影响活性污泥产率的环境因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是城市污水处理厂广泛应用的生物处理技术,是生化法处理废水的基本工艺。但它一直存在一个最大的弊端,那就是在运行过程中会产生大量的剩余污泥。虽然城市污水处理厂中的污泥产量仅为所处理污水量的1~2%,但污泥处理设施的投资往往占到整个污水处理厂总投资的40~50%。由于污泥的最终处置越来越困难,为了防止污泥的二次污染,最有效的措施是通过技术进步和工艺改造等手段减少污泥的产生量。因此我们需要研究活性污泥产率(真实产率和表观产率)都受到哪些环境因素的影响,并分析各影响因素的相对重要性,这样我们就可以通过改变环境影响因素来减少污泥产量。
     本文先提出一种改进的耗氧速率(OUR)测量装置,以便用于后面实验数据的测量,然后系统研究了不同的环境条件(电子受体、温度、基质、重金属离子和化学解偶联剂等)对表观产率Yobs、真实产率YH以及衰减系数Kd产生的影响。通过上述一系列的实验研究,得出了一些新的认识和结论,主要包括:
     1.设计了一种测量OUR的新装置,利用该装置测得微生物的产率系数YH和衰减系数Kd都文献报道基本相符,表明这种装置可以比较准确的测定有机废水的耗氧速率。
     2.发现淀粉、蛋白质和苯酚三种基质的表观污泥产率Yobs和真实污泥产率YH都具有相同规律,即:淀粉>蛋白质>苯酚,这说明易降解基质的污泥产率会更高一些。不过YH都要高于Yobs,这可能是因为YH不受细菌的捕食、死亡和再生等作用的影响。进水中不同类型的基质会引起污泥内微生物菌群的变化,不同菌群的微生物其细胞产率系数和内源代谢系数等都不同,这可能是造成污泥产率差异的根本原因。
     3.发现温度的变化不影响好氧污泥的YH,原因可能在于代谢相同基质的污泥内的微生物菌群相同,因此其细胞产率也相同,不受温度影响;但是低温Yobs比高温的要大,这可能是因为在温度较高的条件下,内源呼吸作用较强,导致污
Activated sludge treatment is the biological treatment extensively applied in city sewage plant, and is the traditional technology for biochemical treatment method for wastewater. But there is a malpractice during the operation, which produce large quantity of residual sludge. The investment in sludge treatment account for 40~50% of total investment of wastewater treatment plant, although the sludge production quantity just 1~2% of the wastewater being treated. As the final disposal for sludge is a hard work, and in order to prevent the secondary pollution produced by the sludge, the most effective measure is to cut down the produced sludge quantity by improving and alteration of the technology. So it is necessary to study the environment effectors to activated sludge production ratio (real yield and observation yield) and analysis the relative significance of each factors in order to lessen the sludge production through adjust the environmental factors.
     An improved OUR equipment was put forward in this paper, and was used in rest measurement. The effects of different environment conditions (temperature、substrate、heavy metal and uncoupled metabolism) to Yobs, YH and Kd were investigated systemically. According to the series of studies above, a number of main conclusions can be drawn as follows:
     1. A new device of measuring OUR was designed, and the real yield(YH) and Kd measured with which are match to the YH and Kd reported in some literatures. And this indicated that the OUR of organic wastewater can be measured using this device comparatively exactly.
     2 For the Yobs and YH to starch、protein and phenol, there are same orderliness of starch > protein > phenol, which showed that there are higher yield for more degradabel medium. And both YH are higher than the corresponded Yobs, these maybe because the YH not susceptible to predatory, death, regeneration and so on. The different type of medium in influent can result in the change of microorganism makeup, and result in different cell yield and ,which is the ultimate reason for
引文
[1] 张全,陆鲁. 剩余污泥微氧消解工艺研究。上海环境科学. 1995,14(11):15-16
    [2] 曹秀芹,陈珺. 污水处理厂污泥处理存在问题分析. 北京建筑工程学院学报. 2002,18(1):1-4
    [3] 周冰莲.活性污泥法剩余污泥量的计算[J].中国给水排水,1999,15(6):53-55
    [4] 郑兴灿,李亚新.污水除磷脱氮技术[M].中国建筑工业出版社,1998.
    [5] 许劲.关于城市污水处理厂设计的若干问题讨论[J].给水排水,2001,27(7):15-18
    [6] Payne WJ (1981). Denitrification. John Wiley and Sons, Inc., New York.
