抗氧化耐酸分离CO_2膜制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分离CO_2的固定载体膜是一类很有发展前景的分离膜。其中,研究较多的氨基载体膜长期使用可能被氧化,影响其分离含氧化剂(主要是非酸性氧化剂O_2及酸性氧化剂SO_2)烟道气中CO_2时的使用寿命。针对于此,本文采用不同的载体固定方法将羧酸根载体引入膜内,制备出具有较好透过分离性能、抗氧化性能和耐酸的固定载体膜,以适用于烟道气CO_2分离。
     用自由基聚合的方法将羧酸根载体引入膜内。以丙烯酸钠为单体,合成聚丙烯酸钠(PAAS)。以PAAS水溶液为涂膜液,聚砜(PS)为支撑层制得PAAS/PS复合膜。用丙烯酰胺(AAm)调节载体含量,制得聚(丙烯酸钠-丙烯酰胺)/聚砜(P(AAS-co-AAm)/PS)复合膜。利用全反射红外光谱(ATR-FTIR)表征了气体组分与膜之间的相互作用,考察了膜的气体透过性能,由此分析了CO_2和N2在膜内的传递机理。研究了AAS含量及湿涂层厚度对膜透过分离性能的影响规律。考察了复合膜的抗氧化和耐酸性能。结果表明,所制膜具有良好的CO_2透过分离性能、抗氧化性和耐酸性。对于CO_2/N2混合气(体积比15/85),AAS含量为47.68mol%,湿涂层厚度为200μm的复合膜在进料气压力为0.11MPa时,CO_2渗透速率为163GPU,分离因子为90。
     用共混的方法将羧酸根载体引入膜内。将PAAS与聚乙二醇(PEG)的共混物水溶液涂敷在PS支撑层上制备PAAS-PEG/PS共混复合膜。研究了共混物中PEG分子量以及PAAS/PEG质量比对复合膜CO_2/N2渗透选择性能的影响。结果表明,所制膜具有较高的CO_2透过分离性能,对于CO_2/N2混合气,PEG分子量为20,000,PAAS:PEG质量比为1:2的涂膜液制备的复合膜在进料气压力为0.11MPa时,CO_2渗透速率为700GPU,CO_2/N2分离因子为80。
     用界面聚合的方法将羧酸根载体引入膜内。以均苯三甲酰氯(TMC)为有机相单体,二氨基苯甲酸钠(DAmBS)为水相单体,在涂敷了硅橡胶(PDMS)的PS基膜上进行界面聚合制备聚(DAmBS-TMC)/PDMS/PS复合膜。在水相中加入4,7,10-三氧-1,13-癸烷二胺(DEGBAmPE)以调节载体含量及聚合物链段的柔性,从而制备了聚(DAmBS-DEGBAmPE-TMC)/PDMS/PS复合膜。研究了制膜因素对复合膜结构和性能的影响。考察了复合膜的抗氧化性和耐酸性。结果表明,所制膜具有良好的CO_2透过分离性能、抗氧化和耐酸性能。对于CO_2/N2混合气,用0.003mol/L TMC,0.004mol/L DAmBS和0.006mol/L DEGBAmPE所制复合膜在进料气压力为0.11MPa时,CO_2渗透速率为5831GPU,CO_2/N2分离因子为86。
     以界面聚合制备的复合膜为例,对烟道气CO_2分离和捕集的过程进行了经济性分析,结果表明,本文制备的CO_2分离膜具有明显的经济优势。
Fixed carrier membranes for CO_2separation are promising membranes. However,most of the fixed carrier membranes contain amine groups as carriers, which may beoxidized by the oxidant gases (mainly O_2) and react with the acidic gas (mainly SO_2)contained in the flue gas. In this work, different methods are used to fixed thecarboxylate group as the carrier in the membrane to get excellent permselectivity,antioxidizability and acid resistance.
