弱碱性三元复合采出液乳化与破乳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,有关原油乳状液的研究主要是针对油田开发初期的W/O型原油乳状液进行的。然而,弱碱型三元复合驱采出液乳化、稳定和破乳方面的研究工作较少,因而有必要开展这一方面的研究工作。
     本课题通过考察三元复合驱采出液中残留的碱、表面活性剂和聚合物对采出液乳化强度、油水分离特性、油相流变性、水相流变性及油水界面性质的影响,研究了O/W型三元复合驱采出液乳化、稳定和破乳行为,得出结论如下。
     (1)碱、表面活性剂和聚合物可显著影响三元复合驱采出液的油水界面性质。当ω(表面活性剂)=0.06%时,油水平衡界面张力下降至1~5mN/m。ω(表面活性剂)=0.04%时,界面剪切弹性模量和界面剪切粘度分别为4.958mN/m和3.9244mN·s/m。油水界面扩散双层的Zeta位均为负值。
     (2)三元复合驱采出液水相视粘度随着聚合物含量和相对分子质量的增加而增大。水相视粘度和动力学粘度之间存在着Y=1.1381X的线性关系。相对于视粘度,动力学粘度可更好的表征模拟三元复合驱采出水的流变性。
     (3)当(聚合物)=0.04%、ω(表面活性剂)=0.01%、ω(碱)=0.15%时,采出液热沉降后油中含水率高达6.93%。无聚合物、ω(表面活性剂)=0.03%、ω(碱)=0.15%时,采出液热沉降后,水中含油量达1400mg/L。碱与原油中的胶质和沥青质进行皂化反应,生成表面活性物质,降低油水界面张力。表面活性剂吸附到油水界面上改变界面膜的性质。聚合物使水相视粘度显著增大。碱、表面活性剂和聚合物的综合作用使采出液的油中含水率和水中含油率升高。
     (4)三元复合驱采出液添加破乳剂ASPD-γ后,油水乳状液稳定性显著降低。无聚合物、碱和表面活性剂时,水中含油量由2920 mg/L下降至418.3mg/L。ω(聚合物)=0.02%、ω(表面活性剂)=0.04%、ω(碱)=0.05%时,添加破乳剂ASPD-γ,水中含油量由1565.7 mg/L下降至987.9mg/L。破乳剂吸附到油水界面上,顶替表面活性剂、碱与原油中的胶质和沥青质反应生成的表面活性物质和天然表面活性物质,导致乳状液稳定性降低,容易破乳。
Nowadays, the research was mainly focused on the water-in-oil crude oil emulsion in initial exploitation of oil field. Whereas, little research was carried out to investigate the emulsification, stability and demulsication of alkalescent crude oil emulsion produced by ASP flooding. So it is necessary to develop the research on this aspect.In this paper, the effect of residual alkali, surfactant and polymer in crude oil emulsion produced by ASP flooding on emulsion strength, oil-water separation property, oil phase rheology、 water phase rheology and oil-water interfacial property has been studied and the mechanism of Emulsification, stability and demulsication of oil-in-water crude oil emulsion produced by ASP flooding was developed. The conclusion was as flows.(1) Alkali, surfactant and polymer in the crude oil emulsion produced by ASP flooding influence the oil-water interfacial property remarkably. When the content by weight of surfactant was 0.06%, equilibrium interfacial tension descended to 1~5mN/m. Interfacial shearing elastic modulus and interfacial shearing viscosity increased to 4.958mN/m and 3.9244mN ? s/m with thecontent by weight of surfactant was 0.04%.(2) The molecular weight and content of polymer has remarkable influence on the viscosity and elastic modulus of ASP flooding produced water, the higher the content of polymer become, the higher the viscosity increase. A general correlation (Y = 1.1381X) between the viscosity and dynamics viscosity stands for ASP flooding produced water. Dynamics viscosity characterized the rheological behavior better than apparent viscosity.(3) When the content by weight of polymer was 0.04%, surfactant was 0.01%, alkali was 0.15%, water content in oil increased to 6.93%. Oil content in water increased to 1400mg/L with polymer free, surfactant (0.03%), alkali (0.15%). Interfacial tension was descended, for surfactant created in the system of alkali, pectin and pitch. Interfacial membrane changed because of the surfactant adsorbing. Polymer increased the water phase apparent viscosity. Alkali, surfactant and polymer made the stability of crude oil emulsion produced by ASP flooding enhance, as the water content in oil and oil content in water increasing.(4) The stability of crude oil emulsion produced by ASP flooding debased when ASPD- Y was added, Oil content in water decreased from 2920mg/L to 418.3mg/L, with polymer, alkali and surfactant free, Oil content in water decreased from 1565.7mg/L to 987.9mg/L, with polymer
    0.02%, alkali 0.04% and surfactant 0.05%. The stability of crude oil emulsion debased because of the demulsifier substituting surfactant, fatty acid, naphthene acid and natural surfactant.
引文
[1] 李干佐,翟利民,郑立强等.我国三次采油进展.日用化学品科学.1999:1-9.
    [2] 郭万奎,程杰成,廖广志等.大庆油田三次采油技术研究现状及发展方向.大庆石油地质与开发.2002,21(3):1-6.
    [3] 廖广志,王启民,王德民.化学复合驱原理及应用.北京:石油工业出版社,1999.
    [4] 王景良.ASP复合驱机理的研究与展望.国外油气田地面工程.2001,17(8):15-19.
    [5] 杨迎花,程绍玲三元复合驱体系/大庆原油间界面张力研究.天津科技大学学报.2004,19(4):31-33.