    [7] 黄勇. 活性污泥系统动态数学模型研究. 博士学位论文. 哈尔滨建筑工程学院 1993
    [8] Henze M., Grady C.P.LJr., Gujer W., Marais G.v.R. and Matsuo T. A general model for single wastewater treatment systems. Water research, 1987, 21, 505-515
    [9] Gujer W, Henze M, Mino T, Matsuo T, Wentzel MC, Marais GvR (1995). The Activated Sludge Model No.2: Biological Phosphorus Removal. Wat Sci and Technol 31(2):1-11.
    [10] Grady CPL, Lim HC (1980a). Biological Wastewater Treatment. Marcel Dekker Inc., New York.
    [11] IAWQ Task Group (1995). Activated Sludge Model No.2, IAWQ Scientific and Technical Report No.3. IAWQ Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment Processes.
    [12] Ekama GA, Dold PL, Marais GvR (1986). Procedures for Determining Influent CODcr Fractions and the Maximum Specific Growth Rate of Heterotrophs in Activated Sludge Systems. Wat Sci and Technol, 18(6):91-114.
    [13] Dold PL, Marais GvR (1986). Evaluation of the General Activated Sludge Model Proposed by the IAWPRC Task Group. Wat Sci and Technol 18(6):63-89.
    [14] Herbert D.A. A theoretical analysis of continuous culture systems. In: Continuous Culture of Microorganisms. London: Society of Chemical Industry, 1960, No.12: 21-53
    [15] Lawrence A.W. and McCarty P.L. Unified basis for biological treatment design and operation. Journal of the Sanitary Engineering Division, ASCE, 1970, 96: 757-778
    [16] Pirt S (1965). The maintenance energy of bacteria growing in cultures. Proc R Soc B 163:224.
    [17] Herbert D(1958). Some Principles of Continous Culture. In: Tunevall G Recent Progress in Microbiology: Symposia Held at the Ⅶ International Congress for Microbiology Stockholm 1958. Almqvist and Wiksell, Stockholm.
    [18] Dold P.L., Ekama G.A. and Marais G.v.R. A general model for the activated sludge process. Progress in Water Technology. 1980, 12(6), 47~77
    [19] McKinney RE, Ooten RJ (1969). Concepts of Complete Mixing Activated Sludge. Transcripts of the 19th Engineering Conference, University of Kansas, 32.
    [20] Grady CPL, Gujer W, Henze M, Marais GvR, Matsuo T (1986). A Model for Single-Sludge Wastewater Treatment Systems. Wat Sci and Technol 18:47-61.
    [21] Egli T, Lendemann NJ, Snozzi M (1993). Kinetics of Microbial Growth with Mixtures of Carbon Sources. Antonie Leeuwenhoek J Microbiol 63:289-298.
    [22] Phelps EB (1944). Stream Sanitation. John Wiley and Sons, New York.
    [23] Pirt SJ (1975). Energy and Carbon Requirements. In: Principles of Microbe and CellCultivation. Blackwell Scientific Publications. Oxford.
    [24] McCarty PL, Beck L, St. Amant P (1969). Biological Denitrification of Wastewaters by Addition of Organic Materials. In: Proceedings of the 24th Purdue Industrial Waste Conference, Purdue University, Lafayette, In., (1271-1285).
    [25] Chesbro W, Arbige M, Eifert R (1990). When Nutrient Limitation places Bacteria in the Domains of Slow Growth: Metabolic, Morphologic and Cell Cycle Behavior. FEMS Mic Ec 74:103-120.
    [26] Pirt SJ (1987). The Energetics of Microbes at Slow Growth Rates: Maintenance Energies and Dormant Organisms. J Ferment Technol 65: 173-177.
    [27] Inniss WE, Ingraham JL (1978). Life at Low Temperatures: Mechanisms. In: Kushner DJ Microbial Life In Extreme Environments. Academic Press, London.
    [28] Topiwala H, Sinclair CG (1971). Temperature Relationship in Continous Culture. Biotech Bioeng Ⅻ: 795-813.
    [29] Mennett RH, Nakayama TOM (1971). Influence of Temperature on Substrate and Energy Conversion in Pseudomonas fluorescens. Appl Environ Microbiol 22: 772-775.
    [30] Harder W, Veldkamp H (1967). A Continous Culture Study of an Obiligately Psychrophilic Pseudomonas Species. Arch Microbiol 59: 123-130.
