剩余污泥减量化的解偶联代谢数学模型和好氧—沉淀—缺氧(OSA)工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是目前世界上应用最广泛的污水生物处理技术,但它一直存在一个最大的弊端,就是会产生大量的剩余污泥。在各种污泥减量技术中,投加解偶联剂来降低污泥产量,可能是最有应用前景的,因为它不需要增加额外的处理设施,运行也方便。好氧—沉淀—缺氧(OSA)工艺虽然其污泥减量化的效果可能不及添加化学解偶联剂的作用明显,但可改善污泥的沉降性能,而且也不必对现有的工艺装置进行改造,运行成本较低。本文在考察以前和现有的污泥减量化技术工艺研究的成果的基础上重点研究了剩余污泥减量化的解偶联代谢数学模型和好氧—沉淀—缺氧(OSA)工艺。
     在剩余污泥减量化的解偶联代谢数学模型试验研究中,通过摇瓶试验比较了对氯酚(OCP)、2,4-二氯酚(DCP)、3,3′,4′,5-四氯水杨酰苯胺(TCS)、邻硝基酚(PNP)、2,4-二硝基酚(DNP)的污泥减量化效果,并对效果较好的化学解偶联剂DNP、PNP与TCS进行解偶联剂浓度和污泥浓度试验,对TCS进行完全混合活性污泥分批工艺试验。结果表明,摇瓶试验结果与数学模型不符合,但TCS的分批工艺试验数据与数学模型相符;表观污泥产率(Y_(obs)随初始解偶联剂浓度与初始生物量浓度之比(C_u/X_o)的增大而降低,因此真正施加在生物量上的化学解偶联剂强度应该是C_u/X_o,而不是单纯的初始解偶联剂浓度(C_u)。
     在好氧—沉淀—缺氧(OSA)工艺的试验研究中,比较了污泥在缺氧池中不同停留时间(5.5h、7.6h、11.5h)的3种OSA工艺对剩余污泥的减量化效果。结果表明,3种工艺的剩余污泥量分别比传统活性污泥工艺降低22.99%、33.24%和13.80%。和传统活性污泥工艺相比,COD去除率和出水氨氮浓度与对照相当,总氮去除率下降了0.03~8.70%,污泥在缺氧池中停留7.6h、11.5h的OSA工艺总磷去除率升高约19%。除污泥停留11.5h的OSA工艺其污泥SVI值有所升高外,其余均和对照相当,但所有污泥的沉降性能都很好(SVI值均小于100)。综合考虑污泥减量化效果、运行效能和实际可操作性,认为OSA工艺中污泥在缺氧池中停留6~7h较为理想。
The activated sludge process is commonly used for the treatment of Wastewater, which also generates a large quantity of excess sludge daily as a byproduct. There are various kinds of technology developed to reduce excess sludge, among which, the use of chemical uncouplers are very prospective because it is easy to run and no extra treatment facilities are needed. Oxic-settling-anoxic(OSA) process may not be effective as the control of excess sludge production by chemical uncouplers. The OSA process can improve the settleability of sludge, and it needs no modification on the conventional activated sludge and less running cost. This paper emphasized the research on the uncoupled metabolism model of excess sludge reduction and OSA process on the review of the technical and the theory of sludge reduction of past and present.
