污水处理厂污泥减量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吉林市某污水处理厂每年污水处理过程中产生剩余污泥约5000吨左右,污泥经浓缩脱水后填埋,这种方法并没有从根本上消除污染,且填埋场填满后,又要投资再建,费用较高。因此迫切需要开展剩余污泥减量化技术的研究,一方面可以大幅度减少污泥的危害,另一方面可以减轻污泥进一步处理与处置的难度和负担。
     针对上述问题,总结了目前国内外有关剩余污泥减量技术的应用及发展现状,并着重研究了污泥龄和投加酶制剂对剩余污泥产量的影响,同时验证了将延长污泥龄与投加酶制剂联合应用时的污泥减量效果,取得了以下成果:
     延长污泥龄能够实现剩余污泥的减量。保持污泥龄60天,可使剩余污泥减量14%,对系统出水COD、NH3-N略有影响,但影响程度很小,可忽略;可使系统的SVI明显升高,但SVI仍在合理范围内。保持污泥龄90天,可使剩余污泥减量27%,但系统出水COD明显升高。由此可见,延长污泥龄可实现剩余污泥减量的目的,虽然减量效果一般,但在一定程度上是一种可行的污泥减量方法。
     结合污泥减量效果及对系统出水水质的影响对两种酶制剂进行了筛选,结果表明:1#酶制剂的效果优于2#酶制剂。投加1#酶制剂能够实现剩余污泥的减量。酶制剂日投加量0.2mL/30L时污泥减量比例达19%,酶制剂日投加量0.4mL/30L时污泥减量比例达28%,酶制剂日投加量0.6mL/30L时污泥减量比例达30%。投加酶制剂后系统出水水质较好,COD、NH3-N较空白值有降低趋势。投加酶制剂可使系统的SVI略有降低。最佳酶制剂日投加量为0.4mL/30L。由此可见投加酶制剂对污泥减量效果明显,对系统出水水质有所提高,如果产业化则仅需在好氧池源头投加酶制剂即可,易于在现有装置上实现,是一种较理想的污泥减量方法。
     延长污泥龄并同时投加酶制剂能够更好地实现剩余污泥的减量,与污泥龄30天,未投加酶制剂的实验结果相比,保持污泥龄60天,投加酶制剂0.4mL/日的装置污泥减量比例为41%。减量效果显著。对系统出水COD、NH3-N的影响很小,可忽略。系统的SVI明显升高,但仍在合理范围内,不会对活性污泥性质及沉淀效果有影响。由此可见将污泥龄延长与投加酶制剂相结合的方法对该污水处理厂是一种切实可行的污泥减量方法。
About 5000 tons of excess sludge is produced annually in one wastewater treatment plant in Jilin City. Currently the sludge is disposed of in landfill after dewatering. However, this approach does not eliminate the pollution fundamentally, and the invention is much costly when rebuilding a new landfill site. Therefore, it is an urgent need for developing excess sludge reduction technology from the points of significantly reducing the hazards of sludge in one hand, and reducing the difficulty and burden of further sludge treatment and disposal in another hand.
     Considering the above problems, this paper over reviewed the state of the art of current excess sludge reduction techniques in domestic and abroad, especially focused on the researches about the effects of long sludge retention time (SRT) and dosage of enzyme on excess sludge production. The results confirmed the effectiveness of sludge reduction by the combined techniques of extending SRT and enzyme addition. The main achievements from this research are as follows:
     Extending SRT can effectively reduce the excess sludge production. The 14%of excess sludge can be reduced when SRT is kept at 60 days compared to SRT of 30 days. The effluent COD and effluent NH3-N are slightly affected, but within the range of being neglected. Even the SVI of system is increased significantly, it is still in a reasonable range. When the SRT is kept at 90 days the excess sludge production can be reduced at 27%, but effluent COD is increased apparently. The above results indicate that extending SRT can reduce the excess sludge production,It showing a viable technique in sludge reduction to some extent.
     Two enzymes are selected by comparing the sludge reduction effect and effluent quality, the results show that 1# enzyme is better than 2# enzyme.1# enzyme can reduce the excess sludge production. Sludge reductions of 19%,28%and 30%can be achieved when enzyme dosage are 0.2mL,0.4mL and 0.6mL daily in a 30 liter aerated reactor. Effluent quality is better after adding enzyme since the effluent COD, effluent NH3-N and SVI are lower than the controlled one. The optimal enzyme dosage is 0.4mL. From the above investigation it clearly shows the sludge reduction effectiveness and improvement of the effluent quality by adding enzyme, suggesting an ideal sludge reduction technique with the easy modification of the existed facilities and simple operation by only adding enzyme in the source of the aerobic tank.
     Excess sludge reduction can be achieved much better with the SRT extention and enzyme addition combined. Compared to the control,41%sludge reduction can be reached when SRT is kept at 60 days and enzyme dosage at 0.4mL daily in 30L reactor. The sludge reduction effect is apparent with only slight increases of effluent COD and NH3-N. SVI of system is increased significantly, but still in the reasonable range. Therefore, it can be concluded that it is a practical technique for sludge reduction by combining SRT extention and enzyme addition techniques in wastewater treatment plant.
