SiCp/2009Al复合材料的搅拌摩擦焊接
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌摩擦焊接(FSW)作为一种新型固态焊接技术,可有效避免熔化焊产生的缺陷,获得性能良好的颗粒增强铝基复合材料(AMC)接头,被认为是实现AMC工业化焊接生产的理想选择。但由于增强相颗粒对焊接工具的严重磨损,使AMC的FSW工艺参数缺少系统的研究,同时控制接头性能的因素也缺乏深入的理解。本研究采用一种新型耐磨金属陶瓷材料作为焊接工具,选取目前应用最广泛的SiCp/2009Al复合材料作为研究对象。探讨采用新型焊接工具进行不同状态SiCp/2009Al的FSW可行性,并系统研究焊接工具形状、尺寸、焊接参数对接头微观组织和力学性能的影响,揭示影响接头力学性能和抗腐蚀性能的关键因素。主要研究工作如下:
     选取不同热处理状态的SiCp/2009Al板材进行FSW。探讨采用新型焊接工具进行SiCp/2009Al的FSW可行性。研究表明,采用金属陶瓷焊接工具可以实现轧制态、固溶态、自然时效态的15vol.%SiCp/2009Al板材的FSW。接头表面质量良好,无明显焊接缺陷。轧制态板材的FSW接头中,焊核区大部分Al2Cu相溶解,部分Al2Cu相在冷却过程中重新析出。焊核区的硬度明显提高,接头横向拉伸时断裂在母材,强度为321MPa。在固溶态和自然时效态下进行FSW,可以取得类似的焊接效果。两种状态样品焊核区的晶粒尺寸、析出相(Al2Cu)分布及硬度基本相似。两种样品的热影响区均存在两个低硬度区,靠近焊核区的低硬度区在焊接热循环过程中温度较高,两种样品均发生Al2Cu相的粗化,硬度值相同;但在远离焊核区的低硬度区,固溶态样品不发生固溶原子团簇回溶,该区域的硬度略高于自然时效态样品,位置更靠近焊核区中心。两种接头横向拉伸时均断裂在靠近焊核区的低硬度区,强度基本相同,可达母材强度的83%。
     研究了焊接工具形状、尺寸对T4态17vol.%SiCp/2009Al的FSW接头的微观组织和力学性能的影响。采用带螺纹的圆锥形搅拌针,研究了焊接转速、焊接速度、压下量等工艺参数对接头微观组织和力学性能的影响。研究表明,采用三棱柱搅拌针时,增加三棱柱搅拌针的倾斜角度和增大轴肩尺寸,有助于焊接过程中材料流动以及板材原始界面氧化皮的分散,但接头重新T4处理后强度仍低于母材。仅在高焊接转速(1000rpm)和低焊接速度(50mm/min)的参数条件下,可获得高性能的接头。带螺纹的圆锥形搅拌针有助于材料的流动,焊接速度为100mm/min时,焊接转速由600rpm提高到2000rpm,接头的拉伸强度基本不变,为母材的85%左右,接头断裂在热影响区的低硬度区。焊接过程中增加压下量可实现T4态17vol.%SiCp/2009Al板材的高速焊接。当焊接转速为1000rpm,接头强度随焊接速度的提高而提高,当焊接速度低于200mm/min,拉伸时样品断裂在热影响区的低硬度区。当焊接速度达到600mm/min时,热影响区和焊核区的硬度基本相同。焊接速度在300-600mm/min范围内,接头强度为母材的92%左右,断裂位置在热影响区和焊核区呈随机分布。
     研究了SiCp/2009Al FSW过程中焊核区SiC颗粒的变化、SiC/Al界面的演化对接头力学性能的影响以及高速焊接条件下接头析出相的分布规律,探讨控制FSW接头室温力学性能的关键因素。研究表明,FSW过程中剧烈的塑性变形导致焊核区SiC颗粒的形状和尺寸发生变化,降低样品的屈服强度。SiC/Al界面上较大的化合物发生脱落,较小的化合物和非晶层仍保留在界面上。Al基体容易在破碎的SiC颗粒表面形核并形成纳米晶。变得相对干净的SiC/Al界面有助于增强载荷传递,提高样品的抗拉强度。在高速焊接时(800mm/min)焊核区存在~100nm的A12Cu相和~20nm的Al2CuMg相,硬度最低。热影响区只有一个低硬度区,在该区域只发生固溶原子团簇回溶。样品的拉伸强度可达母材的97%,断裂在焊核区。
     研究了2009A1合金、17vol.%SiCp/2009Al以及17vol.%SiCp/2009Al在低焊接速度(50mm/min)和高焊接速度(800mm/min)下的FSW接头的局部腐蚀行为,探讨影响母材及FSW接头局部腐蚀性能的因素。研究表明,2009A1合金在57gNaCl+10ml H2O2+1LH2O溶液中浸泡时,内部聚集的第二相颗粒容易在表面形成腐蚀环,发生严重的点蚀和晶间腐蚀,并向材料内部扩展。17vol.%SiCp/2009Al中引入大量SiC/Al界面,腐蚀环被抑制。虽然在材料表面也会发生点蚀和晶间腐蚀,但材料腐蚀相对更均匀。低速焊接的FSW接头中,焊核区和热影响区中靠近焊核区的低硬度区的晶界析出相发生粗化,促进样品的晶间腐蚀。同时,在SiC/Al界面和晶内析出的Al2Cu相促进Al基体发生阳极溶解,造成腐蚀速率加快,这两个区域的自腐蚀电位和阻抗与母材相比明显降低。高速焊接的FSW接头中,焊核区晶界析出相的尺寸减小,促进腐蚀沿晶界进行,增加晶间腐蚀速率,导致焊核区底部材料发生脱落。
Friction stir welding (FSW), as a solid-state joining technique, is considered a promising welding method for joining the discontinuously reinforced aluminium matrix composites (AMCs) to avoid the drawbacks of the fusion welding. However, severe wear of the steel tool occurred during FSW due to the presence of hard ceramic reinforcements. This not only reduced the lifetime of the tool, but also limited the welding parameters of the AMCs. Furthermore, the factors determining the properties of the joints were not well understood. In this study, an ultra-hard cermet tool was used to join SiCp/2009A1plates, which have been widely applied in industry. The aims are to investigate possibility of joining SiCp/2009A1in various heat treatment conditions, to elucidate the effects of shape and dimension of the welding tools on the microstructure and mechanical properties of the FSW joints, and to clarify the mechanisms affecting mechanical properties and corrosion properties of the FSW joints
     Hot-rolled, solutionized and naturally aged15vol.%SiCp/2009A1plates were successfully joined by FSW using the ultra-hard cermet tool. In the FSW joints of hot-rolled composite, part of Al2CU was dissolved into the aluminum matrix in the nugget zone (NZ) due to intensely plastic deformation and high temperature during FSW. The undissovled Al2Cu particles remained in the NZ and coarsened during the cooling process after FSW. The ultimate tensile strength (UTS) of the as-welded joint is only321MPa and failed in the BM zone due to the low strength of the BM. For both solutionized and naturally aged composites, a similar welding behavior was observed. In the NZ of both samples, the grain size and the distribution of the coarse Al2Cu phases and the hardness values were similar. In the heat affected zone, two low hardness zones (LHZs) were observed for both samples. The first LHZ adjacent to the NZ (LHZ I) had the lowest hardness. Both samples had the similar hardness in this zone.For the joint of solutionized composites, the LHZ far away from the NZ (LHZ II) had a higher hardness and was closer to the NZ.The ultimate tensile strength of both the samples was similar and reached83%of T4-tempered base metal.