     The method of the radical polymerization was used to fixed the carboxylate groupas the carrier. Poly(sodium acrylate)(PAAS) and a seriers of poly(sodiumacrylate-co-acrylamide)(P(AAS-co-AAm)) were synthesized by sodium acrylate andmixture of sodium acrylate and acrylamide through radical polymerization. Thecomposite membranes were developed respectively with the above materials as activelayers and polysulfone (PS) as the supports. ATR-FTIR was employed to characterizethe possible reactions between the gases and the membrane, and the permselectivityof the membrane was measured with CO_2/N2mixed gas. The transport mechanisms ofCO_2and N2in the membrane were hence studied. The effects of AAS content of thepolymer and the wet coating thickness of the active layer on the membranepermselectivity were investigated. The antioxidizability and the acid resistance of thiskind of membrane were verified. The results showed that the membranes possessedgood CO_2separation performance, antioxidizability and acid resistance. In the testswith CO_2/N2mixed gas (containing15vol%CO_2and85vol%N2), the membraneprepared by using P(AAS-co-AAm) containing47.68mol%AAS with wet coatingthickness of200μm had a CO_2permeance of163GPU and CO_2/N2selectivity of90at0.11MPa feed pressure.
     The method of polymer blending was used to fixed the carboxylate group as thecarrier. The composite membranes were developed with the blend materialPAAS-PEG as the active layers and PS as the supports. The effects of the molecularweight of PEG and the mass ratio of PAAS to PEG on the membrane permselectivitywere investigated. The results showed that the membranes possessed good CO_2separation performance. In the tests with CO_2/N2mixed gas (containing15vol%CO_2and85vol%N2), when MWPEGwas20,000,mPAAS:mPEGwas1:2, the PAAS-PEG/PS blend composite membrane had a CO_2permeance of700GPU and CO_2/N2selectivityof80at0.11MPa feed pressure.
     Interfacial polymerization (IP) was used to fixed the carboxylate group as thecarrier. The (DAmBS-TMC)/PDMS/PS membrane and(DAmBS-DEGBAmPE-TMC)/PDMS/PS membranes were developed withcrosslinked polydimethylsiloxane (PDMS) coating PS as support membranes,trimesoyl chloride (TMC) as monomer of organic phase, sodium3,5-Diaminobenzoate (DAmBS) or mixture of DAmBS and diethylene glycolbis(3-aminopropyl) ether (DEGBAmPE) as monomers of aqueous phase. The effectsof various parameters on membrane performance were investigated. The resultsshowed that the membranes possessed good CO_2separation performance. Theantioxidizability and the acid resistance of this kind of membrane were verified. Theresults showed that the membranes possessed good CO_2separation performance,antioxidizability and acid resistance. In the tests with CO_2/N2mixed gas (containing15vol%CO_2and85vol%N2), the membrane prepared with0.003mol/L of TMC,0.004mol/L of DAmBS and0.006mol/L of DGBAmPE had a CO_2permeance of5831GPU and CO_2/N2selectivity of86at0.11MPa feed pressure.
     Taking the (DAmBS-DEGBAmPE-TMC)/PDMS/PS membrane prepared in thiswork for example, the energy and the total cost required for the process werecalculated. The results showed that the membrane prepared in this work wascompetitive with the traditional chemical absorption method, and had a potential to beused for CO_2separation from the flue gas.