    [31] Muck RE, Grady CPL (1974). Temperature Effects on Microbial Growth in CSTR’s. J Environ Eng Div. ASCE 100: 1147-1163.
    [32] Medronho RA, Russo C (1983). Influence of Temperature on the kinetic Parameters of the Activated Sludge Process. Environ Technol Lett 4: 1-8.
    [33] Tian S, Lishman LA, Murphy KL (1994). Investigations into Excess Activated Sludge Accumulation at Low Temperatures. Water Res 28: 501-509.
    [34] Lynga A, Balmer P (1992). Denitrification in a Non-Nitrifying Activated Sludge System. Wat Sci and Technol 26(5-6): 1097-1104.
    [35] van Haandel AC, Ekama GA, Marais GvR (1981). The Activated Sludge Process-3 Single Sludge Denitrification. Water Res 15:1135-1152.
    [36] Barnard JL (1975). Biological Nutrient Removal Without the Chemicals. Water Res 9: 485-490.
    [37] Symth SA (1994). Sludge Production in Aerobic and Anoxic Activated Sludge Systems. M. Eng. Thesis. McMaster University, Hamilton.
    [38] Ketchen SL (1994). Temperature Effects on Predenitrification Sequencing Batch Reactors. M. Eng. Thesis. McMaster, Hamilton.
    [39] Sollfrank U, Kappeler J, Gujer W (1992). Temperature Effects on Wastewater Characterization and the Release of Soluble Inert Organic Material. Wat Sci and Technol 25: 33-41.
    [40] Kappeler J, Gujer W (1992). Estimation of Kinetic Parameters of Heterotrophic Biomass under Aerobic Conditions and Characterization of Wastewater for Activated Sludge. Wat Sci and Technol 25(6): 125-139.
    [41] Ubukata Y (1992). Kinetics of Polymeric Substrate Removal by Activated Sludge: Hydrolysis of Polymers is the Rate-Determining Step. Wat Sci and Technol 26(9-11): 2457-2460.
    [42] Dold PL, Fleit E, Han J (1991). Hydrolysis of α(1-4) Glucan Bonds in Activated Sludge Mixed Bacterial Communities. Environ Technol Lett 12: 871-879.
    [43] Henze M, Mladenovski C (1991). Hydrolysis of Particulate Substrate by Activated Sludgeunder Aerobic, Anoxic and Anaerobic Conditions. Water Res 25: 61-64.
    [44] Perez-Padilla G.G.Ⅲ, Effects of toxic organic chemicals on microbial death and lysis. Ph.D. Dissertation. Clemson: Clemson University, 1996
    [45] McDermott J.R. and Whitehill I. Determination of aluminium in biological tissue by flameless atomic absorption spectrometry. Analytica Chimica Acta. 1976, 85: 195-198.
    [46] Dilek F.B. and Gokcay C.F., Microbiology of activated sludge treating wastewater containing Ni() and Cr(). Water Science and Technology. 1996, 34,183-191
    [47] Chang D, Fukushi K, Ghosh S. Stimulation of activated sludge cultures for enhanced heavy metal removal. Water Environ Res, 1995,67,822-827.
    [48] Barth, E.F., Ettinger, M.G., Salotto, B.V. and MeDermott, G.N. (1965). Summary Report on the Effects of Heavy Metals on the Biological Treatment Processes. J.Wat.Pollut.Control Fed., 37, 86-96.
    [49] Gokcay CF, Yetis U. Effect of nickel (Ⅱ) on the biomass yield of the activated sludge [J]. Water Science and Technology. 1996, 34(5-6):163-171.
    [50] Mowat F.S. and Bundy K.J. Correlation of field-measured toxicity with chemical concentration and pollutant availability. Environment International. 2001, 27(6): 479-489.
    [51] Chua H. Bio-accumulation of environmental residues of rare earth elements in a aquatic flora Eichhornia crassipes(Mart.) solms in Guangdong Province of china. The Science of the Total Environment. 1998, 214: 239-245
    [52] Solotto. The effct of YATP and maintenance energy as biologically interpretable phenomena. Iann. Rev.Microbiol., 38, 459-486
    [53] Lamb A. and Tollerfson E.L. Toxic effects of cupric chromate and chromic ions on biological oxidation. Wat. Res. (1973) 10, 71-77
    [54] Lawson PS, Sterritt RM, Lester JN. Adsorption and complexation mechanisms of heavy metal uptake in activated sludge. J Chem Technol Biotechnol. 1984, 34B:253-262.