引文
[1]An K J, Chen G H. Chemical oxygen demand and the mechanism of excess sludge reduction in an oxic-settling anaerobic activated sludge process [J]. Journal of Environmental Engineering,2008,134(6):469-477
    [2]Wei Y S, Wang Y W, Guo X S. Sludge reduction potential of the activated sludge process by integrating an oligochaete reactor[J]. Journal of Hazardous Materials,2009,163(1):87-91
    [3]Chen G W, Yu H Q, Xi P G. Influence of 2,4-dinitrophenol on the characteristics of activated sludge in batch reactors[J]. Bioresource Technology,2009,98(4):729-733
    [4]IChtnari T, Ohtsubo A, Ozawa T. Wastewater treatment performance and sludge reduction properties of a household wastewater treatment system combined with an aerobic sludge digestion unit[J]. Process Biochemistry,2011,43(7):722-728
    [5]Dytczak M A, Londry K L, Siegrist H. Ozonation reduces sludge production and improves denitrification[J]. Water Research,2008,35(10):543-550
    [6]Oh Y K, Lee K R, Ko K B. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor[J]. Water Research,2007,41(12): 2665-2671
    [7]Tokumura M, Katoh H, Katoh T, et al. Solubilization of excess sludge in activated sludge process using the solar photo-Fenton reaction[J]. Journal of Hazardous Materials,2009, 162(2-3):1390-1396
    [8]Ichinari T, Ohtsubo A, Ozawa T. Wastewater treatment performance and sludge reduction properties of a household wastewater treatment system combined with an aerobic sludge digestion unit[J]. Process Biochemistry,2008,43(7):722-728
    [9]Spingosa L. Sludge minimization a fundamental part of waste water management[J]. Water 21, 2007, (24):27-27
    [10]Balmer P. Technology for sludge minimization[J]. Water 21,2007, (24):28-28
    [11]Novak J. Minimizing the sludge disposal volume by maximizing material energy recovery [J]. Water 21,2007, (24):29-29
    [12]Bengtsson S, Werker A, Christensson M, et al. Production of polyhydroxyal kanoates by activated sludge treating a paper mill wastewater[J]. Bioresource Technology,2008, 99(3):509-516
    [13]Brungard K L, Munakata Marr J, Johnson C A, et al. Stable carbon isotope fractionation of trans-1,2-dichloroethylene during co-metabolic degradationby methanotrophie bacteria[J]. Chemical Geology,2003,195(4):59-67
    [14]Chudoba P, Chudoba J. aspect of energetic uncoupling of microbial growth in the activated sludge process OSA system[J]. Water Science Technology,1992,26(10): 2477-2480
    [15]Moda M F, Atrar I M S. Effects of high sodium chloride concentrations on activated sludge amount[J]. Water Science Technology,2005,31(9):61-72
    [16]Kaseva M E. Performance of a sub-surface flow constructed wetland in pre-treated wastewater:a tropical case study [J]. Water Research,2010,38(3):681-687
    [17]Yoon S H. Important operational parameter of bioreactor-sludge disintegration system for zero sludge production[J]. Water Research,2003,37(8):1921-1931
    [18]Peng D C, Bernet N, Dctgenes J. Simultaneous organic carbon and nitrogen removal in an SBR controlled at low dissolved oxygen concentration[J]. Water Research,2001,76(6): 553-558
    [19]Kamiya T, Hirotsuji J. New combined system of biological process and intermittent ozonation for advanced wastewater treatment[J]. Water Science Technology,1998,38(9): 145-153
    [20]McWhirter JR. The Use of High Purity Oxygen in the Activated Sludge Process[J]. Water Science Technology,1978,25(3):25-62