    [6] 郭继香,吴肇亮,李明远等.界面剪切黏度对原油乳状液稳定性的影响.精细化工.2003,20(11):660-662.
    [7] 朱步瑶,赵振国.界面化学基础.北京:化学工业出版社.1996.
    [8] B.J. Briscoe. C.J. Lawrence. W.G.P. Mietus. A review of Immiscible Fluid Mixing. Advances in Colloid and Interface Science. 1999, 81:1-17.
    [9] 叶仲斌,张绍彬,李允等.HPAM与油之间的界面剪切粘度实验研究.西南石油学院学报. 2000,22(3):53-56.
    [10] J.A. Erker and J. C. Baygents. The Equilibrium Electric Potential and Surface Charge. Density of Spherical Emulsion Drops with Thin Double Layers:Journal of Colloid and Interface Science. 1996, 179: 76-88.
    [11] 梁治齐,李金华.功能性乳化剂与乳状液北京:中国轻工业出版社。2000:130-143
    [12] Jyh-ping Hsu and Ming-Tsan Tseng, An Integral Expression for the Electrical potential Distribution for Charged Surface in Electrolyte Solutions, Journal of Colloid and Interface Science. 1997, 188:193-200.
    [13] J.J.Lopez-Garcia, J. Homo, F. Gortzalez-Caballero, C. Grosse, and A.V. Delgado, Dynamics of the Electrolyte Double Layer:Analysis in the Frequency and Time Domain. Journal of Colloid and Interface Science. 2000, 228:95-104.
    [14] J. Thieme, S. Abend, G. Lagaly, Aggregation in Picketing Emulsions. Colloid Polym Sci.1999, 277:257-260.
    [15] Olga I, Vinogradova, and Francois Feuillebois. Elastohydrodynamic Collision of Two Spheres Allowing Slip on Their Surfaces, Journal of Colloid and Interface Science. 2000, 221:1-12.
    [16] Hyang Mok Lee, Jin Woo Lee, and O Ok Park, Rheology and Dynamics of Water-in-Oil Emulsions under Steady and Dynamic Shear Flow, Joumal of Colloid and Interface Science. 1995, 185:297-305.
    [17] Rajinder Pal, Shear Viscosity Behavior of Emulsions of Two Immiscible Liquids,Journal of Colloid and Interface Science. 2000, 225:359-366.
    [18] 崔正刚,殷福珊.微乳化技术及应用.北京:中国轻工业出版社.1999.
    [19] B.J. Briscoe, C.J. Lawrence, W.G.P. Mietus. A review of Immiscible Fluid Mixing Advances in Colloid and Interface Science. 1999, 81:1-17.
    [20] Nael N. Zaki. Collide and Surfaces. 1997, 125:19-25.
    [21] 裘炳毅.乳化作用及其在化妆品工业的应用。日用化学工业.1999,2:48-53.
    [22] Johan Sjoblom, Emulsions and Emulsion Stability, New York: Marcel Dekker, Inc. 1996.
    [23] Laurier L. Schramm, Emulsions: Fundamentals and Application in the Petroleum Industry, Washington, DC:American Chemical Society.1992.
    [24] R. Folkersma, A.J.G van Diemen, H.N.Stein, Understanding the Influence of Gravity on Perikinetic Coagulation on the Basis of the DLVO theory, Advances in Colloid and Interface Science1999, 83:71-84.
    [25] Nikolai D. Denkov, Dimitter N. Petsev; and Krassimir D. Danov, Flocculation of Deformable Emulsion Droplets I. Droplet Shape and Line Tension Effects, Journal of Colloid and Interface Science. 1995, 176:189-200.
    [26] Dimitter N. Petsev, Nikolal D. Denkov, and Peter A. Kralchevsky, Flocculation of Deformable Emulsion Droplets II. Interaction Energy. Joumal of Colloid and Interface Science. 1995, 176:201-213.
    [27] Eric Dickinson, Matt Golding, and Malcolm J.W. Povey, Creaming and Flocculation of Oil-in-Water Emulsions Containing Sodium Caseinate, Journal of Colloid and Interface Science.1997, 185:515-529.
    [28] B.W.Ninham, On Progress in Forces since the DLVO Theory. Advances in Colloid and Interface Science.1999,83:1-17.
    [29] V.V. Yaminsky, B.W.Nirtham, Surface Forces vs. Surface Compositions, Colloid Science from the Gibbs Adsorption Perspective, Advances in Colloid and Interface Science. 1999, 83:227-311.
    [30] N.V. Churaev, The DLVO Theory in Russian Colloid Science, Advances in Colloid and Interface Science. 1999, 83:19-32.
    [31] 杨小莉,陆婉珍.有关原油乳状液稳定性的研究.油田化学.1998,15(1):87-96.
    [32] Bhardwj A. Handland S. Kinetics of coalescence of water droplets in water-in-oil,J Disper Sci Technol.1994, 15(2):133.
    [33] H.A.巴勒斯,J.H.赫顿,K.瓦尔特斯.流变学导引.北京:中国石化出版社.1992.
    [34] 赵福麟.采油化学.山东东营:石油大学出版社.1989.
    [35] 侯吉瑞,刘中春,夏惠芬等.三元复合体系的粘弹效应对驱油效率的影响.油气地址与采收率.2001,8(3):61-64.
    [36] 吴文祥,张洪亮,胡竟邦等.复合驱油休系与大庆原油间界面张力的研究.油气采收率技术.1995,2(1):1-7.
    [37] Gebhard Schramm. A Practical Approach to Rheology and Rheometry. Karlsruhe:Haake GmbH 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700