高梯度磁场中磁性可吸入颗粒物动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可吸入颗粒物的污染在国内外已经引起广泛重视,燃烧源可吸入颗粒物的形成与控制技术更是备受广大科研工作者的关注。化石燃料的燃烧是大气颗粒物主要排放源,进行燃烧源可吸入颗粒物的动力学特性的研究已十分必要。众多的研究表明,作为主要污染源的电站其飞灰中含大量磁性物质,其它排放源的排放物也都不同程度地含有磁性物质。2002年,国家科技部正式将燃烧源可吸入颗粒物的形成与控制技术基础研究纳入973计划进行立项研究,磁场中可吸入颗粒物的动力学特性研究被列为其子课题。
     本文建立了试验台对磁性颗粒在高梯度磁场的动力学特性进行了试验研究。到目前为止,还缺少成熟的可吸入颗粒物微观运动特性的可视化试验研究手段,商业PIV(如TSI和DANTEC等)技术无法直接用于相应的两相流的研究中。文章中利用先进的ELPI对同时加磁场与磁格栅前后经过磁场试验段的颗粒物浓度进行在线测量,并以此为基础,从气溶胶流量、外加磁场磁通密度、格栅组成磁性金属丝的饱和磁化强度和丝径及格栅排数等方面分析其对颗粒物在磁场中运动的影响规律。结果表明:减小气溶胶流量,增加外加均匀磁场的磁通密度,选用饱和磁化强度大的磁性金属丝组成格栅,减小金属丝的直径和增加格栅的排数都可以使格栅对颗粒物的捕集能力得以提高。
     文中应用Femlab多重物理场耦合分析软件对磁场试验段内的颗粒运动特性建立数学模型进行了数值研究。利用软件的网格生成功能进行计算域的网格划分,采用非结构化三角形网格;静磁场采用2次Lagrange算法,流场的计算采用Lagrange-P2P1算法。借助软件的数值模拟,进行了磁场、流场和颗粒场的可视化研究,弥补了试验中无法实现可视化的不足。同时还利用模型对颗粒的运动进行了定性、定量分析,在与试验值比较后发现,数值模拟结果与试验值所反映的趋势是一致的。
The pollution of particulate matter with aerodynamic diameters<10μm (PM10) has been attracting much attention both inside or outside China. The formation mechanism and the control techniques of PM10 from combustion are being paid much attention by more and more scientific researchers. The combustion of fossil fuels is the main resource of particulate matter in the air, and it’s very necessary to study the kinetic characteristic of PM10 from combustion. Lots of researches indicates that fly ash from power plant,which is the main pollution resource, contains much magnetic matter. PM10 from other resources contains certain magnetic matter. The formation theory and control techniques of PM10 from combustion was brought into‘973 Program’by Ministry of Science and Technology of P.R. China,and the kinetic characteristic of PM10 in magnetic field was included.
     A test-facility was founded in this paper to make experimental research in the characteristic of magnetic particles in high gradient magnetic field. So far there’ve been no experimental methods for the visualization of the characteristic of the microcosmic movement of PM10. Commercial PIV techniques (TSI and DANTEC etc.) can not be used directly in this two-phase flow research. Electrical Low Pressure Impactor was used in the experiment of this paper to measure the number concentration of the particles without and with magnetic field and bar at the outlet of the passage, respectively. Further more, the influence of aerosol flux, magnetic flux of applied magnetic field, the saturated magnetization and the diameter of ferromagnetic wires, and the number of the rows of the bar were taken into account when analyzing the movement of the particles in high gradient magnetic field. The results indicated that decreasing aerosol flux, improving applied magnetic flux, using wires which have higher saturated magnetization,reducing the diameters of the wires and increasing the number of the bar will improve the capture capability of the bars which have ferromagnetic wires.
     The software Femlab called as multiple physics field coupling analysis was used in this paper to analyze the movement characteristic of the ferromagnetic particles in the experimental section through the mathematical model, which was also deduced in the paper. Computing mesh was generated by the software, and unstructured triangular mesh was utilized here. Lagrange-Quadratic method and Lagrange-P2P1 were used when calculating the static magnetic field and fluid field, respectively. Visualization of the magnetic field,fluid field, particle field was carried out according to the numerical simulation. And it made up the shortage of the experiment in some sense. Meanwhile, qualitative and quantitative analysis was also made to find that the results from both mathematical simulation and experiment accorded with each other in tendency.
