一体式SBBR能量解偶联OSA工艺污泥产率的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
剩余污泥的处理与处置是传统活性污泥工艺(Conventional activated sludge process, CAS)亟待解决的问题之一。20世纪90年代提出的污泥减量化工艺依靠降低微生物产率以及利用微生物自身内源呼吸使污水生物处理系统所产生的生物固体量达到最少,是剩余污泥处理与处置的新方法,也是目前污泥减量技术的研究热点之一。现有的污泥末端减量技术不能从根本上实现经济高效的污泥削减,并且污泥减量化过程与污水的处理过程密切相关,因此,从源头上控制污泥的产生,在保证污水处理效果的同时实现较低污泥产率,即污泥源头减量新技术是污泥减量化工艺最新发展方向。
     本研究对比研究了序批式生物膜反应器在全泥龄好氧-沉淀-厌氧(OSA)运行模式下进行城市生活污水处理的同时实现能量解偶联,在污水处理过程中实现污泥源头减量效果。分别考察了低温条件下组合填料SBBR、投加球形填料SBR、和CAS工艺在OSA运行条件下污泥产率与污泥性质以及工艺污水处理效果以及常温条件下SBBR微生物附着生长体系内污泥源头减量程度及其水质处理效果。
     在低温条件下,组合填料SBBR、投加球形填料SBR以及CAS工艺中平均污泥表观产率分别为-0.292kg/kg、0.058kg/kg和0.302kg/kg,SBBR工艺污泥减量效果明显,对NH_4~+-N的平均去除率分别达到85.36%、64.15%和73.19%,COD平均去除率分别达到60.73%、61.58%和56.30%。试验表明,SBBR工艺在全泥龄低温条件实现高效水质处理效果的同时其OSA运行模式下能量解偶联的实现能有限降低剩余污泥产量。
     在全泥龄常温条件下,SBBR工艺与CAS工艺在OSA运行模式下其平均污泥表观产率分别为0.0932kg/kg和0.248kg/kg,SBBR工艺最大污泥负增长率达到了-0.244kgCOD/kgMLSS。剩余污泥量与系统内原生动物与后生动物生长状况密切相关,原生动物的滋生代谢会加速细菌的絮凝作用,明显改善污泥沉降性能;SBBR工艺与CAS工艺对COD和NH_4~+-N的平均去除效率达到了64.04%、86.50%与66.22%、81.57%。两种工艺运行过程中大型后生动物的出现不会影响工艺的硝化过程。由于反硝化过程碳源缺乏,能量解偶联的实现与后生动物的共同作用导致系统内总磷的明显释放。在SBBR系统中原生动物的捕食作用改变水中C:N:P的比值,导致细菌由悬浮生长型向附着生长型转变,加速SBBR系统内碳和营养物的矿化,加速了总呼吸作用,从而降低污泥产率。对于SBBR工艺与CAS工艺动力学研究表明,一体式SBBR和CAS能量解偶联OSA工艺有机物去除速率常数K_2平均分别为0.00127L/(mg·d)和0.00108L/(mg·d),ν_(max)分别为0.208d~(-1)和0.534d~(-1),k_s分别为14.602mg·L~(-1)和101.94mg·L~(-1)。
The disposition of excess sludge is a big problem of CAS (Conventional activated sludge process). The excess sludge reduction is a new concept and a new method of excess sludge treatment, which denpends on reducing microbe production and ultilizing endogenesis breathe to make the minimum biomass. This method has been one of focuses for escess sludge reduction researches. The existing teminal disposal of excess sludge can not achieve economic and effective sludge reduction, and the sludge reduction process should be closely correlative with the sewage treatment process. Therefore, it's necessary to adjust sewage treatment processes, control sludge production from source, realize low sludge production and insure sewage treatment effects synchronously. So the sludge reduction from source is the direction of development up to date.
     In this paper, sequencing batch bioflim reactor was used for urban sewage treatment under OSA (Oxic-Settling-Anaerobic) mode to achieve metabolic uncoupling effect and sludge reduction during wastewater treatment process. The production rate and characteristics of sludge and sewage treatment effects were analyzed in three bioreactors, SBBR (sequencing batch biofilm reactor), sequencing batch bioreactor with carriers and CAS (conventional activated sludge reactor). They were adopted to run under OAS operational process in low temperature. Furthermore, at nomal temperature condition, the sludge reduction degree from source and water treatment effects were reviewed in inserted growth system of SBBR.
