速生杨木原位聚合改性技术及机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了由低分子功能性单体(简称:AMU)、增塑剂(尿素)、催化剂等组成的复合型木材改性剂对速生杨木的功能性改良,分别从宏观、微观两方面研究了化学改性、压缩密实化及热处理对速生杨木物化性能的影响,揭示了复合型改性剂与速生杨木材原位聚合反应的机理,主要的结论归纳和创新性如下:
     (1)采用脉冲式加压浸渍机将复合型木材改性剂浸渍到木材纤维的细胞壁和细胞腔内,结果发现化学浸渍处理减缓了速生杨木材干燥过程中水分的挥发,根据百度试验中干燥缺陷及干燥速度分级标准,速生杨的综合干燥特性等级经过浸渍处理后由二级变为一级,流变特性分析表明改性木的塑性增加,应力松弛降低,改性木损耗角正切值提高;
     (2)厚度5.5cm的速生杨木浸渍材干燥时间约为130h,最高温度为130℃,根据GB/T 6491-1999测得,浸渍处理的速生杨木的干燥质量达到了国家一级材标准;厚度7.0cm的速生杨浸渍材,在压缩率为21%,最大压强为8MPa时的压缩干燥时间为100h;高温快速干燥可行的原因在于木材改性剂增加了木材的塑性、取代了水分在木材中的空间位置,避免了细胞微观构造在水分快速挥发时发生的皱缩、开裂等结构性破坏,还降低了木材的干燥应力;
     (3)原位聚合反应在木材内部形成了网状结构,改性木的气干、绝干和基本密度最大提高70%、71%和41%,化学浸渍处理再压缩密实化后提高了109%、83%和74%;改性木的抗弯强度、抗弯弹性模量、顺纹抗压强度最大提高59.9%、81.1%和40.2%,化学浸渍处理再压缩密实化后提高了55.5%、93.4%和71.0%,未浸渍处理木材72h吸水性为116.6%,改性木72h的吸水性最小降低到了76.2%,化学浸渍处理再压缩密实化木材的48h吸水性从123%降低到了91%;
     (4)速生杨木化学改性后热稳定性提高,氧指数明显增加到了43.2%,阻燃性提高,FTIR显示AMU中的-OH和-NH2与木材结构中-OH发生了原位聚合反应并有氢键间的缔合作用,SEM和EDAX显示改性木横截面上的导管及木纤维的微孔结构被木材改性剂填充,氮元素均匀的分布在木材细胞壁及细胞间隙,13C-NMR分析表明纤维素的结晶结构没有被破坏,只是纤维素结构中的非结晶区发生了醚化反应;
     (5)速生杨木浸渍材经过压缩干燥处理后,木材的细胞和导管明显被挤压,呈现不规则的多边形,木纤维和导管内的空间被挤压,木材的结构未被破坏,断面密度分布均匀,木材表面的XPS图谱分析表明半纤维末端不稳定羟基发生氧化作用,木材改性剂与木材组分间发生醚化反应;
     (6)由于改性木中不稳定的小分子物质在热处理过程中分解挥发,热处理后木材的气干、绝干和基本密度最大降低了6.80%,4.37%和6.82%,但力学性能有所提高,抗弯强度、抗弯弹性模量和顺纹抗压强度最大提高了47.04%、36.72%和35.68%,热处理提高了改性木的耐水性,使得72h吸水性从113.4%降低到了81.8%,主要是因为热处理时木材中的改性剂与木纤维的羟基继续发生交联聚合反应,致使木纤维的羟基含量降低,尺寸稳定性提高。
The aim of this research is to study the in-situ polymerization mechanism of wood modifier in wood. The influence of wood modifier on wood drying and rheological properties of modified wood were also studied in the paper. The wood modifier, AMU (Low molecular functional monomer) and urea, was impregnated into the fast grown wood by pulsed pressure impregnating machine. The drying process was complete including fast drying technology, hot-press drying technology, and heat-treated method. The changes of microscopic structure, mechanical properties, and chemical composition of modified wood after the three different treatments were discussed. The main conclusions are summarized as follows:
     (1) Water volatile was slower than the untreated wood in the drying process. The characteristics and quality of the modified wood attained Grade I according to Chinese Standard, while the unimpregnated wood just Grade II. Plasticity and tgδof modified wood was enhanced as the stress relaxation was reduced.
     (2) The impregnated wood drying with thickness of 5.5cm needed 130h with the initial temperature of 90℃and end temperature of 130℃. The drying quality was Grade I according to GB/T 6491-1999. It takes 100h for compression drying with compression rate at 21% and maximum pressure of 8MPa.
     (3) The air-dried density, over-dried density and basic density were improved 70%,71% and 41%, while 109%、83% and 74% with the compression rate of 21%. The bending strength, flexural elastic modulus, and compressive strength to grain increased by 59.9%,81.1%, and 40.2%, while 55.5%、93.4% and 71.0% for the compression wood. The 72h hygroscopy of unimpregnated wood was 116.6% while the impregnated wood was 76.2%. The 48h hygroscopy of unimpregnated wood was 123% while the impregnated wood was 91%.