引文
[1]刘茉娥等,膜分离技术,北京:化学工业出版社,1998,1
    [2]时钧,袁权,高从堦,膜技术手册,北京:化学工业出版社,2001
    [3] Baker R. W., Future directions of membrane gas separation technology, Ind. Eng.Chem. Res.,2002,41:1393-1411
    [4] Bernstein L., Bosch P., Canziani O., et al, Climate Change2007: SynthesisReport, IPCC Plenary XXVII, Valencia, Spain,12-17November2007
    [5] Metz B., Davidson O., Coninck H. D., Loos M., Meyer L., Special report oncarbon dioxide and storage, International Panel on Climate Change, Geneva,Switzerland,2005
    [6] Metz B., Davidson O., Coninck H. D., Loos M., Meyer L., Special report oncarbon dioxide and storage (Summary for Policymakers), International Panel onClimate Change, Montreal, Canada,2005
    [7] Herzog H. J., What future for carbon capture and sequestration? Environ. Sci.Technol.2001,35(7):148-153
    [8]加藤顺(日)等编著,金革等译,碳化学工业生产技术,北京:化学工业出版社,1990
    [9]贾彦雷,许文,刘家祺,二氧化碳的化学利用,天然气化工:C1化学与化工,2004,29(3):54-58
    [10]于天杰,郭友才,刘仲一,李伟,二氧化碳化工利用与减排,中国石油和化工经济分析,2008,(4):44-47
    [11] Herzog H., Golomb D., Carbon capture and storage from fossil fuel use,Encyclopedia of Energy,2004,1:277-287
    [12] Zhao L., Riensche E., Menzer R., Blum L., Stolten D., A parametric study ofCO2/N2gas separation membrane processes for post-combustion capture, J.Membr. Sci.2008,325:284-294
    [13] MacDowell N., Florin N., Buchard A., Hallett J., Galindo A., Jackson G.,Adjiman C. S., Willians C. K., Shah N., Fennell P., An overview of CO2capturetechnologies, Energy Environ. Sci.,2010,3:1645-1669
    [14] Olajire A. A., CO2capture and separation technologies for end-of-pipeapplications-a review, Energy,2010,35:2610-2628
    [15] Uyanga I. J., Idem R. O., Studies of SO2-and O2-induced degradation of aqueousMEA during CO2capture from power plant flue gas streams, Ind. Eng. Chem.Res.,2007,46:2558-2566
    [16] Idem R., Wilson M., Tontiwachwuthikul P., Chakma A., Veawab A., AroonwilasA., Gelowitz D., Pilot plant studies of the CO2capture performance of aqueousMEA and mixed MEA/MDEA solvents at the University of Regina CO2capturetechnology development plant and the boundary dam CO2capture demonstrationplant, Ind. Eng. Chem. Res.,2006,45:2414-2420
    [17] Ma X., Kaneko T., Xu G., Kato K., Influence of gas components on removal ofSO2from flue gas in the semidry FGD process with a powder-particle spoutedbed, Fuel,2001,80:673-680
    [18]李光强,朱诚意,钢铁冶金的环保与节能,北京:冶金工业出版社,2006
    [19]汪澜,再论中国水泥工业CO2的减排,中国水泥,2008,2:36-39
    [20]夏明珠,严莲荷,雷武,王风云,朱彬,赵小蕾,二氧化碳的分离回收技术与综合利用,现代化工,1991,19:46-48
    [21] Xiao Y. C., Chung T. S., Grafting thermally labile molecules on cross-linkablepolyimide to design membrane materials for natural gas purification and CO2capture, Energy Environ. Sci.,2011,4:201-208
    [22]陈勇,王从厚,吴鸣,气体膜分离技术与应用,北京:化学工业出版社,2004
    [23]安树林,膜科学技术实用教程,北京:化学工业出版社,2005
    [24]王学松,现代膜技术及其应用指南,北京:化学工业出版社,2005
    [25] Gupta M., Coyle I., Thambimuthu K., CO2capture technologies andopportunities in Canada,1stCanadian CC&S Technology Roadmap Workshop,Canada,2003
