基于颤蚓摄食的污泥减量工艺的优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用微型动物中较易控制数量和试验条件的颤蚓作为摄食污泥的研究对象,充分利用颤蚓的生活习性,同时结合OSA减量工艺,对颤蚓摄食后的污泥进行强化减量,并对相关的工艺参数进行了优化。
     对颤蚓摄食区采用间歇曝气,并对间歇曝气区进行优化的结果表明:以10分钟为一个周期,曝气3min,静置7min时颤蚓对污泥的减量效果最大,减量速率可以达到0.79 mg-SS/(mg-Tubifex·d)。通过间歇试验对颤蚓摄食后的污泥进行厌氧处理,对厌氧处理时间、污泥浓度、温度三个影响因素进行了研究,在温度为26℃时,随污泥厌氧接触时间的增加,减量效果增大,但厌氧处理接近40小时,污泥浓度趋于稳定,减量缓慢;不同起始浓度的污泥经颤蚓摄食后采用厌氧处理,减量效果跟污泥浓度正相关;同一浓度的污泥经颤蚓摄食后经温度下厌氧处理,污泥减量效果随温度的升高而升高。
     在颤蚓摄食以及厌氧处理过程中,存在着C、N、P的释放。颤蚓摄食连续试验结果表明,颤蚓摄食对系统的的COD、NH_4~+-N的去除没有明显影响。由于没有排泥,TP的去除率降低,颤蚓-间歇曝气工艺TP平均去除率为3.1%。颤蚓—厌氧工艺连续试验对污水处理效果表明TN平均去除率达到30.9%,TP去除率达到56.4%,氨氮平均去除率降低,只有87.5%,颤蚓—厌氧工艺中COD平均去除率大约要小于其他两种工艺3%-5%。
     OUR试验表明颤蚓—间歇曝气工艺中有机物分解活性略有降低而硝化活性增加,总的活性增大。颤蚓—厌氧工艺连续试验OUR测定表明,三种工艺中,颤蚓—厌氧工艺中总的好氧速率小于参比工艺,比颤蚓摄食工艺大,而硝化活性最高。颤蚓摄食以及颤蚓-厌氧工艺连续试验表明这两种工艺会对污泥的沉降性能产生影响,造成SVI值略有偏高。
     颤蚓—厌氧工艺运行结果表明,该工艺有很好的污泥减量作用,能够对颤蚓摄食的污泥进一步强化减量,在整个运行期间,污泥基本不增长,污泥产率为-0.016g-SS/g-COD。对该工艺厌氧段的研究表明在厌氧池中存在着水解作用、氨化作用、聚磷菌的释磷作用、反硝化作用。
     生物相观测表明颤蚓摄食反应器中菌胶团较分散,原、后生动物种类较少,在颤蚓—厌氧工艺好氧曝气池中由于不断地对污泥回流浓缩进入厌氧段,导致污泥中没有原生动物和后生动物存在。
     通过BAClight染色表明在37℃以下短时厌氧处理,污泥中的活菌水平没有降低;而在45℃、55℃下,污泥中的活菌水平急剧降低,溶胞效果明显;颤蚓—厌氧工艺好氧曝气池中活性污泥中活菌水平得到提高。
T.tubifex, a kind of microfauna, the number and experiment conditions of which is easy to control, was used as the object of study. Using the T.tubifex's living habits fully, integrated with OSA sludge reduction technique, the sludge reduction rate was increased, the related technique parameters was optimized.
    Intermittent aeration was used in the T.tubifex predation area, the experiments showed the effect of sludge reduction is best when 10 minutes used as a cycle and the aeration time —settling time is 3 minutes—7 minutes, the sludge reduction rate can reach 0.79 mg-SS/ (mg-Tubifex ·d) .By the batch experiments , T.tubifex was used to reduce sludge combined with anaerobic digestion,the three influence factors including anaerobic exposure time, MLSS and temperature were studied, when the temperature is 26°C, with sludge anaerobic exposure time increase, the effect of sludge reduction became better, when anaerobic exposure time reach 40 hours, the sludge concentration become stable , sludge reduction rate become slowly ; T.tubifex was used to reduce sludge with different MLSS for 6 hours combined with anaerobic digestion ,the effect of sludge reduction is well correlated with MLSS; T.tubifex was used to reduce sludge with the same MLSS for 6 hours combined with anaerobic digestion , when the temperature are 30℃、37℃、45℃、55℃ etc, with the temperature rise, the effect of sludge reduction became better .