     (4) The thermal stability increased as the AMU and urea increased. Oxygen index was also increased as result of the existence of wood modifier. As wood temperature increased during the drying process, chemical bonding was produced between wood and AMU (-OH) as result of in-situ polymerization between wood and AMU. SEM and EDXA showed that the transaction of unimpregnated and impregnated wood. The cell wall and vessels were filled with wood modifier and has been deformed by the compression during the drying process. The Nitrogen element was distributed in wood cell walls and intercellular spaces and the lumen. 13C NMR showed the crystalline structure of cellulose was not damaged, while the etherification reaction seemed occurred in the non-crystalline regions.
     (5) The section density distribution of modified wood was uniform. The transformation of wood cell and vessel were observed using SEM. The vessel appeared irregular polygon in the modified wood after hot-press drying process. The modifier particles distributed as rod-like or discontinuous in the wood cell. XPS showed that the oxidation occurred in the hemicelluloses, and etherification occurred between wood and wood modifier.
     (6) The weight loss of air-dried density, over-dried density and basic density were6.80%,4.37%, and 6.82%. The bending strength, flexural elastic modulus, and compressive strength to grain increased by 47.04%,36.72% and35.68%. The 72h hygroscopy of unimpregnated wood was 113.4% while the impregnated wood was 81.8%.
引文
1. 蔡力平.用红外光谱分析刨花蒸汽处理后成分的变化[J].木材工业,1993,7(1):11-14.
    2. 曹永建,吕建雄,孙振莺,等.国外木材热处理工艺进展及制品应用[J].林业科学,2007,43(2):104-109.
    3. 查朝生.营林措施对人工林杨树木材性质的影响[C].杨树工业用材林加工利用与栽培论文集,南京,2003:63-67.
    4. 常德龙,陈玉和,胡伟华,等.用低分子树脂进行泡桐木材表面改性的研究[J].林产工业,1997,24(6):7-10.
    5. 程万里.木材高温高压蒸汽干燥工艺学原理[M].科学出版社,北京,2007.
    6. 杜国兴.木材干燥质量控制[M].中国林业出版社,北京,1997.
    7. 杜万里,郭红霞,王群.原位复合纳米Si02改性脲醛木塑复合材料制备[J].中国塑料,2006,20(10):64-67.
    8. 范友华,胡伟,陈泽君.无机物填充改性复合木材的制备及性能研究[J].林业机械与木工设备,2008,36(11):18-21.
    9. 方桂珍,刘一星,崔永志,等.低分子量MF树脂固定杨木压缩木回弹技术的初步研究[J].木材工业,1996,10(4):18-20.
    10.符韵林,赵广杰,全受京.二氧化硅/木材复合材料的微观结构与物理性能[J].复合材料学报,2006,23(4):52-59.
    11.符韵林,赵广杰.二氧化硅/木材复合材料的动态黏弹性[J].林业科学,2009,45(3):101-104.
    12.高明,孙彩云,李桂芬,等.胍类阻燃剂处理木材的热解机理[J].北京工业大学学报,2009,35(3):391-396.
    13.顾炼百,丁涛.高温热处理木材的生产和应用[J].中国人造板,2008,9(1):14-15.
    14.顾炼百,李涛,涂登云,等.超高温热处理实木地板的工艺及应用[J].木材工业,2007,21(3):4-7.
    15.过梅丽.高聚物与复合材料的动态力学热分析[M].化学工业出版社,北京,2002.
    16.何洪城,胡伟,陈泽君.我国人工林木材深加工利用技术现状及发展趋势[J].林业经济问题,2005,25(6):364-367.
    17.何曼君,陈维笑,董西侠.高分子物理[M].复旦大学出版社,上海,2000.
    18.黄荣凤,吕建雄,曹永建,等.高温热处理对毛白杨木材化学成分含量的影响[J].北京林业大学学报,2010,32(3):155-160.
    19.江泽慧,费本华,杨忠.光谱预处理对近红外光谱预测木材纤维素结晶度的影响[J].光谱学与光谱分析,2007,27(3):435-438.
    20.江泽慧,彭镇华,刘君良,等.人工林软质木材表面压密方法及其产品[P].CN 1333113A.2002.
    21.江泽慧,杨忠,王戈,等.湿地松木材近红外光谱与其结晶度的相关性[J].林业科学,2007,43(10):95-99.
    22.姜亦飞.速生材改性剂特性与改性机理的研究[D].北京林业大学博士论文,2011.
    23.雷得定,周军浩,刘波,等.木材改性技术的现状与发展趋势[J].木材工业,2009,23(1):37-40.
    24.李东光.脲醛树脂胶黏剂[M].化学工业出版社,北京,2002.
    25.李家宁,李民,李晓文,等.高温热处理改性橡胶木的初步研究[J].木材加工机械,2010,1:8-10.