     The effects of shape and dimension of the welding tools on the microstructure and mechanical properties of the FSW joints were investigated. The welding tools with cylindrical pin was used to join17vol.%SiCp/2009Al. For a pin design with three inclined flats on the outer surface and the triangular end surface, increasing the degree of the inclined flats and the diameter of the shoulder is beneficial to the material flow and the disruption of the oxides on the butt interface during FSW. However, the strength of the joints achieved with these tools was not very good. Especially, with low heat input, the strength of joints re-treated to a T4temper was lower than that of the T4-temperaed base material. Only with the high heat input (rotation rate is1000rpm and welding speed is50mm/min), the stregnth of the joints re-treated to a T4temper were similar to that of the T4-temperaed base material. The effects of the rotation rate, welding speed, and the shoulder plunge depth on the microstructure and mechanical properties by the threaded pin with coniform shape. This tool promoted the materials deformation during FSW. The sound joints could be achieved at a welding speed of100mm/min and tool rotation rates of600-2000rpm. The strength of the joints was85%of the BM and failed in the LHZ I. The strength of the joints was not changing with the tool rotation rate increasing. Furthermore, the17vol.%SiCp/2009Al plates could be successfully joined at high welding speed with increasing the shoulder plunge depth during welding process. At a tool rotation rate of1000rpm, the strength of the joints increased as the welding speed increased. The strength of the joint at a welding speed of600mm/min reached92%of the base material. At low welding speeds of50to200mm/min, two low hardness zones were observed in the heat affected zones and the tensile samples failed in the LHZ I. At welding speeds of300to600mm/min, the hardness values of the NZ and HAZ were similar. The joints failed in the NZ or HAZ randomly.
     The severe plastic deformation during FSW resulted in the variation of the size and shape of the SiC particles in the NZ. The yield strength of the NZ decreased slightly due to the variation of the SiC particles. Large compound particles on the interfaces were broken off during FSW, whereas the amorphous layer and small compound particles remained on the interfaces. The dynamically recrystallized Al grains nucleated on the surface of fractured SiC particles during FSW, forming nano-sized grains around the SiC particles. The clean interfaces were beneficial to the load transfer from Al matrix to SiC particles and then increased the UTS of the NZ. The microstructure and mechanical properties of the joints achieved at high welding speed (800mm/min) were different from that at low welding speed. The NZ exhibited the lowest hardness due to the formation of both0phases-100nm in size and S phases-20nm in size. In the heat affected zone, only part of the clusters dissolved into the Al matrix. The UTS of the joints reached97%of the based material and failed in the NZ.
     The local corrosion resistance of2009A1,17vol.%SiCp/2009A1and the FSW joints of17vol.%SiCp/2009A1were investigated. Since the segregation of the intermetallic particles in the matrix, some corrosion rings formed on the surface of the2009Al, when the samples was immersed in the57g NaCl+10ml H2O2+1L H2O solution. The severe intergranular corrosion and pitting corrosion occurred in the rings and penetrated into the matrix. For the composite, the presence of the SiC/Al interface inhibited the formation of the corrosion ring in the surface of the sample. Although the intergranular corrosion and pitting corrosion would also occur in the composite, the corrosion became homogenously compared to that in the2009A1. At low welding speed (50mm/min), the intergranular corrosion occurred in the NZ and LHZ I due to the coarse precipitates on the grain boundaries. Meanwhile, the Al2Cu phases on the SiC/Al interface and within the grains also improved the anodic dissolution of the Al matrix. Therefore, the corrosion potential and electrochemical impedance of the NZ and LHZ I decreased compared to those of the based material. At high welding speed (800mm/min), the small precipitates on the grain boundaries accelerated the intergranular corrosion. The severe intergranular corrosion resulted in the exfoliation corrosion on the bottom of the NZ.
引文
[1]Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Mater. Sci. Eng. R,2000,29:49-113.
    [2]Lloyd DJ. Particel-reinfoced aluminum and magnesium matrix composites[J].Inter. Mater. Rev.,1994,39:1-23.
    [3]李成功,傅恒志,于翘.航空航天材料[M].北京:国防工业出版社,2002.
    [4]吴仁浩.复合材料[M].天津:天津大学出版社,2000.
    [5]Ellis MBD. Joining of aluminium based metal matrix composites[J]. Inter. Mater. Rev.,1996, 41:41-58.
    [6]Rogovsky, Alexander J, Holmquist GR. Nondestructive inspection of miniature aluminum welds in composite structure[J]. Mater. Eval.,1984,42:318-324.