    [55] Cabrero A, Fernandez A, Mirada F, et al. Effects of copper and zinc on the activated sludge on its production under batch conditions at various S0/X0 ration [J]. Water Sci Technol, 1991, 23(4-6): 917-926.
    [56] Stasinakis AS, Mamais D, Thomaidis NS, et al. Effect of chromium (Ⅵ) on bacterial kinetics of heterotrophic biomass of activated sludge [J]. Water Research, 2002, 36(13):3341-3349.
    [57] Cabrero A, Fernandez S, Mirada F, et al. Effects of copper and zinc on the activated sludge bacteria growth kinetics [J]. Water Res, 1998, 32(5): 1355-1326.
    [58] Sujarittanonta, S. and Sherrard, J.H. (1981). Activated Sludge Nickel Toxicity Studies [J]. Wat.Pollut.Control Fed, 53,1314-1322.
    [59] Henrikson, L.E. and DaSilva, E.J. (1978). Z, Allg. Microbiol, 18, 487-494.
    [60] Bertrand, D. and Dewolf, A. (1967). C.R.Hebd Sciences Acad. Sci.Ser, D265, 1053-1055.
    [61] Hutchinson, T.C. (1973). Effects of Heavy Metal Pollution on Plants. Ed.N.W.Lepp, Applied Sciences Publication, London.
    [62] Paolo Madoni, Donatella Davoli, Gessica Gorbi and Luciano Vescovi. Toxic effect of heavy metals on the activated sludge protozoan community. Water research. 1996, 30(1): 135-141.
    [63] Airton Kunz and Wilson F. Jardim. Complexation and adsorption of copper in raw sewage. Water Research. 2000, 34(7): 2061-2068.
    [64] Neufeld, R. D. and Hermann, E. R. (1976). Heavy Metal Removal by Acclimated Activated Sludge. J. Wat. Pollut.Control Fed., 47, 310-329.
    [65] F. L. Singleton and R. K. Guthrie. Aquatic bacterial populations and heavy metals—I. Composition of aquatic bacteria in the presence of copper and mercury salts. Water Research. 1977, 11(8): 639-642.
    [66] 顾夏声,李献文,竺建荣. 水处理微生物学[M]. 北京:中国建筑工业出版社,1998:17-35.
    [67] 王家玲. 环境微生物学[M]. 北京:高等教育出版社. 1988: 42-45.
    [68] 黄诒森,张光毅. 生物化学与分子生物学[M]. 北京:科学出版社,2003:190-192.
    [69] Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism [J]. Nature, 1961, 191(1): 144-148.
    [70] Stouthamer AH. A theoretical study on the amount of ATP required for synthesis of microbial cell material [J]. Microbial, 1973, 39(3): 545-565.
    [71] Low E.W, Chase H A. The use of chemical uncouplers for reducing biomass production during biodegradation. Water Sci Technol, 1998, 37: 399-402.
    [72] Chen G.H, Mo H.K, Liu Y. Utilization of a metabolic uncoupler, 3,3,4,5-tetrachlorosalicylanilide (TCS) to reduce sludge growth in activated sludge culture. Water Res, 2002, 36: 2077-2083.
    [73] Strand S.E, Harem G.N, Stensel H.D. Activated sludge yield reduction using chemical uncouplers. Water Environ Res, 1999, 71: 454-458
    [74] Xie M.L. Utilization of 8 kinds of metabolic uncouplers to reduce excess sludge production from the activated sludge process. Master Thesis, Beijing Technol Business University, 2002
    [75] Yang XF, Xie ML, l,iu Y. Metabolic uncouplers reduce excess sludge production in an activated sludge process[J]. Process Biochem, 2003, 38(9): 1373-1377.
    [76] Mayhew M, Stephenson T. Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency[J].Water Sci Technol,1998,38(8-9): l37-l44.
    [77] Okey R.W, Stensel D.H.Uncouplers and activated sludge——the impact Oil synthesis and respiration .Toxicol Environ Chem, 1993, 40: 235-254.
    [78] Mayhew M, Stephenson T. Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency? Water Sci Technol, 38, 137-144.
    [79] Liu Y. Reduced yield of activated sludge in organic protonophore-containing batch culture. Microbial Eco1. 2000, 39: 168-173
    [80] Henri Spanjers, Peter Vanrolleghem. Respirometry in control of the activated sludge process[J]. Water Science and Technology, 1996, 34(3-4): 117-126.