    26.李坚,架树杰.生物木材学[M].东北林业大学出版社,哈尔滨,1993.
    27.李坚,江泽慧,刘君良.水溶性低分子量酚醛树脂的合成[J].木材工业,2001,15(4):19-21.
    28.李坚,邱坚,刘一星.Sol-Gel法制备木材功能性改良用SiO2凝胶[J].林业科学,2007,43(12):106-111.
    29.李坚.木材波谱学[M].科学出版社,北京,2003.
    30.李坚.木材科学[M].高等教育出版社,北京,2002.
    31.李杉,方桂珍,庞久寅.化学改性大青杨木材的阻燃性能研究[J].林业科技.2009,34(2):42-44.
    32.李龙哲,杨财喜,宋作梅,等.桉树木材的浸渍增强热处理技术[J].木材工业,2009,23(3):40-42.
    33.李小芳,丁恩勇,黎国康.一种棒状纳米微纳纤维素的物性研究[J].纤维素科学与技术,2001,9(2):29-35.
    34.李延军,唐荣强,鲍滨福,等.高温热处理木材工艺的初步研究[J].林产工业,2008,35(2):16-18.
    35.林剑,赵广杰,孟令萱,等.利用x射线衍射技术与红外光谱分析真菌侵蚀的木材[J].光谱学与光谱分析,2010,30(6):1674-1677.
    36.林巧佳,杨桂娣,刘景宏.纳米二氧化硅改性脲醛树脂的应用及机理研究[J].福建林学院学报,2005,25(2):97-102.
    37.刘君良,江泽慧,许忠允.人工林软质木材表面密实化新技术[J].木材工业,2002,16(1):20-22.
    38.刘君良,江泽慧,孙家杰.酚醛树脂处理杨树木材物理力学性能测试[J].林业科学,2002,38(4):176-179.
    39.刘君良,李坚,刘一星.PF预聚物处理固定木材压缩变形的机理[J].东北林业大学学报,2000,28(4):16-20.
    40.刘君良,阳财喜,王雪花.增强-热处理按木材物理力学性能分析[J].木材加工机械,2010,3:1-4.
    41.刘开宇,唐有根.新型氮系阻燃剂的制备[J].精细化工中间体,2001,31(4):27-28.
    42.刘盛全.我国杨树人工林材性与加工利用研究现状及发展趋势闭[J].木材工业,1999,13(3):14-16.
    43.刘树东,王喜明,李雪琦.俄罗斯樟子松材干燥特性的研究[J].内蒙古农业大学学报,2010,31(1):200-204.
    44.刘星雨.高温热处理木材的性能及分类方法探索[M].中国林业科学院,2010.
    45.刘一星,赵广杰.木质资源材料学[M].中国林业出版社,北京,2004.
    46.刘一星.高温高压过热蒸汽处理木材的力学特性和化学性质的变化[J].东北林业大学学报,2005,33(3):44-46.
    47.刘志军,张璧光.百度试验法测杨木干燥基准的初步研究[J].干燥技术与设备,2006,4(1):32-35.
    48.龙传文,龙博,韦文榜.PF树脂对杉木浸渍与热压工艺的研究[J].中国胶黏剂,2008,17(4):27-29.
    49.陆文达.木材改性工艺学[M].东北林业大学出版社,哈尔滨,1993,10-13.
    50.陆文达.气蒸处理对落叶松木材化学性质的影响[J].东北林业大学学报,1989,17(1):50-57.
    51.吕建坤,柯毓才,漆宗能,等.环氧/粘土纳米复合材料的形成机理及性能[J].高分子通报,2000,(2):18-26
    52.吕建雄.紧紧围绕国家目标,加强开展人工林木材的研究[J].人造板通讯,2002,(10):3-5.
    53.吕文华.木材/蒙脱土纳米插层复合材料的制备[D].北京:北京林业大学,2004.
    54.马志领,赵文革,郝风春,等.磷氮协同阻燃作用机理研究[J].河北大学学报(自然科学版),2000,20(4):400-404.
    55.潘道成,鲍其鼎,于同隐.高聚物及其共混物的力学性能[M].上海科学技术出版社,上海,1988.
    56.彭望明,邱国福,李宗清.木材改性用腮醛树脂的合成[J].林业科技,1997,22(4):46-47.
    57.蒲俊文,马福明,武国峰,等.一种用于木材改性的压缩干燥设备[P].2011c.CN101531018
    58.蒲俊文,马福明,武国峰,等.一种用于木材改性的药液加压浸注设备[P].2011b.CN101618559
    59.蒲俊文,武国峰,姜亦飞.一种木材功能性改良的技术方法[P].2011a.CN101549508
    60.钱俊,叶良明,余肖红,等.速生杉木的改性研究-UF树脂浸渍后热压法改性[J].木材工业,2001,15(2):14-16.
    61.邱国福,彭望明,王晓玲.改性脉醛树脂的合成及其对木材改性效果试验[J].林业科技,1998,23(2):46-47.