     At low temperature condition (10.6℃), the sludge observed yield coefficient (Y_(obs)) in SBBR, sequencing batch bioreactor with carriers and CAS were -0.092kg/kg, 0.058kg/kg and 0.302kg/kg respectively. The sludge reduced in SBBR apparently. The removal rate of NH_4~+-N in the three bioreactors were 85.36%, 64.15% and 73.19%, and the removal rate of COD were 60.37%, 61.58% and 56130% respectively. The experiment showed that SBBR system could achieve effective water treatment effect and reduce excess sludge production under OSA mode with metabolic uncoupling realization.
     At normal temperature condition, Y_(obs) in SBBR and CAS systems were 0.0932kg/kg and 0.248kg/kg respectively. The maximal minus sludge production reached -0.244kg/kg of SBBR. The excess sludge yield was correlated with the metazoan growth status, and the breeding of metazoa would accelerate flocculation capability of bacteial and improve the performance of the sludge sedimentation apparently. The removal rate of COD and NH_4~+-N in SBBR and CAS were 66.84%, 86.50 and 67.22%, 81.57% respectively, while the metabolization of metazoan would not influence the nitrification processes of wastewater treatment and the TN of effluent wouldn't increase. Due to carban source shortage of nitration, the reaction of metabolic uncoupling and the grazing of metazoan deduced the releasing of phosphate apparently. The C:N:P ratio was changed by the grazing effect of protozoan, which induced the filtration of bacteria population, accelerated carban and nutriment mineralization at the same time. The grazing effect accelerated the overall respiration, and reduced sludge production. In this paper, the kinetics of contamination biodegradation in SBBR and CAS systems under OSA energy uncoupling mode indicated that. the organic substance removal rate constant k_2 were 0.00127L/(mg·d) and 0.00108L/(mg·d), v_(max) were 0.208d~(-1) and 0.534d~(-1), k_s were 14.602mg·L~(-1) and 101.94mg·L~(-1) respectively.
引文
[1] 张光明,张信芳,张盼月.城市污泥资源化技术进展[M].北京:化学工业出版社,2006.
    [2] Davis R D, Hall J E. Production, treatment and disposal of wastewater sludge in Europe from a UK perspective[J]. European Water Pollution Control, 1997, 7(2): 9-17
    [3] Spellman F R. Wastewater biosolids to compost[M]. Lancaster, Pennsylvania, USA: Technomic Publishing Company, Inc., 1997:223-235
    [4] 徐强.污泥处理处置技术及装置[M].北京:化学工业出版社,2003
    [5] Ratsak C H, Maarsen K A, Koouman S A L M. Effects of protozoa on carbon mineralization in activated sludge[J]. Water Research, 1996, 30(1): 1-12
    [6] Yu Liu. The So/Xo-dependent dissolved organic carbon distribution in substrate-surfficient batch culture of activated sludge[J].Wat. Res., 2000, 34(5): 1645-1651.