    The increasing rates of COD, NHU_4~+-N and TP in water caused by the predation of microfaunas and anaerobic digestion. But the increased concentration did not overload the continuous activated sludge system. COD ,NH_4~+-N and TP removals in the activated sludge process where microfaunas co-existed were not obviously influenced, because of no sludge discharge , TP removals ratio become less, in the modified activated sludge process: the T.tubifex predation combined with anaerobic digestion, the TN mean removal ratio was 30.9%, TP mean removal ratio was 56.4%, NH_4~+-N mean removal ratio became less, only reached 87.5%, in the T.tubifex predation combined with anaerobic digestion technique, COD mean removal ratio is about 3%-5% less than referent technique and T.tubifex predation technique.
    The OUR(oxygen use rate ) was determined , in the T.tubifex predation combined with intermittent aeration technique, sludge activity for organic carbon oxidation (OUR_o) became a little less and sludge activity for nitrification increased (OUR_n) , and OUR_t increased. In the continue experiment of T.tubifex predation combined with anaerobic digestion technique,, the OUR_t was letter than referent technique, and was higher than T.tubifex predation technique,, and OUR_n was the best. The T.tubifex predation technique, and T.tubifex predation combined with anaerobic digestion technique, could influence the the sludge setteability, indicate the SVI rise.
    In the T.tubifex predation combined with anaerobic digestion technique, the effect of sludge reduction became better, could increase the sludge reduction rate. In the whole experiment process , sludge couldn't increase , sludge production yield coefficient was -0.016g-SS/g-COD. In the holding tank there were hydrolysis, ammonification, phosphorus releasing and denitrification.
    The biological phase observation showed the floc-forming bacteria were incompact in the system where T.tubifex predated, the kinds of protozoa and metazoan were less than referent system , and in T.tubifex predation combined with anaerobic digestion system, no protozoa and metazoan was observed.
    The BACLight staining showed when the anaerobic digestion was not for along time and was below 37 centigrade ,.the live bacteria ratio in the actived sludge didn't fall., but when it was 45 centigrade or 55 centigrade, the live bacteria ratio in the actived sludge rapidly fall , the cell lysised evidently. In T.tubifex predation combined with anaerobic digestion system, the live bacteria ratio in the actived sludge was a little higher than referent system .
引文
[1] Low E. U. and Chase H. A. Reducing production of excess biomass during wastewater treatment. Wat.Res., 1999,33(5): 1119-1132
    [2] 鲍宪枝,佐洁,周向争,周彤.大旱后对城市缺水的思考.给水排水,2001,27(3):16-18
    [3] 魏源送,樊耀波.污泥减量技术的研究及其应用.中国给水排水.2001,17(7):23-26.
    [4] 梁鹏,黄霞,钱易。污泥减量化技术的研究进展。环境污染治理技术与设备。2003,4(1): 44
    [5] 叶芬霞,潘利波。活性污泥工艺中剩余污泥的减量化技术。中国给水排水。2003,1(1): 25-27。
    [6] 陈声贵,许木启,杨向平,等。原生动物在活性污泥中的作用.生态学杂志,2002,21(3):48
    [7] Yasui H, Nakamura K., and Sakuma S. et al. A full-scale operation of a novel actived sludge process without excess sludge production. Wat.Sci.Tech.,1998,38(8-9): 145-153
    [8] Mark C.M., Loosdrecht V. and Henze M. Maintenance,endogeneous respiration, lysis, decay and predation. War. Sci.Tech.., 1999,30(1): 107-117
    [9] 蒋轶锋, 王琳, 王宝贞等.污泥臭氧化对MBR运行效能的影响.中国环境科学,2005, 25(5):519-522.