引文
[1] Panyacosit L . A review of particulate matter and health : focus on developing countries[R].Laxengurg,Austria:IIASA,2000
    [2] Koch M.Aireborne fine particulates in the environment:a review of health effect studies,monitoring data and emission inventories[R].Laxengurg. Austria:IIASA,2000
    [3] 国家环境保护总局.中国环境状况公报[R](2001~2004)
    [4] 丁瑞强,王式功,尚可政,等. 空气污染与健康[J]. 甘肃环境研究与监测,2002,15(1):50-53
    [5] USEPA,National ambient air quality standards for particulate matter[S].Fed.Regist., July 18,1997:38702~38752
    [6] W Gene Tucker.An overview of PM2.5 source and control strategies[J].Fuel Processing Technology,2000,65-66:379~392
    [7] Lesley L Sloss,Irene M Smith.PM10 and PM2.5:an international perspective[J].Fuel Processing Technology,2000,65~66:127~141
    [8] 吕建燚,李定凯.可吸入颗粒物研究现状及发展综述[J].环境保护科学,2005,31(2):5~8
    [9] 姚 强.洁净煤燃烧技术的现状与未来[J].太原科技,2004(4):15
    [10] 徐旭常.应关注可吸入颗粒物的防治[N].科技日报,2001
    [11] 徐 彬,王元晶,韩文明.我国加紧筹划可吸入颗粒物研究[N].科学时报,2001
    [1] 唐孝炎.大气环境化学[M].北京:高等教育出版社,1990.164
    [2] 陈德均,季廷安,林肇信.大气污染化学[M].北京:机械工业出版社,1998.17
    [3] Chow J C. Welcome to a special issue on PM2.5:A Fine Particle Standard[J].J.Air & Waste Manage.Assoc.,1999,49:1
    [4] Lutz Kra Kmer,Ulrich Po Kschl,Reinhard Niessner.Microstructural rearrangement of sodium chloride condensation aerosol particles on interaction with water vapor[J].J.Aerosol Sci.,2000,31(6):673-685
    [5] Mihalis Lazaridis,Dimitrios Melas. New Sulfate Particle Formation During Summer Pollution Episodes Using a 3-D Aerosol Model[J].J. Aerosol Sci.,1998,29(8):913-927
    [6] Yasufumi Nakanishi,Yoshinobu Yoshihara, Kazuie Nishiwaki. Noncatalytic reduction of NO in diesel exhaust with the addition of methylamine[J].JSAE Review,2000,21:561-566
    [7] Ashish Kalani,Panagiotis D Christofides. Nonlinear control of spatially inhomogeneous aerosol processes[J].Chemical Engineering Science,1999,54:2669-2678
    [8] 杨复沫,马永亮,贺克斌.细微大气颗粒物 PM2.5 及其研究概况[J].世界环境,2000,4:32-34
    [9] Lucas M Neas,Fine particulate matter and cardiovascular disease[J].Fuel Processing Technology,65-66(2000):55-67
    [10] Alonso C D,Martins M H R B,Romano J,et al.Sao Paulo Aerosol Characterization Study[J].J.Air & Waste Manage.Assoc.1996,46:927
    [11] Schwartz J,Dockery D W,Neas L S.Is Daily Mortality Associated Specifically with Fine Particles?[J].J.Air & Waste Manage.Assoc.,1996,46:927
    [12] Eldred R A,Cahill T A,Flocchini R G.Composition of PM2.5 and PM10 Aerosols in the IMPROVE Network[J].J.Air & Waste Manage Assoc.,1997 ,47 :194
    [13] 李 娟,张广兴,李 霞,等. PM10 浓度及微观特征季节分布分析[J].城市环境与城市生态,2005,18(6):16-18
    [14] 杨书申,邵龙义,肖正辉,等.中国典型城市 2004 年大气质量及颗粒物浓度与气象条件关系分析[J].中原工学院学报,2005,16(5):5-9
    [15] 李 红,曾凡刚,邵龙义,等. 可吸入颗粒物对人体健康危害的进展[J ]. 环境与健康杂志,2002 ,19(1) :85-87
    [16] 张文丽,徐东群,崔九思.空气细颗粒物( PM2.5) 污染特征及其毒性机制的研究进展[J].中国环境监测,2002 ,18 (1):59-63
    [17] 朱广一.大气可吸入颗粒物研究进展[J ] .环境保护科学,2002 ,28 (5):3-5
    [18] 宋 宇,唐孝炎,方 晨,等.北京市大气细粒子的来源分析[J].环境科学.2002(6):11-16
    [19] 吕建燚,李定凯.可吸入颗粒物研究现状及发展综述[J].环境保护科学,2005,31(2):5-8
    [20] 隋建才,徐明厚,丘纪华,等.煤燃烧中可吸入颗粒物的形成及其控制研究现状[J].热力发电,2004(12):9-12
    [21] Larry L Baxter.Char fragmentation and fly ash formation during pulverized coalcombustion [J].Combustion and Flame,1992 , (90):174-184
    [22] Linak W P ,Wendt J O L.Trace element transformation mechanisms during coal combustion[J].Fuel processing technology,1994,(39):173-198
    [23] Mcnallan M J,Yunck G J,Elliott J F.The formation of inorganic particulates by homogeneous nucleation in gases produced by the combustion of coal [J].Combustion and Flame,1981,(42):45-60
    [24] Fuchs N A.mechanics of aerosol[M].London:Pergamon press, 1964.