    [7] Russel J B. Cook G M. Engergetic of bacterial growth: balance of anabolic and catabolic reactions[J]. Microbio. Rev., 1995, 59(1): 48-62
    [8] Stouthamer A H. Correlation of growth yields[M]. Microbial Biochemistry, International Review of Biochemistry, Baltimore: University Park, 1979, 21:1-47
    [9] Low E W, Chase H A, Milner M G, et al. Uncoupling of metabolism to reduce biomass production in the activated sludge process[J]. Water Research, 2000: 34(12): 3204-3212
    [10] Low E W, Chase H A. Reducing production of excess biomass during wastewater treatment[J]. Water Research, 1999, 33(5): 1119-1132
    [11] Chen G H, Mo H K, Liu Y. Utilization of a metabolic uncoupler, 3,3 prime,4 prime,5-tetrachlorosalicylanilide(TCS) to reduce sludge growth in activated sludge culture[J]. Water Research, 2002, 36(8): 2077-2083
    [12] Chen Y X, Ye F X, Feng X S. The use of 3,3 prime ,4 prime ,5-tetrachlorosalicylanilide as a chemical uncoupler to reduce activated sludge yield[J]. Journal of Chemical Technology and Biotechnology, 2004, 79(2): 111-116
    [13] Strand S E, Harem G H, Stensel H D. Activated-sludg Yield reduction using chemical uncouplers[J]. WaterEnvironment Research, 1999, 71(4): 454-458
    [14] Talbot R E, Edmunds S, Louvel L O H, et al. A new environmentally acceptable method for reducing excess biosolids from biological wastewater processing facilities Animal Agriculture and Processing[J]. Managing Environmental Impacts, 2005, 16p
    [15] 陈志英,王磊,周琪.高效代谢解偶联剂的筛选及对SBR系统综合运行效能的影响[J].环境污染与防治,2006,28(8):575-579
    [16] 叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中污泥产率的影响[J].环境污染与防治,2006,28(8):575-579
    [17] 叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中剩余污泥的减量作用[J].环境科学学报,2004,24(3):394-399
    [18] 叶芬霞,陈英旭.能量解偶联代谢对剩余污泥的减量化研究[J].环境科学与技术,2005,28(4):4-7
    [19] 俞小勇,胡勤海,叶芬霞.化学解偶联剂和OSA联合工艺对剩余污泥的减量化作用[J].城市环境与城市生态,2006,19(6):40-42
    [20] 蒋小龙,叶芬霞.化学解偶联剂对污泥产率的比较研究[J].环境科学研究,2006,19(4):115-118
    [21] Liu Y. Bioenergetic interpretation on the S_0/X_0 ratio in substrate-sufficient batch culture[J]. Water Research. 1996, 30(11): 2766-2770
    [22] Liu Y, Chen G H. Model of energy uncoupling for substrate-sufficient culture[J]. Biotechnology and Bioengineering, 1997, 55(3): 571-576
    [23] Liu Y. So/Xo-dependent dissolved organic carbon distribution in substrate-sufficient batch culture of activated sludge[J]. Water Research, 2000, 34(5): 1645-1651
    [24] Liu Y. Model of dissolved organic carbon distribution for substrate-sufficient continuous culture[J]. Biotechnology and Bioengineering, 1999, 65(4): 474-479
    [25] Chen G H, Liu Y. Modeling of energy spilling in substrate-sufficient cultures[J]. Journal of Environmental Engineering, 1999, 125(6): 508-513
    [26] Westgarth W C, Sulzer F T, Okun D A. Anaerobiosis in the activated sludge process[J]. Proceedings of the Second IAWPRC Conference, Tokyo, 1964:43-45
    [27] Chudoba P, Chudoba J, Capdeville B. Aspect of energetic uncoupling of microbial growth in the activated sludge process-OSA system[J]. Water Science and Technology, 1992, 26(9-11): 2477-2480
    [28] Saby S, Djafer M, Chen G H. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process[J]. Water Research, 2003, 37(1): 11-20
    [29] 钟贤波,叶芬霞.好氧-沉淀.缺氧(OSA)工艺的剩余污泥减量化研究[J].环境工程,2006,24(6):26-28
    [30] Mason C A, Hamer G. Cryptic growth in Klebsiella Pneumoniae[J]. Microbial Biotech, 1987, 25(4): 577-584
    [31] Rocher M, Roux G, Goma G, et al. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment[J]. Water Science and Technology, 2001, 44(2-3): 437-444