    62.沈德君,周丛礼.纳米复合材料改性杨木木材的物理力学性能[J].东北林业大学学报,2009,37(3):53-54.
    63.时尽书,李建章,周文瑞.腮醛树脂与纳米二氧化硅复合改善木材性能的研究[J].北京林业大学学报,2006,28(2):123-128.
    64.宋晓辉,高东海.人工林杨树木材液体纵向渗透性研究[J].林业科技开发,2005,19(4):24-26.
    65.孙丰文,张彰.杨木单板苯甲基化改性的研究[J].南京林业大学学报(自然科学版),2008,32(6):85-88.
    66.孙勇,张金平,杨刚,等.玉米秸秆木质素氧化与改性的研究[J].光谱学与光谱分析,2007,27(10):1997-2000.
    67.唐晓淑,赵广杰.木材的化学应力松弛[J].北京林业大学学报,2002,24(1):92-96.
    68.涂登云,江宁,李睿,等.辐射松板材加速干燥工艺对材性的影响[J].林产工业,2004,31(2):34-37.
    69.王奉强,张志军,王清文.膨胀型水性改性氨基树脂木材阻燃涂料的阻燃和抑烟性能[J]林业科学,2007,43(12):117-121.
    70.王宏棣,何金存.人工林杨木木材改性研究发展现状及趋势[J].林业机械与木工设备,2008,36(11):13-14.
    71.王军,王端明,伊子康,等.杨木改性处理-处理工艺及处理材性能[M].吉林林业科技,1996,121(2):14.
    72.王美一,贺文静,王师丹.人工林杨木木材研究发展的现状及前景[J].中国科技信息,2009,4:91-92.
    73.王群,谭惠芬,郭红霞.一种淀粉与无机物复合前驱液及其制备方法[P].中国专利申请号20081011 16796.
    74.王小青,费本华,任海青.杉木光变色的FTIR光谱分析[J].光谱学与光谱分析,2009,29(5):1272-1275.
    75.王焮,薛振华.加拿大杨木皱缩特性研究[J].内蒙古农业大报,2003,24(4):83-86.
    76.吴玉章,松井宏昭,片冈厚.酚醛树脂对人工林杉木木材的浸注性及其改善的研究[J].林业科学,2003,39(6):136-140.
    77.吴子良,陈万利.一种木材浸注树脂压密方法[P].CN1490136A.2004.
    78.武国峰,姜亦飞,宋舒苹,等.木材/改性UF预聚体复合材料制备及性能表征[J].光谱学与光谱分析,2011,31(4):1083-1086.
    79.武国峰,郎倩,陈鹤予,等.原位聚合制备木材/羟甲基脲复合材料及其表征[J].光谱学与光谱分析.2011,31(11):3078-3082.
    80.武国峰,姜亦飞,张浩,等.辐射松的化学改性及多层压缩干燥工艺[J].木材工业,2010,24(6):12-14.
    81.谢桂军,刘磊,张燕君,等.木材热处理研究的进展[J].木材加工机械,2006,6:43-46.
    82.谢桂军,苏海涛,张燕君.真空热处理改性马尾松木材物理性能研究[J].广东林业科技,2009,25(3):42-45.
    83.徐永吉.木材改性[M].南京林业大学出版社,2000,94.
    84.闫丽.甘油预处理固定杨木压缩变形机理及应用[D].北京林业大学博士论文,2010.
    85.阎强,袁金颖,康燕,等.纤维素接枝共聚物的合成与功能[J].化学进展,2010,22(2/3):450-457.
    86.杨喜昆,杜官本,钱天才,等.木材表面改性的XPS分析[J].分析测试学报,2003,22(4):5-8.
    87.杨晓飞,韩英磊.杨木资源的高效利用[J].木材加工机械,2011,5:36-38.
    88.尹伟伦.中国杨树栽培与利用研究[M].中国林业出版社,北京,2005,6.
    89.余德新,范毡仔.阔叶树材热压干燥技术研究[J].莆田高等专科学校学报.1999,6(1):14-17.
    90.余先纯,李湘苏,龚铮午.脲醛树脂-钠基蒙脱土改性杨木的结构与表征[J].化工新型材料,2011,39(9):125-126.
    91.张璧光.实用木材干燥技术[M].化学工业出版社,北京,2005.
    92.张勤丽.我国意杨加工利用概况[J].林产工业,2000,27(5):3-6.
    93.张忠涛,孙乐智.我国的杨树资源与开发利用[J].林业建设,2001,5:21-24.
    94.赵广杰.木材的化学流变学-基础构造及研究现状[J].北京林业大学学报,2001,23(5):66-70.
    95.赵广杰.木材中的纳米尺度、纳米木材及木材-无机纳米复合材料[J].北京林业大学学报,2002,24(5/6):204-207.
    96.赵天锡,陈章水.中国杨树集约栽培[M].中国科学技术出版社,北京,1994.