    [25] Eliasson B.et al.Coagulation of bipolarly charged aerosols in stack coagulator [J].Journal of Aerosol Science,1987,(18):869-872
    [26] Williams M M R , Loyalka S K. Aerosol science theory and practice[M].New York:Pergamon press , 1991
    [27] Watanabe T.Submicron Particle agglomeration by an electrostatic agglomerator apparatus[J].J Electro Statics,1995,(34):367-383
    [28] Hautanen J,Kilpel?inen M,Kauppinen E,et al.Electrical agglomeration of aerosol particles in an alternating electric field [J].Aerosol Science and Technology,1995,(22):181-189
    [29] Xiang X D,Colbeck I.Coagulation and wall loss of charged particles[J].J.Aerosol Science , 1993,(24):135-136
    [30] 蒋潮澜.磁选理论及工艺[M].北京:冶金工业出版社,1994
    [31] 李国栋.我们生活在磁的世界里[M].北京:清华大学出版社,广州:暨南大学出版社,2000
    [32] 李爱国,童永彭,倪新伯,等. 空气中含悬浮颗粒的穆森堡尔研究[J]. 中国环境科学,2001,21(3):198-202
    [33] 李爱国,张桂林,童永彭,等.上海市大气气溶胶中的来源和化学种态研究[J]. 环境科学学报,2005,25(2):148-154
    [34] 沙 菲,宋洪昌. 纳米α ?Fe2O3米的制备方法及应用概况[J].江苏化工,2003,31(5):12-15
    [35] 唐声飞,谢华林,彭书萍,等. 粉煤灰中元素种态分布的研究[J]. 武汉理工大学学报,2004,26(3):47-50
    [36] 张 蕴. 生活垃圾焚烧烟气净化工艺探讨[J].制冷空调与电力机械,2005,26(1):73-75,70
    [37] Heller F, Strzyszcz Z, Magiera T. Magnetic record of industrial pollution in forest soils of Upper Silesia,Poland [J].Journal of Geophysical Research, 1998, 103: 17767-17774
    [38] Bityukova L,Scholger R,Birke M.Magnetic susceptibility as indicator of environmental pollution of soils in Tallinn[J] Physics and Chemistry of Earth (A),1999,24(9): 829-835
    [39] Xavier Querol,Jose Luis Fernandez-Turiel,angel Lopez-Soler Trace elements in coal and their behaviour during combustion in a large power station[J].Fuel.1995,74(3):331~343
    [40]单红丹,卢升高.火电厂粉煤灰的矿物磁性及其环境意义[J] .矿物学报.2005,25(2) :141-146
    [41] 刘小伟,徐明厚,于敦善,等.燃煤过程中元素 Na 和 Fe 在可吸入颗粒物中的形态与分布[J].动力工程.2005,25(5):719-723
    [42] Kolm H H,Oberteuffer J A,Kelland D R.High gradient magnetic separation.Sci.Am.,1975(5):46-54
    [43] A Chiba,H Okada, T Tada,et al.Removal of arsenic from Geothermal Water by High Gradient Magnetic Separation. IEEE Transacions on Applied Superconductivity,2002,12(1):952-854
    [44] Perfrakis L.Use of high gradient magnetic separation techniques for the removal of oil and solids from water effluents. IEEE Trans Magn Mag,1976,12(5):486
    [45] 张朝升.大梯度磁滤器处理微污染珠江源水[J].中国给水排水,1999,17(4):70-72
    [46] Narita H. Separation of iron catalyst from coal liquefaction crude oil with high gradient magnetic separator[J].Coal Sci Technol,1995,24(2):1323-1326
    [47] 丁忠浩.有机废水处理技术及应用[M].北京:化学工业出版社,2002
    [48] 吴克宏. 磁分离技术在水处理中的物理作用分析[M].给水排水,2001,27(9):27-30
    [49] 杨昌柱,王 敏,濮文虹.磁技术在废水处理中的应用[J].化工环保,2004,24(6):412-415
    [50] Gareth P. Hatch, Richard E.. Magnetic design considerations for devices and particles used for biological high gradient magnetic separation (HGMS) systems[J].Journal of Magnetism and Magnetic Materials,2001,225:262-276