    [32] Liu Y. Chemically reduced excess sludge production in the activated sludge process[J]. Chemosphere, 2003, 50(1): 1-7
    [33] Lishman L A, Legge R L, Farquhar G J. Temperature effects on wastewater treatment under aerobic and anoxic conditions[J]. Water Research, 2000, 34(8): 2263-2276
    [34] Neyens E, Baeyens J, Creemers C. Alkaline thermal sludge hydrolysis[J]. Journal of Hazardous Materials, 2003, 97(1-4): 295-314
    [35] Graja S, Chauzy J, Fernandes P, et al. Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation[J]. Water Science and Technology, 2005, 52(1-2): 267-273
    [36] Paul E, Camacho P, Lefebvre D, et al. Organic matter release in low temperature thermal treatment of biological sludge for reduction of excess sludge production[J]. Water Science and Technology, 2006, 54(5): 59-68
    [37] Bougrier C, Delgenes J P, Carrere H. Combination of thermal treatments and anaerobic digestion to reduce sewage sludge quantity and improve biogas yield[J]. Process Safety and Environmental Protection, 2006, 84(4B): 280-284
    [38] Clark P B, Nujjoo I. Ultrasonic sludge pretreatment for enhanced sludge digestion[J]. Journal of the Chartered Institution of Water and Environment Management, 2000, 14(1): 66-71
    [39] Hogan F, Mormede S, Clark Piers, et al. Ultrasonic sludge treatment for enhanced anaerobic digestion[J]. Water Science and Technology, 2004, 50(9): 25-32
    [40] Dewil R, Baeyens Jan, Goutvrind R. Ultrasonic treatment of waste activated sludge[J]. Environmental Progress, 2006, 25(2): 121-128
    [41] Zhang G M, Zhang P Y, Yang J M, et al. Ultrasonic reduction of excess sludge from the activated sludge system[J]. Journal of Hazardous Materials, 2007, 145(3): 515-519
    [42] Dewil R, Baeyens Jan, Goutvrind R. Use of ultrasonics in the treatment of waste activated sludge[J]. Chinese Journal of Chemical Engineering, 2006, 14(1): 105-113
    [43] Bougrier C, Albasi C, Delgenes J P, et al. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability[J]. Chemical Engineering and Processing, 2006, 45(8): 711-718
    [44] 周健,杨涛,龙腾锐.AB法A段污泥减量试验研究[J].环境污染治理技术与设备,2006,7(6):46-51
    [45] 丁文川,龙腾锐,许龙.低强度超声波处理对剩余污泥的影响[J].重庆建筑大学学报,2006,28(3):74-77
    [46] 曹秀芹,陈君,王洪臣等.超声处理对活性污泥系统污泥减量效果的研究[J].环境污染治理技术与设备,2006,7(6):85-88
    [47] Yasui H, Shibata M. Innovative approach to reduce excess sludge production in the activated sludge process[J]. Water Science and Technology, 1994, 30(9): 11-20
    [48] Yasui H, Nakamura K, Sakuma S, et al. Full-scale operation of a novel activated sludge process without excess sludge production[J]. Water Science and Technology, 1996, 34(3-4): 395-404
    [49] Kamiya T, Hirotsuji J. New combined system of biological Process and intermittent ozonation for advanced wastewater treatment[J]. Water Science Technology, 1998, 38(8/9): 145-153
    [50] Song K G, Choung Y K, Ahn K H, et al. Performance of membrane Bioreactor system with sludge ozonation process for minimization of Excesss Sludge production[J]. Desalination, 2003, 157:357-359
    [51] 金瑞洪,NG Wun Jem.臭氧对活性污泥特性影响研究[J].环境污染治理技术与设备,2004,5(9):48-50
    [52] 金瑞洪,NG Wun Jem.臭氧应用于SBR剩余污泥减量的研究[J].西安建筑科技大学学报(自然科学版),2004,36(2):239-245
    [53] 王国华,张辰,孙晓.臭氧氧化/厌氧消化工艺处理CEPT污泥的研究[J].中国给水排水,2006,22(19):32-35
    [54] 王正,王琳,王宝贞.活性污泥中臭氧传质效率的理论分析与实验研究[J].环境科学,2007,28(8):1 703-1709
    [55] Saby S, Djafer M, Chen G H. Feasibility of using a chlorination step to reduce excess sludge in activated sludge process[J]. Water Research, 2002, 36(3): 656-666
    [56] 郑平.环境微生物学.浙江:浙江大学出版社,2002
    [57] Curds C R. The ecology and role of protozoa in aerobic sewage treatment processes[J]. Ann. Rev. Microbiol., 1982, 36: 27-46