    [26] Barrie J., Gupta M., CO2capture and storage technology roadmap, CanadianCC&S Technology Roadmap,2005
    [27]朱长乐,膜科学技术,北京:高等教育出版社,2004
    [28] M. Mulder著,李琳译,Basic principles of membrane technology,2nd ed.,膜技术基本原理,北京:清华大学出版社,1999
    [29] Kim T. J., Li B. A., H gg M. B., Novel fixed-site-carrier polyvinylaminemembrane for carbon dioxide capture, J. Polym. Sci. Part B: Polym. Phys.,2004,42:4326-4336
    [30] Deng L. Y., Kim T. J., H gg M. B., Facilitated transport of CO2in novelPVAm/PVA blend membrane, J. Membr. Sci.,2009,340:154-163
    [31] Sandru M., Haukeb S. H., H gg M. B., Composite hollow fiber membranes forCO2capture, J. Membr. Sci.,2010,346:172-186
    [32] Du R. H., Feng X. S., Chakma A., Poly(N, N-dimethylaminoethylmethacrylate)/polysulfone composite membranes for gas separations, J. Membr.Sci.,2006,279:76-85
    [33] Du R. H., Chakma A., Feng X. S., Interfacially formed Poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes forCO2/N2separations, J. Membr. Sci.,2007,279:19-28
    [34]甄寒菲,王志,李保安,王世昌,用于分离CO2的高分子膜,高分子材料科学与工程,1999,15:29-31
    [35] Zhang Y., Wang Z., Wang S. C., Selective permeation of CO2through newfacilitated transport membranes, Desalination,2002,145:385-388
    [36]张颖,分离CO2/CH4固定载体复合膜的制备与性能研究:[博士学位论文],天津:天津大学,2002
    [37] Zhang Y., Wang Z., Wang S. C., Synthesis and characteristics of novel fixedcarrier membrane for CO2separation, Chem. Lett.,2002,4:430-431
    [38]王志,张莉莉,张颖,王世昌,分离CO2的促进传递膜,膜科学与技术,2003,23:166-171
    [39] Yi C. H., Wang Z., Li M., Wang J. X., Wang S. C., Facilitated transport of CO2through polyvinylamine/polyethleneglycol blend membranes, Desalination,2006,193:90-96
    [40] Zhao J., Wang Z., Wang J. X., Wang S. C., Influence of heat-treatment on CO2separation performance of novel fixed carrier composite membranes prepared byinterfacial polymerization, J. Membr. Sci.,2006,283:346-356
    [41] Zhang Y., Wang Z., Wang J. X., Wang S. C., Effect of heat cross-linking oncarbon dioxide fixed-carriermembrane structure and performance, Desalination,2006,193:299-303
    [42] Wang Z., Yi C. H., Zhang Y., Wang J. X., Wang S. C., CO2-facilitated transportthrough poly(N-vinyl-γ-sodium aminobutyrate-co-sodium acrylate)/polysulfonecomposite membranes, J. Appl. Polym. Sci.,2006,100:275-282
    [43]张颖,王志,伊春海,王纪孝,王世昌,VSA-SA/PS固定载体复合膜的制备及其CO2/CH4分离性能,化工学报,2006,57:163-168
    [44] Dong C. M., Wang Z., Yi C. H., Wang S. C., Preparation ofpolyvinylamine/polysulfone composite hollow-fiber membranes and theirCO2/CH4separation performance, J. Appl. Polym. Sci.,2006,101:1885-1891
    [45] Wang Z., Li M., Cai Y., Wang J. X., Wang S. C., Novel CO2selectivelypermeating membranes containing PETEDA dendrimer, J. Membr. Sci.,2007,290:250-258
    [46]伊春海,含氨基固定载体膜制备及其CO2传递特性研究:[博士学位论文],天津:天津大学,2007
    [47] Cai Y., Wang Z., Yi C. H., Bai Y. H., Wang J. X., Wang S. C., Gas transportproperty of polyallylamine-poly(vinyl alcohol)/polysulfone compositemembranes, J. Membr. Sci.,2008,310:184-196
    [48]蔡彦,提高固定载体促进传递膜渗透性能的方法和理论研究:[博士学位论文],天津:天津大学,2008