    97.周宇.1-214杨木单板染色工艺的研究[C].杨树工业用材林加工利用与栽培论文集,南京,2003,37-42.
    98.祝志峰.几种极性增塑剂对淀粉/PVA混合浆相分离速度的影响[J].武汉大学学报(理学版),2001,47(2):161-164.
    99.邹献武,杨智,秦特夫.木材正辛醇液化产物的红外光谱分析[J].光谱学与光谱分析,2009,29(6):1545-1547.
    100. Acda Menandro N, Devera Edgar E, Cabangon Rico J. Effects of plasma modification on adhesion properties of wood [J]. International journal of adhesion and adhesives,2012,32(1):70-75.
    101. Ahmed Sheikh Ali, Moren Torn. Moisture properties of heat-treated scots pine and Norway spruce sapwood impregnated with wood preservatives [J]. Wood and fiber science.2012,44(1):85-93.
    102. Atar Musa, Keskin Hakan, Korkut Suleyman. Impact of impregnation with boron compounds on combustion properties of oriental beech (Fagus orientalis Lipsky) and varnishes [J]. African journal of biotechnology.2011,10(15):2867-2874
    103. Ayhan O, Oktay O J. The influence of the impregnating chemicals on the bonding strength of impregnated wood materials [J]. Journal of Applied Polymer Science,2007,107(5):2871-2876.
    104. Babinski Leszek. Investigations on pre-treatment prior to freeze-drying of archaeological pine wood with abnormal shrinkage anisotropy [J]. Journal of archaeological science.2011,38 (7): 1709-1715.
    105. Bergman R, Ibach R E, LaPasha C, et al. Evaluating physical property changes for small-diameter, plantation-grown southern pine after in situ polymerization of an acrylic monomer [J]. Forest Product Journal,2009,59(10):64-71.
    106. Bolton A J, Dinwoodie J M, Davies D S. The validity of the use of SEM/EDAX as a tool for the detection of UF resin penetration into wood cell walls in particleboard [J]. Wood Science Technology, 1988,22:345-356.
    107. Bradic S, Avramidis. Impact of juvenile wood on hemlock timber drying characteristics [J]. Forest Products Journal,2007, (1/2):53-59.
    108. Cai X L, Riedl B, Zhang S Y, et al. Effects of nanofillers on water resistance and dimensional stability of solid wood modified by melamine-urea-formaldehyde resin [J]. Wood Fiber Science,2007, 39 (2):307-318.
    109. Cao J Z, Xie M H, Zhao G J. Tensile stress relaxation of copper-ethanolamine (Cu-EA) treated wood [J]. Wood Science Technology,2006,40:417-426.
    110. Cao Yan, Wang Xuejing, Li Huiquan. In-situ Acetylation of pine wood chip in 1-alIy1-3-methylimidazolium chloride (AmimC1) ionic liquid [J]. Chemical journal of Chinese universities-chinese.2011,32(11):2663-2666.
    111. Chen P Y S. Press-drying black walnut wood [J]. Forest Product Journal,1976,28(1):23-25.
    112. Devi R R, Maji T K. Chemical modification of simul wood with styrene-acrylonitrile copolymer and organically modified nanoclay [J]. Wood science and technology.2012,46(1-3):299-315.
    113. Devi R R, Maji T K. Preparation and characterization of wood/ styrene-acrylonitrile copolymer/MMT nanocomposite [J]. Journal of applied polymer science.2011,122(3):2099-2666.
    114. Devi R R, Maji T K. Chemical modification of simul wood with styrene-acrylonitrile copolymer and organically modified nanoclay [J]. Wood Science and Technology,2012,46(1-3):299-315.
    115.Esteves B, Pereira H. Quality assessment of heat-treated wood by NIR spectroscopy [J]. Holz RohWerkst 2008,66:323-332.
    116.F F P科尔曼,W A科泰(江良游,朱正贤,戴澄月,等,译).木材学与木材工艺学原理[M].北京:中国林业出版社,1991:155-156.
    117. Forsyth P G. Hexavalent chromium reduction in chromated copper arsenate-treated Douglas-fir and western hemlock [J]. Forest products journal,1990,40(6):48-50.
    118. Frenzel Ralf, Swaboda Christiane, Petzold Gudrun. Controlling the water uptake of wood by polyelectrolyte adsorption [J]. Progress in organic coatings.2011,72(1-2):88-95
    119. Furuno T, Imamura Y, Kajita H. The modification of wood by treatment with low molecular weight Phenol-formaldehyde resin:a properties enhancement with neutralized phenolic-resin and resin Penetration into wood cell walls [J].Wood science and Technolog,2004,37:349-361.
    120. Fu Yanchun, Li Gang, Yu Haipeng,et al. Hydrophobic modification of wood via surface-initiated ARGET ATRP of MMA [J]. Applied Surface Science,2012,258(7):2529-2533.
    121. Gao M, Sun C Y, Wang C X. Thermal degradation of wood treated with flame petardants. Journal of thermal analysis and calorimetry [J].2006,85(3):765-769.