    [58] Madoni P. Microfauna biomass in activated sludge and biofilm[J]. Wat. Sci. Tech., 1994, 29(7): 63-66
    [59] Madoni P, Ghetti P F. The structure of ciliate protozoa communities in biological swage treatment plants[J].Hydro-biologia, 1981, 83:207-215
    [60] Ratsak C H. Effects of Nais elinguis on the performance of an activated sludge plant[J]. Hydrobiologia, 2001, 463:217-222
    [61] Ratsak C H, Kooi B W, van Verseveld H W. Biomass reduction and mineralization increase due to the ciliate tetrahymena pyriformis grazing on the bacterium pseudomonas fluorescens[J]. Water Science and Technology, 1994, 29(7): 119-128
    [62] Ratsak C H, Kooijman S A L M, Kooi B W. Modeling the growth of an oligochaete on activated sludge[J]. Water Research, 1993, 27(5): 739-747
    [63] Welander T, Lee N M. Minimization of sludge production in aerobic treatment by use of predators[J]. Institution of Chemical Engineers Symposium Series, 1994:46-48
    [64] Rensink J H, Rulkens W H. Using metazoan to reduce sludge production[J]. Water Science and Technology, 1997, 36(11): 171-179
    [65] Janssen P M J, Rulkens W H., Rensink J H, et al. Potential for metazoa in biological wastewater treatment[J]. Water Quality International, 1998, Sep-Oct: 25-27
    [66] Wei Y, Liu J. The discharged excess sludge treated by Oligochaeta[J]. Water Science and Technology, 2005, 52(10-11): 265-272
    [67] Wei Y S, Van Houten R T, Borger A R, et al. Minimization of excess sludge production for biological wastewater treatment[J]. Water Research, 2002, 37(18): 4453-4467
    [68] Lee N M, Welander T. Use of protozoa and metazoa for decreasing sludge production in aerobic wastewater treatment[J]. Biotechnology Letters, 1996, 18(4): 429-434
    [69] Lee N M, Welander T. Reducing sludge production in aerobic wastewater treatment through manipulation of the ecosystem[J]. Water Research, 1996, 30(8): 1781-1790
    [70] Ghyoot W, Verstraete W. Reduced sludge production in a two-stage membrane-assisted bioreactor[J]. Water Research, 2000, 34 (1): 205-215
    [71] 张绍园,闫百瑞.二段淹没式膜生物反应器处理城市污水的研究[J].工业用水与废水,2003,34(6):40-42
    [72] Elissen Hellen J H, Hendrickx Tim L G, Temmink Hardy, et al. A new reactor concept for sludge reduction using aquatic worms[J]. Water Research, 2006, 40(20): 3713-3718
    [73] 翟小蔚,潘涛,W Ghyoot等.利用原生动物削减剩余活性污泥产量[J].中国给水排水,2000,16(11):6-9
    [74] 魏源送,R T Van Houten,A R Borger等.蠕虫在膜生物反应器和活性污泥法中的污泥减量研究[J].环境科学学报,2004,34(3):405-412
    [75] 魏源送,樊耀波.蠕虫污泥减量效果及其影响因素分析[J].环境科学,2005,26(1):76-83
    [76] 魏源送,刘俊新.利用寡毛类蠕虫反应器处理剩余污泥的研究[J].环境科学学报,2005,25(6):804-808
    [77] 魏源送,刘俊新.推流复合式生物污泥减量反应器及其操作方法[P].发明专利申请号:02159048.6,中国科学院生态环境研究中心,2002
    [78] 白润英,梁鹏,黄霞.卷贝进行污泥减量的应用研究[J].给水排水,2005,31(7):19-22
    [79] Wang B Z. A study on simultaneous organics and nitrogen Removal by extended aeration submerged biofilm proces[J]. Wat. Sci. Tech., 1991, 24(5): 197-214
    [80] 王宝贞,王琳,时双喜等.延时曝气淹没式生物膜法同时去除有机物和氮的工艺研究[J].哈尔滨建筑大学学报,1996,29(5):5-10
    [81] 王宝贞,李高奇,王琳等.淹没式生物膜法污水处理厂的设计及运行[J].中国给水排水,2000,16(3):16-19
    [82] 梁鹏,黄霞,钱易.利用红斑颤体虫减少剩余污泥产量的研究[J].中国给水排水,2004,20(1):13-17
    [83] Liang P, Huang X, Qian Y, et al. Determination and comparison of sludge reduction rates caused by microfaunas' predation[J]. Bioresource Technology, 2006, 97(6): 854-861
    [84] Huang X, Liang P, Qian Y. Excess sludge reduction induced by Tubifex tubifex in a recycled sludge reactor[J]. Journal of Biotechnology, 2007, 127(3): 443-451