    [49] Yu X. W., Wang Z., Wei Z. H., Yuan S. J., Zhao J., Wang J. X., Wang S. C.,Novel tertiary amino containing thin film composite membranes prepared byinterfacial polymerization for CO2capture, J. Membr. Sci.,2010,362:265-278
    [50]于型伟,界面聚合法制备分离CO2复合膜及成膜过程研究:[博士学位论文],天津:天津大学,2010
    [51] Yuan S. J. Wang Z., Qiao Z. H., Wang M. M., Wang J. X., Wang S. C.,Improvement of CO2/N2separation characteristics of polyvinylamine bymodifying with ethylenediamine, J. Membr. Sci.2011,378:425-437
    [52]远双杰,强化含氨基固定载体膜CO2/N2渗透选择性能研究:[博士学位论文],天津:天津大学,2011
    [53] Bos A., Pünt I., Strathmann H., Wessling M., Suppression of gas separationmembrane plasticization by homogeneous polymer blending, AIChE Journal.,2001,47:1088-1093
    [54]王国全,王秀芬,聚合物改性,北京:中国轻工业出版社,2000
    [55]吴培熙,张留城,聚合物共混改性,北京:中国轻工业出版社,1996
    [56] Deng L. Y., Kim T. J., H gg M. B., PVA/PVAm blend FSC membrane forCO2-capture, Desalination,2006,199:523–524
    [57] Wilks E. S.著,傅志峰等译,Industrial polymers handbook,工业聚合物手册,北京:化学工业出版社,2006
    [58] Cadotte J. E., Rozelle L. T., In-situ-formed condensation polymers for reverseosmosis membranes, NTIS Report No. PB-229337,1972
    [59] Petersen R. J., Composite reverse osmosis and nanofiltration membranes, J.Membr. Sci.,1993,83:81-150
    [60] She J., Shen X. M., Crosslinked PVA-PS thin-film composite membranes forreverse osmosis, Desalination,1987,62:395-403
    [61] Ji J., Dickson J. M., Childs R. F., McCarry B. E., Mathematical model for theformation of thin-film composite membranes by interfacial polymerization:porous and dense films, Macromolecules,2000,33:624-633
    [62] Wittbecker E. L., Morgan P. W., Interfacial polycondensation. I, J. Polym. Sci.1959,40:289-297
    [63] Freger V., Kinetics of film formation by interfacial polycondensation, Langmuir,2005,21:1884-1894
    [64] Bartels C. R., A surface science investigation of composite membranes, J.Membr. Sci.,1989,45:225-245
    [65]张邦华,朱常英,郭天瑛等,近代高分子科学,北京:化学工业出版社,2006.
    [66] Ellinghorst G., Niemoller H., Scholz H., Steinhauser H., Proceedings of thesecond international conference on pervaporation processes in the chemicalindustry, Bakish R., San Antonio,1987
    [67] Scholes C. A., Kentish S. E., Stevens G. W., Effects of minor components incarbon dioxide capture using polymeric gas separation membranes, Sep. Purif.Rev.,2009,38:1-44
    [68] Supap T., Idem R., Veawab A., Aroonwilas A., Tontiwachwuthikul P., ChakmaA., Kybett B. D., Kinetics of the oxidative degradation of aqueousmonoethanolamine in a flue gas treating unit, Ind. Eng. Chem. Res.,2001,40:3445-3450
    [69] Bello A., Idem R. O., Comprehensive study of the kinetics of the oxidativedegradation of CO2loaded and concentrated aqueous monoethanolamine withand without sodium metavanadate during CO2absorption from flue gases, Ind.Eng. Chem. Res.,2006,45:2569-2579
    [70] Bedell S. A., Oxidative degradation mechanisms for amines in flue gas capture,Energy procedia,2009,1:771-778
    [71] Schmeling N., Konietzny R., Sieffert D., R lling P., Staudt C., Functionalizedcopolyimide membranes for the separation of gaseous and liquid mixtures,Beilstein J. Org. Chem.2010,6:789–800