    [7]Dahotre NB, Narendra B, McCay MH. Pulse laser processing of a SiC/Al-alloy metal matrix composite[J]. J. Mater. Res.,1991,6:514-529.
    [8]Dahotre NB, McCay M H, McCay TD. Laser welding of a SiC/Al-alloy metal matrix composite[J]. LIA (Laser Institute of America),1991,71:343-356.
    [9]Midling OT, Grong Q. A process model for friction welding of Al-Mg-Si alloys and Al-SiC metal matrix composites-I. HAZ temperature and strain rate distribution[J]. Acta Metall. Mater.,1994,42:1595-1609.
    [10]Zhang XP, Quan GF, Wei W. Preliminary investigation on joining performance of SiCp-reinforced aluminium metal matrix composite (Al/SiCp-MMC) by vacuum brazing[J]. Compos. A,1999,30:823-827.
    [11]Huang JH, Wan Y, Zhang H. TLP bonding of SiCp/2618Al composites using mixed Al-Ag-Cu system powders as interlayers[J].J. Mater. Sci.,2007,42:9746-9749.
    [12]Mishra RS, Ma ZY. Friction stir welding and processing [J]. Mater. Sci. Eng. R,2005,50: 1-78.
    [13]Uzun H. Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite[J]. Mater. Des.,2007,28:1440-1446.
    [14]Feng AH, Xiao BL, Ma ZY. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite[J]. Compos. Sci. Technol.,2008,68: 2141-2148.
    [15]Prado RA, Murr LE, Soto KF. Self-optimization in tool wear for friction-stir welding of Al 6061+20% A12O3 MMC[J]. Mater. Sci. Eng., A,2003,349:156-165.
    [16]Linert TJ, Brandon ED, Lippold JC. Laser and electron beam welding of SiCp reinforced aluminum A-356 metal matrix composite[J]. Scr. Metall. Mater.,1993,28:1341-1346.
    [17]Guo W, Hua M, Ho JKL. Study on liquid-phase-impact diffusion welding SiCp/ZL101[J]. Compos. Sci. Technol.,2007,67:1041-1046.
    [18]王文明,潘复生,曾苏民.碳化硅颗粒增强铝基复合材料开发与应用的研究现状[J].兵器材料科学与工程,2004,27:61-67.
    [19]崔岩.碳化硅颗粒增强铝基复合材料的航空航天应用[J].材料工程,2002,6:3-6.
    [20]于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.
    [21]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006.
    [22]Miracle DB. Aeronautical Applications of Metal-Matrix Composites[M]. Materials Park: ASM Handbook.2001.
    [23]Maruyama B. Progress and Promise in Aluminum Metal Matrix Composites[J]. Adv. Mater. Processes,1999,98:47-50.
    [24]Hunt WH, Herling DR. Aluminum metal matrix composites[J]. Adv. Mater. Processes,2004, 162:39-42.
    [25]Hunt WH. Aluminum metal matrix composites today[J]. Mater. Sci. Forum,2000,331: 71-84.
    [26]Miracle DB. Metal matrix composites- From science to technological significance[J]. Compos. Sci. Technol.,2005,65:2526-2540.
    [27]杨涛林,陈跃.颗粒增强金属基复合材料的研究进展[J].铸造技术,2006,27(8):871-873.
    [28]Qiu B, Yang O, Li XR, Wang WL, Zhang GD, Zhang D. Light Weight and High Modulus Aluminum Matrix Composite and its Application into Aerospace[J]. Mater. Sci. Forum,2007, 546:1551-1554.
    [29]王少刚,徐九华,姜澄宇.铝基复合材料焊接中的若干技术问题[J].宇航材料工艺,2006,4:1-6.
    [30]Garcia R, Manzano A, Lopez VH. Comparative welding study of metal matrix composites with the MIG welding process using direct and indirect electric arc[J]. Metall. Mater. Trans. B,2002,33:932-937.
    [31]Salazar JMG, Soria A, Barrena MI. Welding of AA6061-(Al2O3)p composite:effect of weld process variables and post-welding heat treatment on microstructure and mechanical properties[J]. Sci. Technol. Weld. Joining,2005,10:339-343.
    [32]Storjohann D, Barabash OM, Babu SS. Fusion and Friction Stir Welding of Aluminum-Metal-Matrix Composites[J]. Metall. Mater. Trans. A,2005,36:3237-3247.
    [33]郭绍庆,谷卫华,李艳SiCp/A1的熔化焊及高能束焊研究现状[J].宇航材料工艺,2005, 4:19-24.
    [34]Wang XH, Niu JT, Guan SK. Investigation on TIG welding of SiCp-reinforced aluminum-matrix compositeusing mixed shielding gas and Al-Si filler[J]. Mater. Sci. Eng. A, 2009,499:106-110.
    [35]Garcia R, Lopez VH, Kennedy AR. Welding of Al-359/20%SiCp metal matrix composites by the novel MIG process with indirect electric arc (IEA)[J]. J. Mater. Sci.,2007,42: 7794-7800.
    [36]Garcia R, Lopez VH, Bedolla E. A comparative study of the MIG welding of Al/TiC composites using direct and indirect electricarc processes[J]. J. Mater. Sci.,2003,38: 2271-2779.
    [37]Yue TM, Xu JH, Man HC. Pulsed Nd-YAG Laser Welding of A SiC Particulate Reinforced Aluminium Alloy Composite[J]. Appl. Compos. Mater.,1997,4:53-64.
    [38]Huang RY, Chen SC, Huang JC. Electron and Laser Beam Welding of High Strain Rate Superplastic Al-6061/SiC Composites[J]. Metall. Mater. Trans. A,2001,32:2575-2584.
    [39]Niu JT, Pan LX, Wang MZ. Research on laser welding of aluminum matrix composite SiCw/6061[J]. Vacuum,2006,80:1396-1399.
    [40]Wang HM, Chen YL, Yu LG. In-situ weld-alloying/laser beam welding of SiCp/6061Al MMC[J]. Mater. Sci. Eng., A,2000,293:1-6.
    [41]Chen MA, Wu CS, Zou ZD. Electron beam welding of SiCp/LD2 composite[J]. Trans. Nonferrous Met. Soc. China,2006,16:818-823.