    In the research of uncoupled metabolism model of excess sludge reduction, ortho-chlorophenol(OCP),2,4-dichlorophenol(DCP), 3,3',4',5-tetrachlorosalicylanilide(TCS), para-dinitrophenol(PNP) and 2,4-dinitrophenol(DNP) were chosen for short-term tests of their ability to reduce sludge yield by a bottle shaking test. The most effective chemicals, DNP, PNP and TCS were tested for various uncoupler concentrations and biomass concentrations. TCS was then tested in a lab-scale completely mixed activated sludge batch culture. The model was verified with experimental data in a completely mixed activated sludge batch test, but the results from the bottle shaking batch test are inconsistent. The observed growth yield(Y_(obs)) is decreased with the increase of the ratio of initial uncoupler concentration to initial biomass concentration(C_u/X_o). The real strength of chemical uncoupler imposing on biomass
引文
[1] 曹秀芹,陈珺.污水处理厂污泥处理存在问题分析[J].北京建筑工程学院学报,2002,18(1):1-4
    [2] 包薇红,宋贤英.宁波市城市污水处理厂污泥处置方案探讨[J].环境污染与防治,2005,27(3):225-228
    [3] Chang J, Chudoba P, Capdeville B. Determination of the maintenance requirement of activated sludge[J]. Wat Sci Techn, 1993, 28(3): 139-142
    [4] Low E W, Chase H A, Milner M G, et al. Uncoupling of metabolism to reduce biomass production in the activated sludge process[J]. Wat Res, 2000, 34(12): 3204-3212
    [5] Watson T.G. Effects of sodium chloride on steadystate growth and metabolism of Saccharomyces cerevisiae J. Genet. Mircobiol, 1970 NOV; 64(1):91-99
    [6] Strachan L.F., Freitas dos Santos L.M., Leak D.J. et al. Minimization of biomass in an extractive membrane bioreactor. Wat. Sci. Tech, 1996, 34(5-6): 273-280
    [7] Hamoda M.F. and Al-attar I.M.S. Effects of high sodium chloride concentrations on activated sludge treatment. Wat. Sci. Tech, 1995, 31(9): 61-72
    [8] Pirt S J. Principles of Microbe and Cell Cultivation. 1975, 1st ed. London: Blackwell Scientific Publication.
    [9] Bouillot P., Canales A., Pareilleux A., et al. Membrane bioreactors for the evaluation of maintenance phenomena in wastewater treatment. J. Ferm. Bioeng, 1990, 69(3): 178-183
    [10] Muller R.H. and Babel W. Measurement of growth at very low rates(μ≤0),an approach to study the energy requirements for survival of Alcaligenes eutrophus JMP 134. Appl. Environ. Mirobiol, 62(1),147-151
    [11] Low EW and Chase HA. Reducing production of excess biomass during wastewater treatment. Wat. Res, 1999; 33(5): 1119-1132
    [12] Cabrero A, Ferandez A, Mirada F, et al. Effects of copper and zinc on the activated sludge bacteria growth kinetics [J]. Wat Res, 1998,32(5): 1355-1362
    [13] Liu Y. Effect of chemical uncoupler on the observed growth yield in batch culture of activated sludge[J]. War Res, 2000,34 (7): 2025-2030
    [14] Mayhew M ,Stephenson T.Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency [J] Wat Sci Technol , 1998,38(8-9): 137-144
    [15] Cook G M, Russell J B. Energy-spilling reactions of Streptococcus bovis and resistance of its membrane to proton conductance[J]. Appl Environ Microbiol,1994,60 (6): 1942-1948
    [16] Liu Y, Tay J H. A kinetic model for energy spilling-associated product formation in substrate-sufficient continuous culture [J]. J Appl Microbiol, 2000,88 (4): 663-668
    [17] Stouthamer A H. Correlation of growth yields. In. Microbial Biochemistry, International Review of Biochemistry, ed.J.R.Quayle.Universtiy Park, Baltimore, 1979,21:1-47
    [18] 梁鹏,黄霞,钱易.污泥减量化技术的研究进展[J].环境污染治理技术与设备,2004,4(1):44-52
    [19] Strand S.E, Harem G.N, Stensel H.D. Activated-sludge yield reduction using chemical uncouplers. Wat. Environ. Res, 1999, 71 (4): 454-458
    [20] Tsai S.P. and Lee Y.H. A model for energy-sufficient culture growth. Biotechnol. Bioeng, 1990, 35(2): 138-145
    [21] Chen G.H., Mo H.K., Saby S. et al. Minimization of activated sludge production by chemically stimulated energy spilling. Wat.Sci. Tech, 2000, 42(12): 1289-200