    [72] Ismail A. F., Lorna W., Penetrant-induced plasticization phenonmenon in glassypolymers for gas separation membrane, Separation and Purification Technology,2002,27:173-194
    [73] Visser T., Masetto N., Wessling M., Materials dependence of mixed gasplasticization behavior in asymmetric membranes, J. Membr. Sci.,2007,306:16-28
    [74] Fogg P. G. T., Gerrard W., Solubility of gases in liquids, John wiley&sons,New York,1991
    [75]刘继泉,丁丽,王伟文,仇汝臣,阻聚剂脱除方法对丙烯酸钠聚合的影响,青岛科技大学学报,2003,24(4):337-339
    [76]高凤芹,宁荣昌,合成低分子量聚丙烯酸钠的新方法,华东理工大学学报:自然科学版,2006,32(2):221-224
    [77]谢光勇,张东方,李春涯,果糖交联的聚丙烯酸钠类超强吸水树脂的制备及性能研究,功能材料,2007,38(A09):3384-3386
    [78]钱喜云,童群义,高吸水性树脂聚丙烯酸钠的制备及相关影响,化工新型材料,2006(5):46-48
    [79]陈俸荣,陈洪钫,渗透蒸发透水膜的研究进展,膜科学与技术,1996,16(3):12-23
    [80]徐冬梅,张可达,耿静漪等,聚丙烯酸-丙烯酰胺渗透汽化膜材料的研制,石油化工,2000,29(9):671-673
    [81]刘永兵,蒲万芬,杨燕等,AA/AM二元共聚超强吸水剂的合成,材料科学与工艺,2007,15(5):723-726
    [82]赵文元,王邑军,功能高分子材料化学,北京:化学工业出版社,1996
    [83]马文宝,张立志,固含量对聚砜膜透湿性能的影响,膜科学与技术,2009,29:44-48
    [84]远双杰,分离CO2固定载体复合膜制备装置及制备工艺研究:[硕士学位论文],天津:天津大学,2007
    [85] Kosuri M. R., Koros W. J., Defect-free asymmetric hollow fiber membranesfrom Torlon, a polyamide–imide polymer, for high-pressure CO2separations, J.Membr. Sci.,2008,320:65-72
    [86]叶宪曾,张新祥,仪器分析教程,北京:北京大学出版社,2007
    [87]潘祖仁主编,高分子化学(第三版),北京:化学工业出版社,2003
    [88]高家武,高分子材料近代测试技术,北京:北京航空航天大学出版社,1994,245-268
    [89]王建祺,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,北京:国防工业出版社,1992
    [90]曾毅,吴伟,高建华,扫描电镜和电子探针的基础及应用,上海:上海科学技术出版社,2009
    [91] Nakanshi K., Solomon P. H., Infrared absorption spectroscopy, Holden-Day, SanFrancisco, America,1977
    [92] Zhang Y., Wang Z., Wang S. C., Novel fixed-carrier membranes for CO2separation, Journal of Applied Polymer Science86(2002)2222-2226
    [93] Quinn R., Appleby J. B., Pez G. P., New facilitated transport membranes for theseparation of carbon dioxide from hydrogen and methane, J. Membr. Sci.,1995,104:139-146
    [94] Nobel R. D., Koval C. A., Review of facilitated transport membranes, in: Y.Yampolskii, I. Pinnau, B. D. Freeman, Eds, Materials science of membranes forgas and vapor separation, Chichester, England: John Wiley&Sons,2006
    [95] Wijmans J. G., Baker R. W., The solution-diffusion model: a review, J. Membr.Sci.,1995,107:1-21
    [96] H rtel G., Püschel Th., Permselectivity of a PA6membrane for the separation ofa compressed CO2/H2gas mixture at elevated pressures, J. Membr. Sci.,1999,162:1-8
    [97] Francisco G. J., Chakma A., Feng X. S., Membranes comprising ofalkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2separation, J. Membr. Sci.,2007,303:54-63
    [98] Reinsch V. E., Greenberg A. R., Kelley S. S., Peterson R., Bond L. J., A newtechnique for the simultaneous, real-time measurement of membrane compactionand performance during exposure to high-pressure gas, J. Membr. Sci.,2000,171:217-228
    [99] Wessling M., Lopez M. L., Strathmann H., Accelerated plasticization of thin-filmcomposite membranes used in gas separation, Sep. Purif. Technol.,2001,24:223-233