    122. Gao Z H, and Li D. Chemical modification of poplar wood with foaming polyurethane resins [J]. Journal of Applied Polymer Science.2007,104 (5),2980-2985.
    123. Gerardin P. Reaction of wood with isocyanides generated in situ from aoylazidea [J]. Holzforschung,1995,49(8):79-81.
    124. Giachi Gianna, Capretti Chiara, Donato Ines D. New trials in the consolidation of waterlogged archaeological wood with different acetone-carried products [J]. Journal of archaeological science.2011, 38(11):2957-2967.
    125. Glasstone, Glasstone S, Laidler K J, et al. The theory of rate processes [M]. New York:McGraw Hill,1941.
    126. Goethals P, Stevens M. Dimensional stability and decay resistance of wood upon modification with some new type chemical reactants [C]. International Research Group on Wood Preservation. Document No. IRG/WP/94-40028,1994.
    127. Gonzalez-Pena M M, Curling S F, Hale M D C. On the effect of heat on the chemical composition and dimensions of thermally-modified wood [J]. Polymer degradation stability.2009,94:2184-2193.
    128. Guofeng Wu, Qian Lang, Ping Qu, et al. Effect of chemical modification and hot-press drying on poplar wood [J]. BioResources.2010,5(4):2581-2590.
    129. Guofeng Wu, Qian Lang, Heyu Chen, et al. Physical and chemical performance of eucalyptus wood with impregnated chemicals [J]. BioResources.
    130. Gunduz G, Aydemir D, Karakas G. The effects of thermal treatment on the mechanical properties of wild pear (Pyrus elaeagnifolia Pall) wood and changes in physical properties [J]. Materials and Design,2009,30 (10),4391-4395.
    131. Hakkou M, Petrissans M, Gerardin P, et al. Investigations of the reasons for fungal durability of heat treated beech wood [J]. Polymer Degradation and Stability,2006,91(2):393-397.
    132. Hien M T; Militz H; Mai C. Modification of beech veneers with N-methylol melamine compounds for the production of plywood:natural weathering[J]. European journal of wood and wood products. 2012,70(1-3):279-286.
    133. Higashihara T, Morooka T, Hirosawa S, et al. Relationship between changes in chemical components and permanent fixation of compressed wood by steaming or heating [J]. Mokuzai Gakkashi, 2004,50(3):159-167.
    134. Hill C A S, Jones D. Dimensional changes in corsican pine sapwood due to chemical modification with linear chain anhydrides [J]. Holzforschung,1999,53(3):267-271.
    135. Hill C A S, Ramsay J, Keating B, et al. The water sorption properties of thermal modified and densified wood [J]. Journal of materials science.2012,47(7):3191-3197.
    136. Hittmeier M E, Comstock G L, Hann R A. Press drying nine species of wood [J]. Forest Product Journal.1968,18(9):91-96.
    137. Homan W, Tjeerdsma B, Beckers E, Joressen A. Structural and other properties of modified wood. Congress WCTE, Whistler, Canada 2000.3.5.1-1-3.5.1.-8
    138. Humar M, Pavlic M, Zlindra D. Performance of waterborne acrylic surface coatings on wood impregnated with Cu-ethanolamine preservatives [J]. Bulletin of materials science.2011,34(1):113-119.
    139. Hung K C, Wu J H. Mechanical and interfacial properties of plastic composite panels made from esterified bamboo particles [J]. Journal of Wood Science,2010,56(3):216-221.
    140. Iida I, Imamura Y, Kashiwa N, et al. Liquid penetration of precompression wood:effects thickness and length of specimen on liquid uptake [J]. Wood preservation,1992,18(1):31-37.
    141. Iida I, Norimoto M, Imamura Y. Hygrothermal recovery of compression set [J]. Mokuzai Gakkashi, 1984,30(5):354-358.
    142. Islam Md Saiful, Hamdan Sinin, Jusoh I. The effect of alkali pretreatment on mechanical and morphological properties of tropical wood polymer composites [J]. Materials and design. 2012,33:419-424.
    143. Kang K Y, Bradic S, Avramidis S, et al. Kiln-drying lumber quality of hybrid poplar clones [J]. Holzforschung,2007,61(1):65-73.
    144. Ke Jing, Singh Deepak, Chen Shulin. Metabolism of polycyclic aromatic hydrocarbons by the wood-feeding termite Coptotermes formosanus (Shiraki) [J]. Journal of Agricultural and Food Chemistry,2012,60(7):1788-1797.
    145. Kilm J W, Garlborn K, matuana L M, et al. Thermoplastic modification of urea formaldehyde wood adhesives to improve moisture resistance [J]. Journal of Applied Polymer Science,2006, 101(6):4222-4229.
    146. Kono H, Numata Y, Nagai N, et al. Studies of the series of cellooligosaccharide peracetates as a model for cellulose triacetate by 13C CP/MAS NMR spectroscopy and X-ray analyses [J]. Carbohydrate Research,1999.322(3/4):256-263.