    [10] 孙德栋,王琳,黄海萍.污泥减量过程中臭氧氧化对硝化和反硝化影响的试验研究.环境污染和防治, 2006,28(3):187-190.
    [11] K.-H.Ahn,L-T.Yoom,IC-Y.Park, S.-K.Maeng, Y.Lee, K.-G.Song and J.-H.Hwang. Reduction of sludge by ozone treatment and production of carbon source for denitrificafion.Wat.Sci.Tech, 2002, 46(11-12): 121-125.
    [12] W.Saktaywin, H.Tsuno,H.Nagare, T.Soyama, J.Weerapakkaroon. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Wat Res, 2005, 39: 902-910.
    [13] Cui R, Deokjin J. Nitrogen control in A/O process with recirculation of solubilized excess sludge. Wat Res, 2004, 38: 1159-1172.
    [14] Sebastien Saby, Malik Djafer, Guang-Hao Chen. Feasibility of using a chlorination step to reduce excess sludge in actived sludge process. Wat Res, 2002, 36: 656-666.
    [15] Rocher M., G.Roux, G.Goma, A.Pilas Begue, L.Louvel and J.L.Rols. Excess sludge reduction in activated, sludge process by integrating biomass alkaline heat treatment. Wat. Sci. Tech, 2001, 44 (2-3): 437-444.
    [16] 肖本益,刘俊新.污水处理系统剩余污泥碱处理融胞效果研究.环境科学,2006,27(2): 320-323.
    [17] Rocher M.,Goma G. and Begue A.P.et aL Towards reduction in excess sludge production in activated sludge process :biomass physicochemical treatment and biodegradation. Applied Microbiology and Biotechnology, 1999,51:883-890
    [18] Canales A., Pareilleux A.,RolsJ. L., Goma G. and Huyard A. Decreased sludge production strategy for domestic wastewater treatment. Wat.Sci.Tech., 1994,30(8) 97-106
    [19] Hamer A.,Mason C.A. and Hamer G. Death and lysis during aerobic thermophilic sludge treatment: characterization of recalcitrant products.Wat.Res.,1994,28(4):863-869
    [20] Kepp U, Machenbach I, Weisz N, et al. Enhanced stabilization of sewage sludge through thermal hydrolysis-three years of experience with full scale plant. Water Science and Technology, 2000, 42(9):89-96
    [21] A.shanableh. Production of useful organic matter from sludge usinghydrothermal treatment. Wat Res, 2000, 34: 945-951.
    [22] Shanableh A.Jomaa S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment.. Wat. Sci. Tech, 2001, 44(10): 129-135
    [23] Barlindhaug 1993 Denitrification in biofilms with biologically hydrolysed sludge as a carbon source. Ph. D Thesis, Dep. Of Hydraulic and Environmental Eng., NTH, The University of Trondheim, Norway.
    [24] John Barlindhaug and Hallvard Φdegaard. Hydroly-sate as a carbon source for denitrification. Wat. Sci. Tec, 1996, 33(12): 99-108.
    [25] 王治军,王伟.剩余污泥的热水解试验.中国环境科学,2005,25(增刊):56-60.
    [26] 曹秀芹,陈瑁,唐臣等.超声处理后剩余污泥性质变化及分析.环境工程,2005,23(5): 84-86.
    [27] 许龙.超声波辐射促进污泥需氧消化工艺研究.2004[重庆大学硕士论文]
    [28] J.Muller. Disintegration as a key-step in sewage sludge treatment. Wat. Sci. Tech, 2000, 41(8): 123-130.
    [29] 王琳,王宝贞.污泥减量技术进展.给水排水,2000,26(10):28-31.