    [100] Zhou C., Chung T. S., Wang R., Liu Y., Goh S. H., The accelerated CO2plasticization of ultra-thin polyimide films and the effect of surface chemicalcross-linking on plasticization and physical aging, J. Membr. Sci.,2003,225:125-134
    [101] http://zhidao.baidu.com/question/94458253.html
    [102] http://wenku.baidu.com/view/ddf7db07eff9aef8941e06c4.html
    [103] Wei X. Y., Wang Z., Chen J., Wang J. X. and Wang S. C., A novel method ofsurface modification on thin-film-composite reverse osmosis membrane bygrafting hydantoin derivative, J. Membr. Sci.,2010,346:152-162
    [104] Shintani T., Matsuyama H. and Kurata N., Development of a chlorine-resistantpolyamide reverse osmosis membrane, Desalination,2007,207:340-348
    [105]张健,后晓准,高分子气体分离膜材料的化学结构与气体透过性能之间的关系,高分子通报,1999,1:14-19
    [106]韩哲文,高分子科学教程,华东理工大学出版社,2001
    [107] Patel N. P., Miller A. C., Spontak R. J., Highly CO2-permeable and selectivenanocomposite membrane, Adv. Mater.2003,15(9):729-733
    [108] Patel N. P., Miller A. C., Spontak R. J., Highly CO2-permeable and selectivemembranes derived from crosslinked poly(ethylene glycol) and itsnanocomposites, Adv. Funct. Mater.2004,14(7):699-707
    [109] Lin H. Q., Freeman B. D., Materials selection guidelines for membranes thatremove CO2from gas mixture, J. Mole. Stru.,2005,739:57-74
    [110] Kim J. H., Ha S. Y., Lee Y. M., gas permeation of poly(amide-6-b-ethyleneoxide) copolymer, J.Membr. Sci.,2001,190:179-193
    [111] Liu L., Chakma A., Feng X. S., A novel method of preparing ultrothin poly(etherblock amide) membranes, J. Memr. Sci.,2004,235:43-52
    [112] Liu L., Chakma A., Feng X. S., CO2/N2separation by poly(ether block amide)thin film hollow fiber composite membranes, Ind. Eng. Chem. Res.,2005,44:6874-6882
    [113] Liu L., Chakma A., Feng X. S., Preparation of hollow fiber poly(ether blockamide)/polysulfone composite membranes for separation of carbon dioxide fromnitrogen, Chem. Eng. J.,2004,105:43-51
    [114] Lin H. Q., Freeman B. D., Gas permeation and diffusion in cross-linkedpoly(ethylene glycol diacrylate), Macromolecules,2006,39:3568-3580
    [115] Lin H. Q., Kai T., Freeman B. D., Kalakkunnath S., Kalika D. S., The effect ofcross-linking on gas permeability in cross-linked poly(ethylene glycol diacrylate),Macromeclules,2005,38:8381-8393
    [116] Bondar V. I., Freeman B. D., Pinnau I., Gas transport properties ofpoly(ether-b-amide) segmented block copolymers, J. Poly. Sci.: Part B:polymer Physics,2000,38:2051-2062
    [117] Lin H. Q., Solubility selective membrane materials for darbon dioxide removalfrom light gases, P.h.D Dissertation, The University of Texas at Austin,2005
    [118] R. P. Castro, R. W. Baker and J. G. Wijmans, Multilayer interfacial compositemembrane, US Patent,1991,5,049,167
    [119]汤蓓蓓,徐铜文,武培怡,界面聚合法制备复合膜,化学进展,2007,19:1428-1435
    [120]崔绍波,卢忠远,刘德春,王文忠,肖相齐,宋丽贤,界面聚合技术及其应用研究进展,化工进展,2006,25:47-50