    147. Kraus A, Jones D, Van der Zee M, et al. Interlace treatment-wood modification with N-methylol compounds [C]. Proceedings of the first European Conference on Wood Modification, Ghent, Belgium, 2003:317-327.
    148. Kubojima Y, Okano T, Ohta M. Bending strengthand toughness of heat treated wood [J].Joumal of Wood Science.2000,460:8-15.
    149. Larkin P J, Makowski M P, Colthup N B. Spectrochim. Vibrational analysis of some important group frequencies of melamine derivatives containing methoxymethyl, and carbamate substituents: mechanical coupling of substituent vibrations with triazine ring modes [J]. Vibrational Spectroscopy. 1998,17(1):53-72.
    150. Larsen L S. The development of wood polymer penetrant and in situ polymerization with electron beam and x-radiaton [D]. State University of New York,2006.
    151. Lee H L, Chen G C, Rowell R M. Effects of phosphoramides on wood dimensional stability [C]. 5th Pacific Rim Bio-based Composites Symposium. Canberra, Australia,2000:179-189.
    152. Lee H L, Chen G C, Rowell R M. Fungal decay resistance of wood reacted with phosphorus pentoxide-amine system [J]. Holzforschung.2004,58(3):311-315.
    153. Lesar Bostjan, Straze Ales, Humar Miha. Sorption Properties of Wood Impregnated with Aqueous Solution of Boric Acid and Montan Wax Emulsion [J]. Journal of applied polymer science.2011,120 (3): 1337-1345.
    154. Madison. Wood handbook-Wood as engineering materials [M]. Forest Products Laboratory., WI: U.S Forest Products laboratory,1999:463.
    155. Magalhaes W L E, Silva R R. Treatment of Caribbean pine by in situ polymerization of styrene and furfuryl alcohol [J]. Journal of Applied Polymer Science,2004,91 (3):1763-1769.
    156. Militz H, Schaffert S, Peters B C, et al. Termite resistance of DMDHEU-treated wood [J]. Wood Science and Technology,2011,45(3):547-557.
    157. Militz H. Thermal treatment of wood:European processes and their background, Inter. Res. Group on Wood Preservation, Section 4-Processes. No. IRG/WP 02-40241.2002. Stockholm, Sweden.
    158. Morooka T, Norimoto M, Yamada T, et al. Viscoelastic properties of (cellulose oligo-oxymethylene ether) acylates Ⅱ [J]. Wood Research,1986,72:12-26.
    159. Morooka T, Norimoto M, Yamada T, et al. Viscoelastic properties of cellulose acylates [J]. Wood Research,1983,69:61-70.
    160. Murakami K, Ono K. Chemorheology of polymers [M]. Elsevier Scientific Publishing Company, Amsterdam, Oxford:New York,1979.
    161. Niskanen Ilpo, Heikkinen Jorma, Mikkonen Jukka, et al. Detection of the effective refractive index of thermally modified Scots pine by immersion liquid method [J]. Journal of Wood Science,2012,58(1): 46-50.
    162. Nordstierna L, Lande S, Westin M, et al. Towards novel wood-based materials:Chemical bonds between lignin-like model molecules and poly(furfuryl alcohol) studied by NMR [J]. Holzforschung, 2008,62(6):709-713.
    163.Norimoto M, Gril J, Rowell R M. Rheological properties of chemically modified wood: relationship between dimensional and creep stability [J]. Wood Fiber Science.1992,24(l):25-35.
    164. Nystrom G, Mihranyan A, Razaq A, et al. Nanocellulose polypyrrole composite based on microfibrillated cellulose from wood [J]. Journal of Physical Chemistry B,2010,114(12):4178-4182.
    165. Papadopoulos A N, Tountziarakis P. Toughness of pine wood chemically modified with acetic anhydride [J]. European journal of wood and wood products.2012,70(1-3):399-400.
    166. Pilgard A, Treu A, Zeeland van A N T, et al. Toxic hazard and chemical analysis of leachates from furfurylated wood [J]. Enviromental Toxicology Chemistry,2010,29(9):1918-1924.
    167. Quinney R F, Banks W B, Lawther J M. The activation of wood fibre for thermoplastic coupling, the reaction of wood with a potential coupling agent [J]. Journal of Wood Chemistry and Technology, 1995,15(4):529-544.
    168. Rautkari Lauri, Hanninen Tuomas, Johansson Leena-Sisko. A study by X-ray photoelectron spectroscopy (XPS) of the chemistry of the surface of Scots pine (Pinus sylvestris L.) modified by friction [J]. HOLZFORSCHUNG.2012,66(1):93-96
    169. Rahman Md Rezaur, Hamdan Sinin, Ahmed Abu Saleh. Thermogravimetric analysis and dynamic young's modulus measurement of n, n-dimethylacetamide-impregnated wood polymer composites [J]. Journal of vinyl & additive technology.2011,17 (3):177-183.