    [85] Bouchez T, Patureau D, Dabert P, et al. Bioaugmentation of a nitrifying sequencing batch reactor with the aerobic denitrifying bacteria Microvirgula aerodenitrificans: effects on nitrogen removal and consequences in terms of microbial community. In Proceedings of the European Conference on new advances in biological nitrogen and phosphorus removal for municipal or industrial wasterwater, 1998, 273-277
    [86] Luxmy B S, Nakajima F, Yamamoto K. Predator grazing effect on bacterial size distribution and floc size variation in membrane-separation activated sludge[J]. Water Science and Technology, 2000, 42(3): 211-217
    [87] Lee Y, Oleszkiewicz J A. Effects of predation and ORP conditions on the performance of nitrifiers in activated sludge systems[J]. Water Research, 2003, 37(17): 4202-4210
    [88] Liang P, Huang X, Qian Y. Excess sludge reduction in activated sludge process through predation of Aeolosoma hemprichi[J]. Biochemical Engineering Journal, 2006, 28(2): 117-122
    [89] 梁鹏,黄霞,钱易等.环境因子对红斑颤体虫生长的影响[J].中国环境科学,2004,24(5):610-613
    [90] 梁鹏,黄霞,钱易.食物污泥对红斑顠体虫生长的影响[J].中国环境科学,2004,24(2):159-162
    [91] Low E W, Chase H A. Reducing production of excess biomass during wastewater treatment[J]. Water Research, 1999, 33(5): 1119-1132
    [92] He S B, Xue G, Wang B Z, et al. Experimental study on minimization of sludge production by ozonation process[J]. Journal of Dong Hua University (English Edition), 2003, 20(3): 69-71
    [93] Rocher M, Roux G, Goma G, et al. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment[J]. Water Science and Technology, 2001, 44(2-3): 437-444
    [94] Wilderer P A. Technology of membrane biofilm reactors operated under periodically changing process conditions[J]. Water Science and Technology, 1995, 31(1): 173-183
    [95] Arnold E, Boehm B, Wilderer P A. Application of activated sludge and biofilm sequencing batch reactor technology to treat reject water from sludge dewatering systems: a comparison[J]. Water Science and Technology, 2000, 41(1): 115-122
    [96] Mohan S Venkata,Rao N Chandrasekhara,Sarma P N.Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor(SBBR)[J].Journal of Hazardous Materials,2007,144(1):108-117
    [97] Balmelle B,Nguyen M,Capdeville B,et al_Study of factors controlling nitrite build-up in biological p rocesses for water nitrification[J].Wat.Sci.Tech.,1992,26(5-6):1017-1025
    [98] Di Iaconi C,Bonemazzi F,Lopez A,et al.Integration of chemical and biological oxidation in a SBBR for tannery wastewater treatment[J].Water Science and Technology,2004,50(10):107-114
    [99] Valdivia A,Gonzalez M S,Wilderer P A.Biological nitrogen removal with three different SBBR[J].Water Science and Technology,2007,55(7):245-254
    [100] Kim H,Rhu D,Hwang H,et al.Performance of a hybrid SBR with fixed bed and suspended growth[J].Water Science and Technology,2004,48(11-12):309-317
    [101] GIUSEPPE P.Phosphorus and nitrogen removal in moving-bed sequencing batch biofilm reactors[J].Wat.Sci.Tech.,1999,41(425):169-176
    [102] 方一丰,胡龙兴,卞华松.陶粒载体序批式生物膜反应器及其氧传递系数测定[J].上海大学学报(自然科学版),2002,8(2):163-166
    [103] Chozick R, Irvine R L. Preliminary studies on the granular activated carbon-sequencing batch biofilm reactor[J]. Environmental Progress, 1991, 10(4): 282-289
    [104] Arnz P, Esterl S, Nerger C, et al. Simultaneous loading and draining as a means to enhance efficacy of sequencing biofilm batch reactors[J]. Water Research, 2000, 34(5): 1763-1766
    [105] 肖勇,杨朝晖,曾光明等.PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器(SBBR)中的细菌多样性[J].环境科学,2007,28(5):1095-1101
    [106] Di Iaconi C, Lopez A, Ramadori R, et al. Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR)[J]. Water Research, 2002, 36(9): 2205-2214