    [121] Song Y. J., Liu F., Sun B. H., Preparation, characterization, and application ofthin film composite nanofiltration membranes, J. Appl. Polym. Sci.,2005,95:1251-1261
    [122] Rao A. P., Joshi S. V., Trivedi J. J., Devmurari C. V., Shah V. J.,Structure–performance correlation of polyamide thin film composite membranes:effect of coating conditions on film formation, J. Membr. Sci.,2003,211:13-24
    [123] Rao A. P., Desai N. V., Rangarajan R., Interfacially synthesized thin filmcomposite RO membranes for seawater desalination, J. Membr. Sci.,1997,124:263-272
    [124] Chen S. H., Chang D. J., Liou R. M., Hsu C. S., Lin S. S., Preparation andseparation properties of polyamide nanofiltration membrane, J. Appl. Polym. Sci.,2002,83:1112-1118
    [125] Zou Y., Yu S. C., Liu M. H., Gao C. J., Polyamide thin film compositemembrane prepared from m-phenylenediamine andm-phenylenediamine-5-sulfonic acid, J. Membr. Sci.,2006,270:162-168
    [126] Chu L. Y., Wang S., Chen W. M., Surface modification of ceramic-supportedpolyethersulfone membranes by interfacial polymerization for reducedmembrane fouling, Macromol. Chem. Phys.,2005,206:1934-1940
    [127] Childs R. F., Weng J. F., Kim M., Dickson J. M., Formation of pore-filledmicrofiltration membranes using a combination of modified interfacialpolymerization and grafting, J. Polym. Sci. Part A: Polym. Chem.,2002,40:242-250
    [128] Zhou Y., Yu S. C., Liu M. H., Gao C. J., preparation and characterization ofpolyamide-urethane thin-film composite membranes, Desalination,2005,180:189-196
    [129] Yuan F., Wang Z, Yu X. W., Wei Z. H., Li S. C., Wang J. X., Wang S.C.,Visualization of the Formation of Interfacially Polymerized Film by anOptical Contact Angle Measuring Device, J. Phys. Chem. C, DOI:10.1021/jp210209v
    [130] Wang M. M., Wang Z., Wang J. X., Zhu Y. Q., Wang S. C., An antioxidativecomposite membrane with the carboxylate group as the fixed carrier for CO2separation from flue gas, Energy Environ. Sci.,2011,4:3955-3959
    [131] Liu Y., He B. Q., Li J. X., Sanderson R.D., Li L., Zhang S. B., Formation andstructural evolution of biphenyl polyamide thin film on hollow fiber membraneduring interfacial polymerization, J. Membr. Sci.,2011,373:98-106
    [132] Zhao L., Menzer R., Riensche E., Blum L., Stolten D., Concepts and investmentcost analyses of multi-stage membrane systems used in post-combustionprocesses, Energy Procedia. GHGT9.2009,1:269-278
    [133] Yang D. X., Wang Z., Wang J. X., Wang S. C., Potential of two-stage membranesystem with recycle stream for CO2capture from postcombustion gas, Energy&Fuels.2009,23:4755-4762
    [134]杨东晓,分离CO2固定载体膜传质机理及其膜过程模拟和优化研究:[博士学位论文],天津:天津大学,2008
    [135] Qi R., Henson M. A., Approximate modeling of spiral-wound gas permeators, J.Membr. Sci.,1996,121:11-24
    [136] Thundyil M. J., Koros W. J., Mathematical modeling of gas separationpermeators for radial crossflow, countercurrent, and cocurrent hollow fibermembrane modules, J. Membr. Sci.,1997,125:275-291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700