. Heat transfer during flow and resin reaction through fiber reinforcement[J]. Chemical Engineering Science.2000,55:3365-3376.
    [146]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700