    [22] Okey RW, Stensel DH. Uncouplers and activated sludge- the impact on synthesis and respiration. Toxicol. Environ. Chem, 1993, 40:235-254
    [23] Westgarth W. C., Sulzer F.T., Okun D. A. Anaerobiosis in the activated sludge process. Proceedings of Second IAWPRC Conference. Tokyo, 1964:43-55
    [24] Bond D.R. and Russel J.B. Relationship between intracellular phosphate, proton motive force, and rate of nongrowth energy dissipation (energy spilling )in Streptococcus boris JB1. Appl. Environ. Microbiol, 1998, 64(3): 976-981
    [25] Chudoba P, Chudoba J, Capdeville B. The aspect of energetic uncoupling of microbial growth in the activated sludge process: OSA system. Wat. Sci. Technol, 1992; 26(9-10): 2477-2480
    [26] Chudoba P. et al. Effect of anaerobic stabilization of activated sludge on its production under batch conditions at various So/Xo ratios. Wat. Sci. Technol, 1991, 23(6): 917-926
    [27] Chudoba P, Morel A, Capdeville B. The case of both energetic uncoupling and metabolic selection of microorganisms in the OSA activated sludge system. Environ. Technol, 1992, 13(8): 761-770
    [28] Saby S, Djafer M, Chen GH. Effect of low ORP in anoxie sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process. Wat. Res, 2003, 37(1): 11-20
    [29] 朱振超,周路.剩余有机污泥“零排放”工程性试验[J].上海环境科学,1996, 15(8): 40-41
    [30] 张全,陆鲁,许德俊.剩余污泥微氧消解工艺研究[J].上海环境科学,1995,14(11):15-16
    [31] Tempest D. W., Niejssel O. M. Physiological and energetic aspects of bacterial metabolite overproduction. FEMS Microbiol. Lett, 1992, 100:169-176
    [32] Russel J. B., Cook G. M. Energetics of bacterial growth balance of anabolic and catabolic reactions. Microbiol. Rev, 1995, 59(1): 48-62
    [33] Chua H., Yu P. H. F. Production of biodegradable plastics from chemical wastewater-a novel method to reduce excess activated sludge generated from industrial wastewater treatment. War. Sci. Tech, 2000, 39(10-11): 273-280
    [34] Liu Yu .Bioenergetic interpretation on the So/Xo ration in substrate sufficient batch culture.Wat.Res,1996, 30(11): 2766-2888
    [35] Liu Yu., Chen G. H., Paul E. Effect of the So/Xo ration on energy uncoupling in substrate -sufficient batch culture of activated sludge. Wat. Res, 1998, 32(10): 2883-2888
    [36] Liu Yu .The So/Xo depend dissolved organic carbon distribution in substrate-sufficient batch culture of activated sludge. Wat. Res, 2000, 34(5): 1645-1651
    [37] -Boon A. G, Burgess D. R. Treatment of crude sewage in two high-rate activated sludge plants operation in series Pollut. Control, 1974, 73(4): 382-395
    [38] Abbassi B, Dullstein S, Rabiger N. Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs: experimental and theoretical approach. Wat. Res., 1999, 34(1): 139-146
    [39] McWhirter J.R. Oxygen and activated sludge process. In McWhirte J.R. (Ed.). The use of High-Purity Oxygen in the Activated sludge process[M]. CRC Press.Boca Raton. 1978.25-62
    [40] Yasui H, and Shibata M. An innovative approach to reduce excess sludge production in the activated sludge process. Wat. Sci. Technol., 1994, 30(9): 11-20
    [41] Kamiya T, Hirotsuji J. New combined system of biological process and intermittent ozonation for advanced wastewater treatment [J]. Water Science Technology, 1998,38(8-9): 145-153
    [42] Saby S., Djafer M., Chen G. H. Feasiblity of using a chlorination step to reduce excess sludge in activated sludge process. Wat. Res, 2002, 36(3): 656-666
    [43] 黄汉生译.用超声波法减少污水中污泥量[J].工业用水与废水,2001,32(1): 39
    [44] 曹秀芹,陈裙.超声波技术在污泥处理中的研究及发展[J].环境工程,2002,20(4):23-25
    [45] 王琳,王宝贞.污泥减量技术[J].给水排水,2000,26(10): 28-31
    [46] Rocher M, et al. Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment [J]. Water Science Technology, 2001,44(2-3):437-444
    [47] Curds C. R., Hawkes H. A.(Eds). Ecological Aspects of Used-water Treatment. The Organisms and their Ecology Academic Press, London. 1975
    [48] Gude H. Grazing by protoza as selection factor for activated sludge bacteria. Microb. Ecol, 1979, 5(2): 225-237
    [49] Hawkes H. A. Ecology of Wastewater Treatment. London:Pergamon Press, 1963.