    [51] Klaus Hempel,Werner Deubel,Reinhard Lorenz,et al.High gradient magnetic cell sorting and internal standardization substantially improve the assay for somatic mutations at the glycophorin A (GPA) locus[J].Mutation Research,2003,525:29-42
    [52] T Oda,T Takahashi, K Takaichi,et al.Pulverized coal beneficiation by a fluidized high gradient magnetic separation process with slotted steel plates[J].IEEE Transactions on Magetics,1987,Mag-23(5):2767-2769
    [53] Anderson N J,Eldridge R J,Kolarik L O,et al.Colour and Turbidity Removal with Reusable Magnetic Particles-Ⅰ.Use of Magnetic Cation Exchange Resins to Introduce Aluminum Ions[J].Wat.Res.,1980.(4):959-966
    [54] Anderson N J,Bolto B A,Eldridge R J,et al.Colour and Turbidity Removal with Reusable Magnetic Particles- Ⅱ . Coagulation with Magnetic Polymer Composites[J].Wat.Res.,1980,14:967-973
    [55] Anderson N J,Kolarik L O,Swinton E A,et al.Colour and Turbidity Removal with Reusable Magnetic Particles-Ⅲ.I mmobilized Metal Hydroxide Gels[J].Wat.Res.,1982,16:1327-1334
    [56] Kolarik L O.Colour and Turbidity Removal with Reusable Magnetic Particles-Ⅳ.A New Solid,Reusable Coagulant-Adsorbent[J].Wat.Res.,1983,17:141-147
    [57] Anderson N J, Priestley A J.Colour and Turbidity Removal with Reusable Magnetic Particles-Ⅴ.Process Development[J].Wat.Res.,1983,17:1227-1233
    [58] Anderson N J,Bolto B A,Blesing N V,et al.Colour and Turbidity Removal with Reusable Magnetic Particles-Ⅵ.Pilot Plant Operation[J].Wat.Res.,1983,17(10):1235-1243
    [59] 谭言毅,罗 意.高梯度磁分离的过滤性能计算[J].四川环境,1997,16(2):1-8
    [60] 郑必胜,郭祀远,李 琳,等.高梯度磁分离的特性及应用[J].华南理工大学学报(自然科学版),1999,27(3)
    [61] 颜幼平,陈凡值,吴昭俏,等.高梯度磁除尘的实验研究[J].工业安全与防尘,1999(11):27-30
    [62] Lua A C , Boucher R F . Magnetic filtration of fine particles from gas streams[J].Proceedings of the Institution of Mechanical Engineers , Part E: Journal of Process Mechanical Engineering , 1993 , 27 ( E2) :109-122
    [63] 蓝惠霞.高梯度磁分离技术用于工业烟气除尘的研究[J].冶金能源,2004,23(1):55-59,62
    [1] 李永旺,赵长遂,吴 新,等.新型流化床气溶胶发生装置及其特性[J].东南大学学报(自然科学版),2005,35(5):742-745
    [2] Dekati Ltd.ELPI manual.Tampere:Dekati Ltd,2002
    [3] [英] R 格柏,R R 柏斯.高梯度磁力分离[M].刘永之译.北京:中国建筑工业出版社,1987.47-48
    [4] MakotoTakayasu,Jiann-Yang Hwang,Fritz J Friedlaender,et al. Magnetic Separation Utilizing a Magnetic Susceptibility Gradient[J]. IEEE Transactions on Magnetics,1984,Mag-30(1):155-159
    [5] Hatch Gareth P,Stelter Richard E.Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems [J].Journal of Magnetism and Magnetic Materials, 2001,225(1-2):262-276
    [6] 林 潮,孙传尧,徐建民.强磁性粒子间磁团聚力的研究[J].矿冶,2000,9(1):25-30
    [7] 田民波.磁性材料[M].北京:清华大学出版社,2001.37