    [42]许如强,邹家生,韩逸生.铝基复合材料的钎焊连接技术[J].焊接技术,2002,31:1-4.
    [43]邹家生,许如强,赵其章.用Al-Cu-Si-Mg钎料钎焊SiCp/LY12复合材料的接头强度及断裂[J].稀有金属材料与工程,2004,33:972-975.
    [44]张洋,闫久春.高体积分数SiC颗粒增强铝基复合材料的超声波钎焊[J].焊接,2008,8:29-31.
    [45]王少刚,刘红霞.SiC颗粒增强铝基复合材料的钎焊性[J].材料科学与工程学报,2009,27:186-189.
    [46]李杏瑞,涂益民,黄金亮.SiCp/Al复合材料与LD2的摩擦焊研究[J].热加工工艺,2004,3:21-22.
    [47]Zhou Y, Zhang J. The Mechanical Properties of Friction Welded Aluminum-based Metal-matrix Composite Materials[J]. J. Mater. Sci.,1997,32:3883-3889.
    [48]Midling OT, Grong Q. A process model for friction welding of Al-Mg-Si alloys and Al-SiC metal matrix composites-Ⅱ. HAZ microstructure and strength evolution[J]. Acta Metall. Mater.,1994,42:1611-1622.
    [49]牛济泰,王慕珍,刘黎明.扩散焊条件下Al2O3p/6061Al复合材料中氧化膜的行为[J].‘材料研究学报,2000,14:244-248.
    [50]Urena A. Diffusion bonding of discontinuously reinforcedSiC/Al matrix composite:the role of interlayers[J]. Key Eng. Mater.,1995,104-107:523-540.
    [51]Feng T, Chen XZ, Wu LH. Diffusion welding of SiCp/2014Al composites using Ni as interlayer[J]. Journal of University of Science and Technology Beijing,2006,13:267-271.
    [52]Huang JH, Dong YL, Wan Y. Investigation on reactive diffusion bonding of SiCp/6063 MMC by using mixed powders as interlayers[J]. J. Mater. Process. Technol.,2007,190: 312-316
    [53]Liu LM, Zhu ML, Pan LX. Studying of micro-bonding in diffusion welding joint for Composite[J]. Mater. Sci. Eng. A,2001,315:103-107
    [54]Lee CS, Li H, Chandel RS. Vacuum-free diffusion bonding of aluminium metal matrix composite[J]. J. Mater. Process. Technol,1999,89-90:326-330
    [55]刘黎明,高振坤SiCw/6061Al铝基复合材料粉末夹层瞬间液相扩散焊接工艺[J].中国有色金属学报,2005,15:849-853.
    [56]Yan JC, Xu ZW, Wu GH. Interface structure and mechanical performance of TLP bonded joints of AI2O3P/6061Al composites using Cu/Ni composite interlayers[J]. Scripta Mater., 2004,51:147-150.
    [57]Nandan, R, DebRoy, T, Bhadeshia, HKDH. Recent advances in friction-stir welding-Process, weldment structure and properties[J]. Prog. Mater Sci.,2008,53:980-1023.
    [58]Thomas WM, Nicholas ED. Friction stir welding for the transportation industries[J]. Mater. Design,1997,18:269-273.
    [59]Genevois C, Deschamps A, Denquin A, Cottignies BD. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds[J]. Acta Mater.,2005, 538:2447.
    [60]Aydin H, Bayram A, Uguz A, Akay KS. Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state[J]. Mater. Des.,2009,30:2211-2221.
    [61]Aydin H, Bayram A, Uguz A, Durgun I. The effect of post-weld heat treatment on the mechanical propertiesof 2024-T4 friction stir-welded joints[J].Mater. Des.,2010,31: 2568-2577.
    [62]Jones MJ, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver JH. Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy [J]. Scripta Mater.,2005,52:693-697.
    [63]Su JQ, Nelson TW, Mishra R. Microstructural investigation friction stir welded 7050-T651 aluminium[J]. Acta Mater.,2003,51:713-729.
    [64]Park SHC, SatoYS, Kokawa H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test[J]. Scripta Mater.,2003,49:161-166.
    [65]Xie GM, Ma ZY, Geng L. Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper[J]. Scripta Mater.,2007,57:73-76.
    [66]Zhang Yu,Sato Yutaka S, Kokawa Hiroyuki. Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds[J]. Mater. Sci. Eng. A,2008,485:448-455.
    [67]Reynolds AP, Tang W, Gnaupel HT. Structure, properties, and residual stress of 304L stainless steel friction stir welds[J]. Scripta Mater.,2003,48:1289-1294.
    [68]Peel MJ, Steuwer A, Withers PJ, Dickerson T, Shi Q, Shercliff H. Dissimilar friction stir welds in AA5083-AA6082. Part I:process parameter effects on therm al history and weld properties[J], Metall. Mater. Trans. A.,2006,37:2183-2193.
    [69]Somasekharan AC, Murr LE. Microstructure in friction-stir welded dissimiliar magnesium alloys to 6061-T6 aluminum alloy[J]. Mater. Charact.,2004,52:49-64.
    [70]Zhang YN, Cao X, Larose S, Wanjara P. Review of tools for friction stir welding and processing[J]. Can. Metall. Quart.,2012,51:250-261.
    [71]Sorenson CD, Nelson TW, Packer SM, Steel RJ. Innovative technology applications in FSW of high softening temperature materials:5th International Symposium on Friction Stir Welding, Metz, September 14-16,2004[C]. TWI, c2004.
    [72]Reynolds AP, Lockwood WD. Digital image correlation for determination of weld and base metal constitutive behavior,1st International Symposium on Friction Stir Welding, Thousand Oaks, June 14-16,1999[C]. TWI, c1999.
    [73]Nelson TW, Hunsaker B, Field DP. Local texture characterization of friction stir welds in 1100 aluminum,1st International Symposium on Friction Stir Welding, Thousand Oaks, June 14-16,1999[C].TWI,c1999.