    [50] 周可新.利用微型动物削减剩余污泥量的研究进展.环境污染治理技术与设备,2003 4(1):1-5
    [51] Ratask C. H., Kooi B. W. Van Verseveld H. W Biomass reduction and mineralization increase due to the ciliate Tetrahymena pyriformis grazing on the bacterium Pseudomonas fluorescens .Wat. Sci. Tech, 1994, 29(3): 119-128
    [52] Rensink J. H., Ruckens W H. Using metazoan to reduce sludge production. Wat. Sci. Tech, 1997, 36(1): 171-179
    [53] Lee N. M., Welander T. Use of protoza and metazoan for decreasing sludge production in aerobic wastewater treatment. -Biotechnol. Lett, 1996, 18(4): 429-434
    [54] Lee N. M., Welander T. Reducing sludge production in aerobic wastewater treatment through manipulation of the ecosystem. Wat. Res, 1996, 30(8): 1781-1790
    [55] Ghyoot W., Verstraete W. Reduced sludge production in a two-stage membrane-assisted bioreactor. Wat. Res, 2000, 34(1): 205-215
    [56] Groves K.P., Daigger G.T., Simpkin T. J. et al. Evaluation of oxygen transfer efficiency and alpha-factor on variety of diffused aeration systems. Wat. Sci. Tech, 1992, 644(5): 691-698
    [57] Horan N. J. Biological Wastewater Treatment Systems. Whiley, Chichester.
    [58] Pirt S J. The maintenance energy of bacteria in growing cultures. 1965, B:163, 224-231. London: Proc R Soc.
    [59] Liu Y, Chen G H. Model of energy uncoupling for substrate-sufficient culture. Biotechnology Bioengineering, 1997, 55(3): 571-576
    [60] Liu Y. Energy uncoupling in microbial growth under substrate-sufficient conditions. Applied Microbiology and Biotechnology, 1998, 49(2): 500-505
    [61] 许保玖,龙腾锐.当代给水与废水处理原理(第二版).北京:高等教育出版社,1999
    [62] Low E, Chase H A. The effect of maintenance energy requirements on biomass production during wastewater treatment. Water Research, 1999, 33(3): 847-853
    [63] 叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中污泥产率的影响研究[J].环境科学,2003,24(6):112-115
    [64] 叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中剩余污泥的减量作用.环境科学学报,2004,24(3):394-398
    [65] Copp J B and Dold P T. Comparing sludge production under aerobic and anoxic conditions[J]. Wat. Sci. Tech. 1998,38(1): 285-294
    [66] Chen G H, An K J, Saby S. et.al. Possible cause of excess sludge reduction in an oxie-settling-anaerobic activated sludge process (OSA process). Wat.Res. 2003,37(16): 3855-3866
    [67] Chen G H, Saby S, Mo H K. New approaches to minimize excess sludge in activated sludge systems. Wat. Sci. Technol., 2001, 44(10):203-208
    [68] 国家环保总局.水与废水监测分析方法(第三版).北京:中国环境科学出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700