    [81] Z. Kong, P. Vanrolleghem, W. [J]. Verstraete. Automated respiration inhibition kinetics analysis (ARIKA) with a respirophic biosensor. Wat. Sci. Tech., 1994, 30(4): 275-284
    [82] A. J. Guwy, H. Buckland, et al. [J]. Active biomass in activated sludge: Comparison of Respirometry with catalase activity measured using an on-line monitor. Wat. Res., 1998,32(12): 3705-3709.
    [83] Henze M (1992). Characterization of Wastewater for Modelling of Activated Sludge Oxygen Respiration Rates and Denitrification Rates. Wat Sci and Technol 21:603-607.
    [84] Xu S, Hasselblad (1996). A Simple Biological Method to Estimate the Readily Biodegradable Oraganic Matter in Wastewater. Water Res 30:1023-1025.
    [85] Mamais D, Jenkins D, Pitt P (1993). A Rapid Physical-Chemical Method for theDetermination of Readily Biodegradable Soluble CODcr in Municipal Wastewater. Water Res 27:195-197.
    [86] 黄 勇,杨铨大. 生物处理动力学参数测定研究 [J]. 中国环境科学,1996,16(2):123-127.
    [87] Smolders G J F, van Loosdrecht M C M. A metabolic model for the biological phosphorus removal process[J]. Water Science and Technology, 1995, 31(2): 79~93.
    [88] 宋文清,杨海真. 活性污泥数学模型中异养菌产率系数的测定[J].环境污染与防治,2004,26(4): 253-255.
    [89] Lori-Ann Lishman. The Influence of Substrate and Temperature on Biological Nitrogen Removal in Wastewater Treatment Systems[D]. Waterloo: University of Waterloo, 1997.
    [90] Dold P L, Marais G v R. Fvaluation of the general activated sludge model proposed by the IAWPRC task group[J]. Water Science and Technology, 1986,18(6):63-89.
    [91] Yuu Ubukata. Kinetics of polymeric substrate (dextrin or peptone) removal by activated sludge-hydrolysis of polymers to monomers is the rate-determining step[J]. Water Science and Technology, 1997, 36(12): 159-167.
    [92] Hadjipetrou L.P., Gerrits J.P., Teulings F.A.G. and Stouthamer A.H. Relation between energy production and growth of Aerobacter aerogenes. Journal of General Microbiology, 1964, 36,1 39-150.
    [93] Payne W.J. Energy yield and growth of heterotrophs. Annual Review of Microbiology, 1970, 24, 17-52.
    [94] Ramanathan M. and Gaudy A.F.Jr. Studies on sludge yield in aerobic systems. Proceedings of the 26th Industrial Waste Conference. Purdue University Engineering Extension Series,1971, 140, 665-375.
    [95] Grady C.P.L.Jr., Aichinger G., Cooper S.F. and Naziruddin M. Biodegradation kinetics for selected toxic/hazardous organic compounds. Pp. 141-153 In: Proceeding of the 1989 AWMA/EPA International Symposium on Hazardous Waste Treatment: Biosystem for Pollution Control. Pittsburgh: Air and Waste Management Association, 199.
    [96] Smolders G J F, van Loosdrecht M C M. A metabolic model for the biological phosphorus removal process[J]. Water Science and Technology, 1995, 31(2): 79~93.
    [97] Benedict AH (1973). Temperature Acclimation in Aerobic Biooxidation Systems. J Wat Pollut Control Fed 45(1):10-14.
    [98] Grady CPL, Smets BF, Barbeau DS (1996). Variability in Kinetic Parameter Estimates: A Reveis of Possible Causes and a Proposed Terminology. Water Res 30: 742-748.
    [99] McClintock SA, Sherrard JH, Novak JT, Randall CW (1988). Nitrate versus Oxygen Respiration in the Activated Sludge Process. Journal WPCF 60(3):342-350.
    [100] Barker PS, Dold PL. General model for biological nutrient removal activated-sludge systems: model presentation. Water Environ Res 1997;69(5):969–984.
    [101] Payne WJ. Denitri.cation. New York: Wiley, 1981.
    [102] Casey TG, Wentzel MC, Ekama GA. Filamentous organism bulking in nutrient removal activated sludge systems. Paper 10: metabolic behaviour of heterotrophic facultative aerobic organisms under aerated/unaerated conditions. Water SA 1999;25(4):425–442.