    170. Rowell R M, Banks W. Water repellency and dimensional stability of wood [M]. Gen. Tech. Rep. FPL-50. Madison, WI:U.S. Department of Agriculture, Forest service, Forest Products Laboratory, 1985,1-24.
    171. Rowell R M. Modelling of stresses and strain in a piece of wood under drying [J]. Wood Science, 1982,15(2):172-182.
    172. Ryu J Y, Takahashi M, Imamura Y, et al. Biological resistance of phenol resin treated wood [J]. Mokuzai Gakkaishi,1991,37(9):852-858.
    173. Salla Jayashree, Pandey Krishna K, Prakash GK, et al. Photobleaching and dimensional stability of rubber wood esterified by fatty acid chlorides [J]. Journal of Wood Chemistry and Technology,2012, 32(2):121-136.
    174. Scholz G., Krause A., Militz H. Full impregnation of modified wood with wax [J]. European journal of wood and wood products.2012,70(1-3):365-367.
    175. Simpson W T. Press drying quarter sawn hard maples lumber [J]. Forest Product Journal,1985, 35(4):31-32.
    176. Simpson W T. Press-drying plantation-grown loblolly pine 2 by 4's to reduce warp [J]. Forest Product Journal,1988,38(11/12):42-48.
    177. Smith B, Smith L A, Cote W A. Studies of penetration of phenol-formaldehyde resin into wood cell walls with the SEM and energy-dispersive X-ray analyzer [J]. Wood Fiber,1971,3:56-57.
    178. Smulski S, Cote W A. Penetration of wood by a water-borne alkyd resin [J]. Wood Science and Technology,1984,18:59-75.
    179. Subramanian R V. Treatment of carbon fibers to decrease electrical hazards of conductive fiber fragment release [P]. EP 4272346,1981.
    180. Sugiyama M, Obataya E, Normoto M. Viscoelastic properties of the matrix substance of chemically treated wood [J]. Journal of Materials Science,1998,33 (14),3505-3510.
    181. Sugiyama M, Obataya E, Normoto M. Viscoelastic relaxation of chemically treated wood [J]. Wood Research:bulletin of the Wood Research Institute Kyoto University,1995,82:31-33.
    182. Tarmian A, Sepeher A, Rahimi S. Drying stress and strain in tension wood:A conventional kiln schedule to efficiently dry mixed tension normal wood boards in poplar [J]. Drying Technology,2009, 27(10):1033-1040.
    183. Thuvander F, Wallstrom L, Berglund L A, et al. Effects of an impregnation procedure for prevention of wood cell wall damage due to drying [J]. Wood science and technology.2001,34:473-480.
    184. Unsal O, Ayrilmis N. Variations in compression strength and surface roughness of heat treated Turkish river red gum (Euealy Ptuseamaldulensis) wood [J]. Journal of Wood Science,2005, 51(4):405-409.
    185. Unsal Oner, Candan Zeki, Korkut Suleyman. Wettability and roughness characteristics of modified wood boards using a hot-press [J]. Industrial crops and products.2011,34 (3):1455-1457.
    186. Windeisen E, Strobel C, Wegener G. Chemical changes during the production of thermo-treated beech wood [J]. Wood science and technol.2007,41:523-536.
    187. Wu G F, Jiang Y F, Zhang H, et al. Chemical and physical changes for dimensionally stability of compressed wood [J]. Advanced Materials Research,2010,129-131:46-49.
    188. Wu G F, Lang Q, Wang B, et al. Chemical modification of poplar wood on the mechanical properties [J]. Advanced Materials Research.2011,194-196:1815-1818.
    189. Xie M H, Zhao G J. Effects of periodic temperature changes on stress relaxation of chemically treated wood [J]. Forestry Studies in China,2004,6(4):45-49.
    190. Yap M G S, Que Y T, Chia L H L. Wood-polymer composites from tropical hardwards WPC properties [J]. Journal of Applied Polym Science,1990,43(11):1999-2004.
    191. Yasuda R, Minato K. Chemical modification of wood by non-formaldehyde cross-linking reagents [J]. Wood Science and Technology,1995,29(4):243-251.
    192. Yu Xianchun; Sun Delin; Li Xiangsu. Preparation and characterization of urea-formaldehyde resin-sodium montmorillonite intercalation-modified poplar [J]. Journal of wood science.2011, 57(6):501-506.
    193. Zhang Y L, Wan H, Zhang S Y. Characterization of sugar maple wood-polymer composites: Monomer retention and polymer retention [J]. Holzforschung,2005,59(3):322-329.
    194. Zhang Y L, Zhang S Y, Chui Y H, et al. Effect of impregnation and in-situ polymerization of methacrylates on hardness of sugar maple wood [J]. Journal of Applied Polymer Science,2006,99 (4): 1674-1683.
    195. Zhou Y D, Jiang X M, Liu J L, et al. Impact of drying methods on wetability of Populus tomentosa [J]. Chinese Forestry Science and Technology,2008,7(3):56-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700