    [107] Di Iaconi C, Lopez A, Ramadori R, et al. Tannery wastewater treatment by sequencing batch biofilm reactor[J]. Environmental Science and Technology, 2003, 37(14): 3199-3205
    [108] Di Iaconi C, Ramadori R, Lopez A, et al. Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor[J]. Biochemical Engineering Journal, 2006, 30(2): 152-157
    [109] Di Iaconi C, Ramadori R, Lopez A, et al.Hydraulic shear stress calculation in a sequencing batch biofilm reactor with granular biomass[J]. Environmental Science and Technology, 2005, 39(3): 889-894
    [110] Hu Z, Ericson J F, MacKay Allison A, et al. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals[J]. Water Research, 2005, 39(4): 710-720
    [111] Gieseke A, Arnz P, Amann R, et al. Simultaneous P and N removal in a sequencing batch biofilm reactor: Insights from reactor and microscale investigations[J]. Water Research, 2002, 36(2): 501-509
    [112] 张朝升,荣宏伟,张可方.序批式生物膜反应器的生物膜特性研究[J].中国给水排水,2007,23(1):53-55
    [113] Kaballo H P, Zhao Y, Wilderer P A. Elimination of p-chlorophenol in biofilm reactors-a comparative study of continuous flow and sequenced batch operation[J]. Water Science and Technology, 1995, 31(1): 51-60
    [114] Kaballo H P. Shock loading management with the sequencing batch film bioreactor technology[J]. Water Science and Technology, 1997, 35(1): 35-40
    [115] White D M, Schnabel W. Treatment of cyanide waste in a sequencing batch biofilm reactor[J]. Water Research, 1998, 32(1): 254-257
    [116] White D M, Pilon T A, Woolard C. Biological treatment of cyanide containing wastewater[J]. Water Research, 2000, 34(7): 2105-2109
    [117] Cho B C, Chang C N, Liaw S L, et al. The feasible sequential control strategy of treating high strength organic nitrogen wastewater with sequencing batch biofilm reactor[J]. Water Science and Technology, 2001, 43(3): 115-122
    [118] Pambrun V, Paul E, Sperandio M. Treatment of nitrogen and phosphorus in highly concentrated effluent in SBR and SBBR processes[J]. Water Science and Technology, 2004, 50(6): 269-276
    [119] Carini D, Von Gunten U, Dunn I J, et al. Modeling ozonation as pre-treatment step for the biological batch degradation of industrial wastewater containing 3-methyl-pyridine[J]. Ozone: Science and Engineering, 2001, 23(5): 359-368
    [120] XU Z, TANG Z, ZENG G, et al. Mechanism studies on nitrogen removal when treating ammonium-rich leachate by sequencing batch biofilm reactor[J]. Front. Environ. Sci. Engin. China, 2007, 1(1): 43-48
    [121] Chang C N, Chen H R, Huang C H, et al. Using sequencing batch biofilm reactor (SBBR) to treat ABS wastewater[J]. Water Science and Technology, 2000, 41(4): 433-440
    [122] 王敏,王里奥,代桓等.SBR与SBBR法处理制药废水对比试验[J].环境保护科学,2007,33(4):22-24
    [123] Mohan S Venkata, Rao N Chandrasekhara, Sarma P N. Low-biodegradable composite chemical wastewater treatment by biofilm configured sequencing batch reactor (SBBR)[J]. Journal of Hazardous Materials, 2007, 144(1-2): 108-117
    [124] Fried Johannes, Lemmer H. On the dynamics and function of ciliates in sequencing batch biofilm reactors[J]. Water Science and Technology, 2003, 47(5): 189-196
    [125] Kumar B Manoj, Chaudhari S. Evaluation of sequencing batch reactor(SBR)and sequencing batch biofilm reactor(SBBR)for biological nutrient removal from simulated wastewater containing glucose as carbon source[J]. Water Science and Technology, 2003, 48(3): 73-79