    [74]Sutton MA, Reynolds AP, Yang B, Taylor R. Mode I fracture and microstructure for 2024-T3 friction stir welds[J]. Mater. Sci. Eng. A,2003,354:6-16.
    [75]Thomas WM, Nicholas ED, Needham JC, Temple-Smith P, Kallee SWKW, Dawes CJ. Friction stir welding:UK,2306366[P].1996.
    [76]Colligan KJ, Pickens JR. Friction stir welding of aluminum using a tapered shoulder tool, Friction stir welding and processing Ⅲ, San Francisco, February 13-17,2005[C], TMS, c2005.
    [77]Nishihara T, Nagasaka Y. Development of micro-FSW,5th International Symposium on Friction Stir Welding, Metz, September 14-16,2004[C]. TWI, c2004.
    [78]Brinckmann S, Strombeck AV, Schilling C, Santos JFD, Lohwasser D, Kocak M. Mechanical and toughness properties of robotic-FSW repair welds in 6061-T6 aluminum alloys,2nd International Symposium on Friction Stir Welding, Gothenburg, June 27-29,2000[C]. TWI, c2000.
    [79]Colligan KJ, Xu J, Pickens JR. Welding tool and process parameter effects in friction stir welding of aluminum alloys, Friction stir welding and processing Ⅱ, Warrendale, March 2-6, 2003[C]. TMS, c2003.
    [80]王大勇,冯吉才,王攀峰.搅拌摩擦焊用搅拌头研究现状与发展趋势[J].焊接,2004,6:6-10.
    [81]Colegrove PA, Shercliff HR. Development of trivex friction stir welding tool. Part 1: two-dimensional flow modeling[J]. Sci. Technol. Weld. Join.,2004,9:345-351.
    [82]Colegrove PA, Shercliff HR. Experimental and numerical analysis of aluminum alloy 7075-T7351 friction stir welds[J]. Sci. Technol. Weld. Join.,2003,8:360-368.
    [83]Arbegast WJ. Friction stir welding after a decade of development[J]. Welding,2006,3: 28-32.
    [84]Frigaard Φ, Grong Φ, Midling OT. A process model for friction stir welding of age harding aluminum alloys[J]. Metall. Mater. Trans. A,2001,32:1189-1193.
    [85]傅志红,黄明辉,周鹏展,贺地求.搅拌摩擦焊及研究现状[J].焊接,2002,11:6-10.
    [86]Fujii H, Cui L, Maeda M, Nogi K. Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys[J]. Mater. Sci. Eng. A,2006,419: 25-31.
    [87]Jariyaboon M, Davenport AJ, Ambat R, Connolly BJ, Williams SW, Price DA. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Sci.,2007,49:877-909.
    [88]Mahoney MW, Rhodes CG, Flintoff JG, Spurling RA, Bingel WH. Properties of friction-stir-welded 7075 T651 aluminum[J].Metall. Mater. Trans. A,1998,29:1955-1964.
    [89]Reynolds AP. Understanding process and property relationships in aluminum alloy friction stir welds[J]. Mater. Sci. Forum,2007,539-543:207-214.
    [90]Sato YS, Urata M, Kokawa H. Parameters controlling microstructure and hardness during friction stir welding of precipitation-hardenable aluminum alloy 6063[J]. Metall. Mater. Trans. A,2002,33:625-635.
    [91]Hashimoto T, Jyogan S, Nakata K, Kim YG, Ushio M.1st International Symposium on Friction Stir Welding, Thousand Oaks, June 14-16,1999[C]. TWI, c1999.
    [92]Liu FC, Ma ZY. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J]. Metall. Mater. Trans. A,2005,36:2378-2388.
    [93]Fu RD, Zhang JF, Li YJ, Kang J, Liu HJ, Zhang FC. Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet[J]. Mater. Sci. Eng. A 2013,559:319-324.
    [94]Marzoli LM, Strombeck AV, Dos Santos JF, Gambaro C, Volpone LM. Friction stir welding of an AA6061/Al2O3/20p reinforced alloy[J]. Compos. Sci. Technol.,2006,66:363-371.
    [95]Inem B. Dynamic recrystallization in a thermomechanically processed metal matrix composite[J]. Mater. Sci. Eng. A,1995,197:91-95.
    [96]Ceschini L, Boromei I, Minak G, Morri A, Tarterini F. Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al203p composite.[J]. Compos. Sci. Technol.,2007,67:605-615.
    [97]Nelson TW, Zhang H, Haynes T. Friction stir welding of aluminum MMC 6061-boron carbide,2nd International Symposium on Friction Stir Welding, Gothenburg, June 27-29, 2000[C]. TWI, c2000.
    [98]Cavaliere P, Cerri E, Marzoli L, Santos JD. Friction stir welding of ceramic particle reinforced aluminium based metal matrix composites[J]. Appl. Compos. Mater.,2004,2: 247-258.
    [99]Prado RA, Murr LE, Shindo DJ, Sota KF. Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3. a preliminary study[J]. Scripta Mater.,2001,45:75-80.
    [100]Feng AH, Ma ZY. Formation of Cu2FeAl7 phase in friction-stir-welded SiCp/Al-Cu-Mg composite[J]. Scripta Mater.,2007,57:1113-1116.
    [101]Liu HJ, Feng JC, Fujii H. Wear characteristics of a WC-Co tool in friction stir welding of AC4A+30 vol%SiCp composite[J].Int. J. Mach. Tool Manu,2005,45:1635-1639.
    [102]Shindo DJ, Rivera AR, Murr LE. Shape optimization for tool wear in the friction-stir welding of cast A1359-20% SiC MMC[J]. J. Mater. Sci.,2002,37:4999-5005.
    [103]Amirizad M, Kokabi AH, Gharacheh MA. Evaluation of microstructure and mechanical properties in friction stir welded A356+15%SiCp cast composite[J]. Mater. Lett.,2006,60:565-568.
    [1]Lloyd DJ. Particel-reinfoced aluminum and magnesium matrix composites[J]. Int. Mater. Rev., 1994,39:1-23.
    [2]Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Mater. Sci. Eng. R,2000,29; 49-113.