    [21]石先阳,凌晨慧,鲍婷.Cu2+与解偶联剂协同作用污泥减量化[J].安徽大学学报(自然科学版).2010,4(5):94-97
    [22]王涛,叶成全,李伟民.三氯苯酚对A2/O工艺污泥产率的影响[J].环境科学与管理.2010,35(9):38-41
    [23]吴健波,刘振鸿,陈季华.剩余污泥处置的减量化发展方向[J].中国给水排水.2009,6(11):24-26
    [24]高旭,卢艳华,郭劲松.A+OSA活性污泥工艺剩余污泥减量特性研究[J].环境科学.2009,30(5):24-28
    [25]陈志英,王磊.高效代谢解偶联剂的筛选及对SBR系统综合运行效能的影响[J].环境污染与防治.2006,28(8):25-32
    [26]Low W W. Uncoupling of metabolism to reduce biomass production in activated sludge process[J]. Water Research,2009,34(12):3204-3212
    [27]俞小勇,胡勤海,叶芬霞.化学解偶联剂和OSA联合工艺对剩余污泥的减量化作用[J].城市环境与城市生态.2010,19(6):36-40
    [28]Alberto N. Extraction and recovery of chromium from electroplating sludge [J]. Journal of Hazardous Materials,2006,128(1):39-43
    [29]Yanming Chen. Ultrasonic reduction of excess sludge from the activated sludge system[J]. Journal of Hazardous Materials,2007,2(3):42-45
    [30]胡学斌,柴宏祥,韩万玉.低溶解氧控制状态下污泥减量系统除磷脱氮特性[J].土木建筑环境工程.2009,31(5):36-39
    [31]Cavell. Activated sludge plant facing grape harvest period-A case study[J]. Water Science and Technology,1996,4(11):8-11
    [32]Stall, Sherrard. Excess sludge reduction performance of an aerobic SBR process equipped with a submerged mesh filter unit[J]. Process Biochemistry,2006,41(4):745-751
    [33]左宁,吉芳英,万小军.污泥龄对LSP&PNR污泥减量新工艺运行效能的影响[J].环境工程学报.2008,2(1):105-109
    [34]Yasui H, Shibata M. An innovative approach to reduce excess sludge production in the activated sludge process[J]. Water Science& Technology,1994,30(9):11-20
    [35]洪荷芳,吴建,叶波.臭氧氧化法污泥减量技术的试验研究[J].环境研究与监测.2010,23(1):6-9
    [36]储兰,朱世云,陆婷婷.臭氧氧化法在活性污泥减量化中的应用初步研究[J].环境科学与技术.2009,32(12):45-49
    [37]王瀛寰,朱世云,,周海宾.臭氧氧化与序批式好氧活性污泥法组合工艺的污泥减量化效果[J].净水技术.2010,29(6):32-35
    [38]李欣,裴丽花.二氧化氯氧化污泥减量性能试验研究[J].辽宁华工.2009,35(10):22-26
    [39]李守富,肖玲玲.剩余污泥消减技术的研究[J].环境科学与管理.2010,32(12):45-48
    [40]张秀存,王伶艳.采用酸碱进行污泥减量的技术研究[J].化学工程与装备.2010,2(2):174-175
    [41]赵继红,刘楠,刘永德.超声对SBR工艺中剩余污泥的减量化研究[J].环境科学与技术.2010,31(2):12-16
    [42]王永霞,樊建军,莫卫松.超声波技术在污泥处理中的应用[J].重庆建筑大学学报.2009,29(3):36-38
    [43]刘永德,张明玉,刘峻等.超声对连续流活性污泥系统污泥减量化研究[J].环境科技.2010,23(1):12-15
    [44]刘峻,刘永德,赵继红.超声处理对系统剩余污泥减量效果的研究[J].中国给水排水.2011,27(1):58-61
    [45]霍贞,王芬,季民.污泥破解技术的研究与进展[J].工业水处理.2008,25(9):16-19
    [46]杨洁,季民,韩育宏.碱解预处理对污泥固体的破解及减量化效果[J].中国给水排水.2010,23(3):42-45
    [47]王治军,王伟,夏州.热水解污泥的厌氧消化试验研究[J].中国给水排水.2009,1(19):32-36
    [48]陈学民,黄魁等.2种表居型蚯蚓处理污泥的比较研究[J].环境科学.2010,31(5):38-44
    [49]黄伟飞,舒英钢,斯异亮等.水蚯蚓原位消解污泥技术[J].中国给水排水.2010,26(17):35-39
    [50]柳学伟,王志远.利用微型动物捕食进行污泥减量的研究进展[J].山西建筑.2009,33(7):29-33
    [51]张恒,吉芳英,喻小花.微型后生动物污泥减量技术研究[J].市政技术.2008,26(1):39-42
    [52]诸晖,魏源送,王亚炜.寡毛类蠕虫污泥减量工艺及其生长规律的研究进展[J].过程工程学报.2008,8(5):25-28
    [53]熊贞晟,黄梅生.红斑颡体虫对活性污泥性能的影响[J].环保科技.2010,4(1):56-59
    [54]Lee W. Effects of chemical sludge disintergration on the performances of waster treatment by membrane bioreactor[J]. Water Science and Technology,2007,4(11):23-25
    [55]吉芳英,左宁,黄力彦.水解酸化A2O污泥减量工艺的运行性能研究[J].环境工程学报.2010,4(4):26-28
    [56]香杰新,蔡勋江,范洪波.复合菌剂用于膜生物反应器的污泥减量试验研究[J].水处理技术.2009,35(12):52-56
    [57]张忠智,钟为章,穆红岩.功能微生物对炼厂剩余污泥减量化效果的研究[J].油气田环境保护.2010,23(1):12-16
    [58]孙德栋,刘佳,马春等.微波辐照与碱联合应用实现剩余污泥减量的实验研究[J].大连工业大学学报.2009,28(3):26-30
    [59]孙德栋,王一娜,宋晶等.微波诱导活性炭纤维催化氧化实现污泥减量的研究[J].环境污染与防治.2010,32(4):42-46
    [60]李志东,李娜.城市污水处理厂剩余污泥厌氧消化试验研究[J].水处理技术.2010,33(9):56-60
    [61]尹军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700