    [103] Oleszkiewicz JA, Berquist SA (1988). Low Temperature Nitrogen Removal in Sequencing Batch Reactors. Water Res 22:1163-1171.
    [104] Raunkjer K, Hvitved-Jacobsen T, Nielsen P (1994). Measurement of Pools of Protein, Carbohydrate and Lipid in Domestic Wastewater. Water Res 28: 251-262.
    [105] Bitton G (1994b). Wastewater Microbiology. Wiley-liss Inc., New York.
    [106] U.S. Environmental Protection Agency, Office of Research and Development Center for Environmental Research Information Risk Reduction Engineering Laboratory CO, Office of Water O of WE and CWDC (eds) (1993) Mauual: Nitrogen Control., Washington, DC.
    [107] McLellan JC, Busch AW (1969). Hydraulic and Process Aspects of Reactor Design Ⅱ-Response to Variations. Proceedings of the 24th Industrial Waste Conference, Purdue University 135: 493-506.
    [108] Daigger GT, Grady CP (1982). The Dynamics of Microbial Growth on Soluble Substrates: A Unifying Theory. Water Res 16: 365-382.
    [109] Barker PS, Dold PL (1995). CODcr and Nitrogen Mass Balances in Activated Sludge Systems. Water Res 29: 633-643.
    [110] Stensel R, Silver S (1977). Methylammonium uptake by Escherichia coli: evidence for bacterial NH4+ transport system. Biochem Biophys Res Commum 75: 1133-1440.
    [111] McClintock SA, Sherrard JH, Novak JT, Randall CW. Nitrate versus oxygen respiration in the activated sludge process. J WPCF 1988;60(3):342–350.
    [112] Ubay, Cokg.or E, S.ozen S, Orhon D, Henze M. Respirometric analysis of activated sludge behaviour — — I Assessment of the readily biodegradable substrate. Water Res 1998;32(2):461–475.
    [113] Hartz, K.E., Zane, A.T., and Bhagat, S.K. (1985). The Effect of Selected Metals and Water Hardness on the Oxygen Uptake of Activated Sludge [J]. Wat. Pollut. Control Fed, 57(9),942-947.
    [114] Chang, S.Y., Huang, J.C. and Liu, Y.C. (1986). Effects of Cd(Ⅱ) and Cu(Ⅱ) on a Biofilm System [J]. Envir. Engng, 112(1), 94-104.
    [115] Pirt, S.J. (1975). Principles of Microbe and Cell Cultivation. Blackwell Scientific, Oxford.
    [116] Huetings, S., DeLinge, T., Tempest, D.W. (1979). Arch. Microbiol, 123, 183-188.
    [117] Pirt, S.J. (1965). Proc. Roy. Soc. London, Ser. B, 163.224-231.
    [118] Benefield, L.D. and Randall, C.W. (1980). Biological Process Design for Wastewater Treatment. Prentice-Hall, Inc., U.S.A.
    [119] Muller, A., Wentzel, M.C., Loewenthal, R.E. Heterotroph anoxic yield in anoxic aerobic activated sludge systems treating municipal wastewater. Water Research. 2003, 37: 2435-2441.
    [120] Paolo Madoni, Donatella Davoli and Lorena Guglielmi. Response of SOUR and AUR to heavy metal contamination in activated sludge. Wat. Res. 1999, 33(10): 2459-2464.
    [121] Low, E.W., Chase, H.A. Reducing production of excess biomass during wastewater treatment [J]. Water Research, 1999, 33(5): 1119-1132.
    [122] Low E.W, Chase H.A, Milner M.G, Curtis T.P. Uncoupling of metabolism to reduce biomass production in the activated sludge process. Water Research, 2000, 34(12): 3204-3212.
    [123] Chen G.H, Mo H.K, Saby S, et al. Minimization of activated sludge production by chemicall stimulated energy spilling. Water Science Technology, 2002, 42(12): 189-200.
    [124] 叶芬霞. 解偶联代谢对活性污泥工艺中剩余污泥的减量化作用. 博士学位论文. 浙江大学环境与资源学院. 2003
    [125] 张自杰,林荣忱,金儒霖. 排水工程[M]. 北京:中国建筑工业出版社,1996:96-97.
    [126] Ren S, Frymier PD. Kinetics of the toxicity of metals to luminescent bacteria[J]. Advances in Environmental Research, 2003, 7(2): 537-547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700