    [3]Ellis MBD. Joining of aluminium based metal matrix composites[J]. Int. Mater. Rev.,1996,41: 41-58.
    [4]Uzun H. Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite[J]. Mater. Design,2007,28:1440-6.
    [5]Ceschini L, Boromei I, Minak G, Morri A, Tarterini F. Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite[J]. Compos. Sci. Technol.,2007,67:605-615.
    [6]Liu HJ, Fenga JC, Fujiib H, Nogi K. Wear characteristics of a WC-Co tool in friction stir welding of AC4A+30 vol%SiCp composite[J]. Int. J. Mach. Tool Manu.,2005,45:1635-9.
    [7]Shindo DJ, Rivera AR, Murr LE. Shape optimization for tool wear in the friction-stir welding of cast A1359-20% SiC MMC[J]. J. Mater. Sci.,2002,37:4999-5005.
    [8]Cavaliere P, Cerri E, Marzoli L, Santos JD. Friction stir welding of ceramic particle reinforced aluminium based metal matrix composites[J]. Appl. Compos. Mater.,2004,2:247-258.
    [9]Srivatsan TS, Meslet AH, Petraroli M, Hotton B, Lam PC. Influence of silicon carbide particulate reinforcement on quasi static and cyclic fatigue fracture behavior of 6061 aluminum alloy composites[]. Mater. Sci. Eng. A,2002,325:202-214.
    [10]Prado RA, Murr LE, Shindo DJ, Sota KF. Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3:a preliminary study[J]. Scripta Mater.,2001,45:75-80.
    [11]Feng AH, Ma ZY. Formation of Cu2FeAl7 phase in friction-stir-welded SiCp/Al-Cu-Mg composite[J]. Scripta Mater.,2007,57:1113-6.
    [12]Marzoli LM, Strombeck AV, Dos Santos JF, Gambaro C, Volpone LM. Friction stir welding of an AA6061/Al2O3/20p reinforced alloy [J]. Compos. Sci. Technol.,2006,66:363-371.
    [13]Feng AH, Xiao BL, Ma ZY. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite[J]. Compos. Sci. Technol.,2008,68:2141-2148.
    [14]Cui GR, Ma ZY, Li SX. The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al-Mg alloy[J]. Acta Mater.,2009,57: 5718-5729.
    [15]Rodrigo P, Poza P, Utrilla V, Urena A. Effect of reinforcement geometry on precipitation kinetics of powder metallurgy AA2009/SiC composites[J]. J. Alloy Compd.,2009,479:451-6.
    [16]Jariyaboon M, Davenport AJ, Ambat R, Connolly BJ, Williams SW, Price DA. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Sci.,2007,49:877-909.
    [17]Mahoney MW, Rhodes CG, Flintoff JG, Spurting RA, Bingel WH. Properties of friction-stir-welded 7075 T651 aluminum[J].Metall. Mater. Trans. A,1998,29:1955-1964.
    [18]Mishra RS, Ma ZY. Friction stir welding and processing[J]. Mater. Sci. Eng. R,2005,50: 1-78.
    [19]McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys[J]. Scripta Mater.,2008,58:349-354.
    [20]Inem B. Dynamic recrystallization in a thermomechanically processed metal matrix composite[J]. Mater. Sci. Eng. A,1995,197:91-95.
    [21]Charit I, Mishra RS. Abnormal grain growth in friction stir processed alloys[J]. Scripta Mater.,2008,58:367-371.
    [22]Wang SC, Starink MJ. Review of precipitation in Al-Cu-Mg(-Li) alloys[J]. Int. Mater. Rev., 2005,50:193-215.
    [23]Genevois C, Deschamps A, Denquin A, Cottignies BD. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds[J], Acta Mater.,2005, 538:2447-58.
    [24]Marceau RKW, Sha G, Lumley RN, Ringer SP. Solute clustering in Al-Cu-Mg alloys during the early stages of elevated temperature ageing[J].Acta Mater.,2010,58:4923-39.
    [25]Jones MJ, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver JH. Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy [J]. Scripta Mater.,2005,52:693-697.
    [26]Liu FC, Ma ZY. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J]. Metall. Mater. Trans. A,2005,36:2378-2388.
    [27]张振.三种典型商用2xxx系铝合金搅拌摩擦焊街头的组织与性能研究[D].北京:中国科学院研究生院,2009.
    [28]Homma T, Moody MP, Saxey DW, Ringer SP. Effect of Sn addition in preprecipitation stage in Al-Cu alloys:a correlative transmission electron microscopy and atom probe tomography study[J]. Metall. Mater. Trans. A,2012,43:2192-2202.
    [1]Mishra RS, Ma ZY. Friction stir welding and processing[J]. Mater. Sci. Eng. R,2005,50: 1-78.
    [2]Zhang YN, Cao X, Larose S and Wanjara P. Review of tools for friction stir welding and Processing[J]. Can. Metall. Q.,2012,51:250-261.
    [3]Fonda RW, Bingert JF and Colligan KJ. Texture and grain evolutions in a 2195 friction stir weld, Proc.5th Int. Conf. on 'Friction stir welding', Metz, France, September 2004, TWI.
    [4]Rai R, De A, Bhadeshia HKDH and DebRoy T. Review:friction stir welding tools[J]. Sci. Technol. Weld. Joining,2011,16:325-342.
    [5]Liu FC, Ma ZY. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J]. Metall. Mater. Trans. A,2005,36:2378-2388.
    [6]Nelson TW, Zhang H, Haynes T. Friction stir welding of aluminum MMC 6061-boron carbide, Gothenburg, Sweden, June 2000.
    [7]Prado RA, Murr LE, Shindo DJ, Sota KF. Tool wear in the friction-stir welding of aluminum alloy 6061+20% Al2O3:a preliminary study[J]. Scripta Mater.,2001,45:75-80.
    [8]Feng AH, Ma ZY. Formation of Cu2FeAl7 phase in friction-stir-welded SiCp/Al-Cu-Mg composite[J]. Scripta Mater.,2007,57:1113-1116.
    [9]Vijay SJ, Murugan N. Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al-10 wt.% TiB2 metal matrix composite[J]. Mater. Des.,2010,31:3585-3589.