    [8] Geoffrey D Moeser,Kaitlin A Roach,William H Green,et al.High-gradient magnetic separation of coated magnetic nanoparticles[J].AIChE Journal,2004,50(11):2835-2848
    [9] 李德才.磁性液体理论及应用[M].北京:科学出版社,2003.162
    [1] 李国栋著.我们生活在磁的世界里[M].北京:清华大学出版社,广州:暨南大学出版社,2000
    [2] [美] R C 奥汉德利.现代磁性材料原理和应用[M].北京:化学工业出版社,2002.5-6
    [3] 蔡圣善,朱 耘,徐建军.电动力学[M].北京:高等教育出版社,2002.135-137
    [4] James A Ritter, Armin D Ebner, Karen D Daniel, et al.Application of high gradient magnetic separation principles to magnetic drug targeting[J].Journal of Magnetism and Magnetic Materials, 2004,280(2-3):184-201
    [5] J H P Watson.Improvement of a low-field,high-intensity matrix separator[J].IEEE Transactions on Magnetics,Mag-14(5):392-394
    [6] Femlab Modeling Guide[Z].Femlab Help Desk.Stokhlom:Comsol Multiphysics,2005.65
    [7] Geoffrey D Moeser,Kaitlin A Roach,William H Green,et al.High-gradient magnetic separation of coated magnetic nanoparticles[J].AIChE Journal,2004,50(11):2835-2848
    [8] 李德才.磁性液体理论及应用[M].北京:科学出版社,2003.162
    [9] 田民波.磁性材料[M].北京:清华大学出版社,2001.10
    [10] [英] R 格柏,R R 柏斯.高梯度磁力分离[M].刘永之译.北京:中国建筑工业出版社,1987.47-48
    [11] MakotoTakayasu,Jiann-Yang Hwang,Fritz J Friedlaender,et al. Magnetic Separation Utilizing a Magnetic Susceptibility Gradient[J]. IEEE Transactions on Magnetics,1984,Mag-30(1):155-159
    [12] Hatch Gareth P,Stelter Richard E.Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems [J].Journal of Magnetism and Magnetic Materials, 2001,225(1-2):262-276
    [13] 林 潮,孙传尧,徐建民.强磁性粒子间磁团聚力的研究[J].矿冶,2000,9(1):25-30
    [14] 金 涌,祝京旭,汪展文,等.流态化工程原理[M].北京:清华大学出版社,2001:47
    [15] 袁竹林.气-固两相流动与传热(基础部分)讲义.南京:东南大学动力工程系,2004,47-51
    [16] Lawson W F,Treat R P. Particle trajectory observations in dry HGMS[J]. IEEE Transactions on Magnetics,1982,MAG-18(6):1668-1670
    [17] 谭言毅,罗 意.高梯度磁分离的过滤性能计算[J].四川环境,1997,16(2):1-8
    [18] 张国权.气溶胶力学[M].北京:中国环境科学出版社,1987.53,54,84
    [1] 中 仿 科 技 有 限 公 司 . 产 品 介 绍 [EB/OL] . http ://www.cntech.com.cn/product/femlab/femlab30.Htm,2006-2-28
    [2] 梁 琳.科学研究与工程数值模拟的必备工具——FEMLAB[J].CAD/CAM与制造业信息化,2004(10):48-49
    [3] Barth T , Deconinck H . Unstructured grid methods for advection dominated flows[R].AGARD Rep.R-787,AGARD,Paris,1992
    [4] Weatherill N P,Hassan O.Efficient three dimensional delaunay triangulation with automatic point creation and imposed boundary constrains[J].Int.J.Num.Meth.Eng.,1994,37:2005-2039
    [5] Hassan,et al.Mesh generation and adaptivity for the solution of compressible viscous high speed flow[J].Int.J.Numer.Methods Eng.,1995,38:1123-1148
    [6] 钟文定.磁学[M].北京:科学出版社,2000.304
    [7] 袁竹林.气-固两相流动与传热(基础部分)讲义.南京:东南大学动力工程系,2004,47-51
    [8] 林 潮,孙传尧,徐建民.强磁性粒子间磁团聚力的研究[J].矿冶,2000,9(1):25-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700