    [126] Prendergast J, Rodgers M, Healy Mark G.. The efficiency of a sequencing batch biofilm reactor in organic carbon and phosphorus removal[J]. Journal of Environmental Science and Health-Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, 40(8): 1619-1626
    [127] Li T W,Peng Y z,Wang Y Y,et al.Experimental study on sequencing batch bioflm reactor with biological fltration(SBBR-BF)for wastewater treatment[J].Water Science and Technology,2004,48(11-12):299-307
    [128] 王建芳,赵庆良,张雁秋.投加有效微生物强化SBR和SBBR除污效果的研究[J].中国给水排水,2007,23(9):56-60
    [129] 王亚宜,李探微,彭永臻等.序批式生物膜(SBBR)法和SBR法的对比研究[J].工业用水与废水,2002,33(6):4-6
    [130] 李军,顾国维,韦苏等.序批式膜生物反应器同步硝化和反硝化的特性[J].中国环境科学,2005,25(6):646-649
    [131] 张可方,张朝升,方茜.序批式生物膜法处理城市污水除磷规律研究[J].广州大学学报(自然科学学报),2007,6(1):60-64
    [132] 孙华,张菊萍,李湘霖,投加悬浮填料改善活性污泥法处理性能的试验研究,重庆环境科学,2001,23(6):37-40
    [133] 陈永生,胡龙兴,吕晓辉.COD负荷对MBSBBR脱氮除磷性能的影响研究[J].环境科学与技术,2006,29(11):99-101
    [134] 国家环保局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,1998
    [135] J Wanner, et al. Activated sludge process combined with biofilm cultivation[J]. Wat. Sci. Tech., 1988, (22): 2
    [136] 李探微,彭永臻,陈志根等.活性污泥法的生物泡沫形成和控制[J].中国给水排水,2001,17(4):73-76
    [137] M Gander, B Jefferson, S Judd. Aerobic MBRs for domestic wastewater treatment: a review with cost considerations[J]. Separation and Purification Technology, 2000, 18:119-130
    [138] 赵立蔚,王德龙,张玉惠等.硝酸盐氮、亚硝酸盐氮总量紫外吸收快速测定[J].城市环境与城市生态,2000,13(5):49-50
    [139] Albright L J, Sherr E B, Sherr B F, et al. Grazing of ciliated protozoa on free and particle attached bacteria[J]. Mar. Ecol, Prog. Ser, 1987, 38: 125-129
    [140] Berninger U G. The functioning and significance of microbial food webs in freshwater environments. PhD thesis, der Freien Universitfit Berlin, 1990
    [141] 张白杰,林荣忱,金儒霖.排水工程(下册)[M].北京,建筑工业出版社,2000.6
    [142] 周群英,高廷耀.环境工程微生物学[M].北京,高等教育出版社,2003.5
    [143] Verhagen FJM, Laanbroek HJ. Effects of grazing by flagellates on competition for ammonium between nitrifying and heterotrophic bacteria in chemostats[J]. Appl. Environ. Microbiol., 1992, 58: 1962-1969
    [144] 郑平,冯孝善.废水生物处理[M].北京:高等教育出版社,2006
    [145] Ekelund F Rnn R. Notes on protozoa in agricultural soil with emphasis on heterotrophicflagellates and naked amoebae and their ecology[J]. FEMS Microbiol. Rev., 1994, 15:321-353
    [146] Al-Shahwani S M, Horan N J. The use of protozoa to indicate changes in the performance of activated sludge plants[J].War. Res., 1991, 25:633-538
    [147] Hamer G, Egli T, Mechsner K. Biological treatment of industrial wastewater: a microbiological basis for process performance[J]. J. Appl. Bacteriol. Symposium Supplement, 1985:127-140
    [148] Horan N J. Biological Wastewater Treatment Systems.Theory and Operation[M]. Chichester, 1990
    [149] Clarholm M. Microbes as predators or prey. In Current Perspectives on Microbial Ecology[M]. Washington, DC: American Society for Microbiology, 1984:321-326
    [150] Richard M. The Bench Sheet Monograph on Activated Sludge Microbiology[M]. Water Pollution Control Federation, 1989
    [151] Gurijala K R, Alexander M. Effect of growth rate and hydrophobicity on bacteria surviving protozoan grazing[J]. Appl. Environ. Microbiol., 1990, 56: 1631-1635
    [152] Kooijman S A L M. Population dynamics on the basis of budgets[M]. In The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematicspp, 1986, 266-297
    [153] Fenchel T. Suspension feeding in ciliated protozoa: feeding rates and their ecological significance[J]. Microb. Ecol., 1982, 6: 13-25
    [154] Berk S G, Botts J A. Indirect effects of chlorinated wastewater on bacteriovorous protozoa[J]. Environ. Pollut. (series A), 1984, 34:237-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700