    .[10] Chen XG, Silva Mda, Gougeon P, St-Georges L. Microstructure and mechanical properties of friction stir welded AA6063-B4C metal matrix composites[J]. Mater. Sci. Eng., A,2009,518: 174-184.
    [11]Ren SR, Ma ZY, Chen LQ. Effect of initial butt surface on tensile properties and fracture behavior of friction stir welded Al-Zn-Mg-Cu alloy[J]. Mater. Sci. Eng., A,2008,479: 293-299.
    [12]Chen ZW, Cui S. On the forming mechanism of banded structures in aluminium alloy friction stir welds[J]. Scripta Mater.,2008:417-420.
    [13]Chen ZW, Pasang T, Qi Y. Shear flow and formation of nugget zone during friction stir welding of aluminium alloy 5083-O[J]. Mater. Sci. Eng. A,2008:312-316.
    [14]Zhang Z, Xiao BL, Wang D, Ma ZY. Effect of Alclad Layer on Material Flow and Defect Formation in Friction-Stir-Welded 2024 Aluminum Alloy[J]. Metall. Mater. Trans. A,2011, 42:1717-1726.
    [15]Sato YS, Yamashita F, Sugiura Y, Park SHC, Kokawa H. FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminum alloy[J]. Scripta Mater.,2004: 365-369.
    [16]Marzoli LM, Strombeck AV, Dos Santos JF, Gambaro C, Volpone LM. Friction stir welding of an AA6061/A12O3/20p reinforced alloy[J].Compos. Sci. Technol.,2006,66:363-371.
    [17]Fu RD, Zhang JF, Li YJ, Kang J, Liu HJ, Zhang FC. Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet[J]. Mater. Sci. Eng. A,2013,559:319-324.
    [18]Zhang Z, Xiao BL, Ma ZY. Effect of welding parameters on microstructure and mechanical properties of friction stir welded 2219A1-T6 joints[J]. J. Mater. Sci.,2012,47:4075-4086.
    [19]Ceschini L, Boromei I, Minak G, Morri A, Tarterini F. Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite[J]. Compos. Sci. Technol.,2007,67:605-615.
    [20]Benavides S, Li Y, Murr LE, Brown D, McClure JC. Low-temperature friction-stir welding of 2024 aluminum[J]. Scripta Mater.,1999,41:809-815.
    [1]Tjong SC, Ma ZY. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Mater. Sci. Eng. R,2000,29:49-113.
    [2]Flom Y, Arsenault RJ. Effect of particle-size on fracture-toughness of SiC/Al composite-material[J].Acta Metall.,1989,37:2413-2423.
    [3]Liu ZY, Wang QZ, Xiao BL, Ma ZY, Liu Y. Effect of double extrusion on the microsturcture and tensile property of the PM processed SiCp/2009Al composites[J]. Acta Metall. Sinica, 2010,46:1121-1127.
    [4]Wu Y, Lavernia EJ. Strengthening behavior of particulate reinforced MMCs[J]. Scripta Metall. Mater.,1992,27:173-178.
    [5]Foo KS, Banks WM, Craven AJ, Hendry A. Interface characterization of an SiC particulate/6061 aluminium alloy composite[J]. Composite,1994,25:677-683.
    [6]Geng L, Yao CK. SiC-Al interface structure in squeeze cast SiC/Al composite[J].Scripta Metall. Mater.,1995,33:949-952.
    [7]Romero JC, Wang L, Arsenault RJ. Interfacial structure of a SiC/Al composite[J]. Mater. Sci. Eng. A,1996,212:1-5.
    [8]Lee JC, Ahn JP, Shim JH, Shi ZL, Lee HI. Control of the interface in SiC/Al composites[J]. Scripta Mater.,1999,41:895-900.
    [9]Strangwood M, Hippsley CA, Lewandowski JJ. Segregation to SiC/Al interfaces in Al based metal matrix composites[J]. Scripta Metall. Mater.,1990,24:1483-1487.
    [10]Ratanparkhit PL, Howe JM. Structure and mechanism of bonding at a diffusion-bonded Al/SiC interface[J]. Acta Metall. Mater.,1994,42:811-823.
    [11]Cheng NP, Li CM, Hui Q, Chen ZQ. Effect of particle surface treatment on the microstructure and property of SiCp/AA6066 composite produced by powder metallurgy [J]. Mater. Sci. Eng. A,2009,517:249-256.
    [12]Van DBM, Dehosson MJTH. Al-SiC interface structure studied by HREM[J]. Acta Metall. Mater.,1992,40:281-287.
    [13]Uzun H. Friction stir welding of SiC particulate reinforced AA2124 aluminium alloy matrix composite[J]. Mater. Design,2007,28:1440-1446.
    [14]Ceschini L, Boromei I, Minak G, Morri A, Tarterini F. Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al203p composite[J]. Compos. Sci. Technol.,2007,67:605-615.
    [15]Janghorban K. Investigation of the effects of silicon and carbon on the phase-composition of Sic/Al composites[J]. Compos. Sci. Technol.,1994,50:299-303.
    [16]Luo ZP. Crystallography of SiC/MgAl2O4/Al interfaces in a pre-oxidized SiC reinforced SiC/Al composite[J]. Acta Mater.,2006,54:47-58.
    [17]Feng AH, Xiao BL, Ma ZY. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite[J]. Compos. Sci. Technol.,2008,68:2141-2148.
    [18]Root JM, Field DP, Nelson TW. Crystallographic Texture in the Friction-Stir-Welded Metal Matrix Composite A16061 with 10 Vol Pet A12O3[J]. Metall. Mater. Trans. A,2009, 40:2109-2114.
    [19]Romero JC, Wang L, Arsenault RJ. Interfacial structure of a SiC/Al composite[J]. Mater. Sci. Eng. A,1996,212:1-5.
    [20]Pandey AB, Majumdar BS, Miracle DB. Deformation and Fracture of a Particle-Reinforced Aluminum Alloy Composite:Part I. Experiments[J]. Metall. Mater. Trans. A,2000, 31:921-936.
    [21]Rodrigo P, Poza P, Utrilla V, Urena A. Effect of reinforcement geometry on precipitation kinetics of powder metallurgy AA2009/SiC composites[J]. J. Alloy Compd.,2009,479: 451-456.
    [22]Inem B. Dynamic recrystallization in a thermomechanically processed metal matrix composite[J]. Mater. Sci. Eng. A,1995,197:91-95.
    [23]Liu ZY, Wang QZ, Xiao BL, Ma ZY. Clustering model on the tensile strength of PM processed SiCp/Al composites[J]. Composite A,2010,41:1686-1692.
    [24]Mitra R, Mahajan YR. Interfaces in discontinuously reinforced metal-matrix composites-an overview[J]. Bull. Mater. Sci.,1995,18:405-434.
    [25]Fine ME, Mitra R, Weertman JR. Interfaces in Al-TiC composites prepared by insitu processing[J]. Z. Metallkd.,1993,4:282-285.
    [26]Cui GR, Ma ZY, Li SX. The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al-Mg alloy[J]. Acta Mater.,2009,57: 5718-5729.
    [27]Genevois C, Deschamps A, Denquin A, Cottignies BD. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds[J]. Acta Mater.,2005, 538:2447-2458.
    [28]Jones MJ, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver JH. Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy [J]. Scripta Mater.,2005,52:693-697.
    [29]Wang SC, Starink MJ. Review of precipitation in Al-Cu-Mg(-Li) alloys[J]. Inter. Mater. Rev., 2005,50:193-215.
    [30]Marceau RKW, Sha G, Lumley RN, Ringer SP. Solute clustering in Al-Cu-Mg alloys during the early stages of elevated temperature ageing[J]. Acta Mater.,2010,58:4923-4939.
    [31]A.M. Zahra, C.Y. Zahra, C. Alfonso, A. Chara. Comments on "cluster hardening in an aged Al-Cu-Mg alloy-Structure and Properties[J]. Scripta Mater.,1998,39:1553-1558.
    [32]Fu RD, Zhang JF, Li YJ, Kang J, Liu HJ, Zhang FC. Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet[J].Mater. Sci. Eng. A,2013,559:319-324.
    [1]Guillaumin V, Mankowski G. Localized corrosion of 1913 T240 aluminium alloy in chloride media[J]. Corros. Sci.,1999,41:421-438.
    [2]Boag A, Hughes AE, Glenn AM, Muster TH, McCulloch D. Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles[J]. Corros. Sci.,2011,53:17-26.
    [3]Boag A, Muster TH, Goodman N, McCulloch D, Ryan C, Rout B, Jamieson D. Stable pit formation on AA2024-T3 in a NaCl environment[J]. Corros. Sci.,2010,52:90-103.
    [4]Luo C, Zhou X, Thompson GE, Hughes AE. Observations of intergranular corrosion in AA2024-T351:The influence of grain stored energy[J]. Corros. Sci.,2012,61:35-44.
    [5]Derose JA, Suter T, Balkowiec A, Michalski J, Kurzydlowski KJ, Schmutz P. Localised corrosion initiation and microstructural characterisation of an Al 2024 alloy with a higher Cu to Mg ratio[J]. Corros. Sci.,2012,55:313-325.
    [6]Jin FL, Zheng ZQ, Jiang N, Tan CY. Localized corrosion mechanism of 2×××-series Al alloy containing S(Al2CuMg) and θ(Al2Cu) precipitates in 4.0% NaCl solution at pH 6.1 [J]. Mater. Chem. Phys.,2005,91:325-329.
    [7]Queiroz FM, Magnani M, Costa I, Demelo HG. Investigation of the corrosion behaviour of AA 2024-T3 in low concentrated chloride media[J]. Corros. Sci.,2008,50:2646-2657.
    [8]Conde A, Damborenea JD. An electrochemical impedance study of a natural aged Al-Cu-Mg alloy in NaCl[J]. Corros. Sci.,1997,39:295-303.
    [9]Glenn AM, Muster TH, Lue C, Zhou X, Thompson GE, Boag A, Hughes AE. Corrosion of AA2024-T3 Part III:Propagation[J]. Corros. Sci.,2011,53:40-50.
    [10]Hamdya AS, Alfosail F, Gasemb Z. Electrochemical behavior of a discontinuously A6092/SiC/17.5p metal matrix composite in chloride containing solution[J]. Electrochim. Acta,2013,88:129-134.
    [11]Singh IB, Mandal DP, Singh M, Das S. Influence of SiC particles addition on the corrosion behavior of 2014 Al-Cu alloy in 3.5% NaCl solution[J]. Corros. Sci.,2009,51:234-241.
    [12]Albiter A, Contreras A, Salazar M, Gonzalez-rodriguez JG. Corrosion behaviour of aluminium metal matrix composites reinforced with TiC processed by pressureless melt infiltration[J]. J. Appl. Electrochem.,2006,36:303-308.
    [13]Marzoli LM, Strombeck AV, Dos Santos JF, Gambaro C, Volpone LM. Friction stir welding of an AA6061/Al2O3/20p reinforced alloy[J]. Compos. Sci. Technol.,2006,66:363-371.
    [14]Feng AH, Xiao BL, Ma ZY. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite[J]. Compos. Sci. Technol.,2008,68: 2141-2148.
    [15]Ceschini L, Boromei I, Minak G, Morri A, Tarterini F. Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite.[J]. Compos. Sci. Technol.,2007,67:605-615.
    [16]Hughes AE, Boag A, Glenn AM, McCulloch D, Muster TH, Ryan C, Luo C, Zhou X, Thompson GE. Corrosion of AA2024-T3 Part Ⅱ:Co-operative corrosion[J]. Corros. Sci., 2011,53:27-39.
    [17]Mishra RS, Ma ZY. Friction stir welding and processing[J]. Mater. Sci. Eng. R,2005,50: 1-78.
    [18]Nandan, R, DebRoy, T, Bhadeshia, HKDH. Recent advances in friction-stir welding-Process, weldment structure and properties[J]. Prog. Mater Sci.,2008,53:980-1023.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700