    [30] Siebastien saby. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process.Wat.Res.2003,(37): 11-20
    [31] B.D.黑姆斯等著,王镜岩等译.生物化学.北京:科学出版社,2000:296-305
    [32] Stouthammer A. and Bettenhaussen C. Utilisation of energy for growth and maintenance in continuous and batch cultures. Biochim.Acta. 1973, 30:53-70
    [33] Low E. U. and Chase H. A. and Milner M.G. et al .Uncoupling of metabolism to reduce biomass production in the activated sludge process. Wat. Res.,2000,34(12):3204-3212
    [34] Liu Yu. Effect of chemical uncoupler on the observed growth yield in batch culture of activated sludge .Wat. Res.,2000,34(7):2025-2030
    [35] Strachan L.F., Freitas dos Santos L.M., Leak D.J. et al. Minimization of biomass in anextractive membrane bioreactor. Wat. Sci. Tech. 1996, 34(5-6): 273-280
    [36] Tsai S.P. and Lee Y H. A model for energy-sufficient culture growth. Biotechnol.Bioeng. 1990, 35:138-145
    [37] Chen G H., Mo H.K, Saby S. et al. Minimization of activated sludge production by chemically stimulated energy spilling. Wat.Sci.Tech. 2000, 42{12):1289-200
    [38] Mayhew M, Stephenson T. Biomass yield reduction: is biochemical manipulation possible without affecting activated sludge process efficiency? Wat.Sci. Technol. 1998, 38:137-144
    [39] Kamiya T, Hirotsuji J. New combined system of biological process andintermittent ozonation for advanced wastewater treatment. Wat. Sci. Technol. 1998, 38:145-153
    [40] 叶芬霞.解偶联代谢对活性污泥工艺中剩余污泥的减量化作用 2004[浙江大学工学博士论文]
    [41] Skulachev V.P.Uncoupling:new approaches to an old problem of bioenergetics Biochimica et Biophsica Acta, 1363; 100-124
    [42] Low E.U.,Chase H.A.The use of chemical uncouplers for reducing biomass production during biodegradation.Wat.Sci.Tech., 1998,37(4-5):399-402.
    [43] Russell J.B.and Cook G.M.Energeties of bacterial growth:balance of anabolic and catabolic reaction.Microbiological Reviews, 1995,59(1):48-60
    [44] 叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中污泥产率的影响.环境科学,2003, 24(6):112-115
    [45] 叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中剩余污泥的减量作用.环境科学学报,2004,24(3):394-399
    [46] Cook G. M.,Russell J.B. Energy-spilling Reactions of atreptococcus bivis and resistance of its membrane to proton conductance. Applied and Environmental Microbiology, 1994, 60(6):1942-1948
    [47] Liu yu. Bioenergtie interpretation on the So/Xo ratio in substrate-suffcient batch culture.Wat.Res., 1996,30(11):2766-2770
    [48] Liu yu,Chen guang-hao and paul E.Effect of the So/Xo ratio on energy uncoupling in substrate-sufficient bactch culture of actived sludge.Wat.Res.,2000,34(5): 1645-1651
    [49] Liu yu.The So/Xo-dependent dissolved organic carbon distribution in substrate-sufficient batch culture of activated sludge.Wat.Res.,2000,34(5): 1645-1651
    [50] Liu Y. Chen G.H. and Roles J.L.A kinetic modelincorporating energy spilling for substrate removal in sustrate-sufficient batch culture of actived sludge.Applied microbiology and biotechnology, 1999,52:647-651
    [51] Mayhew M.,Stephenson T. Low biomass yield activated sludge: a review.environmental technology, 1997,18: 883-892
    [52] Abbassi B., Dullstein S.and Rabiger N.Minimization of excess sludge production by increse of oxgen concentration in activated sludge flocs:experimental and theoretical approach. Wat.Res.,2000.34(1):139-146
    [53] Curds C.R. The ecology and role of protozoa in aerobic sewage treatment process.Ann.Rev.Microbiol,1982,36:27-46.
    [54] Michael H.G.An operator's guide to rotifers and wastewater treatment process.Public Works, 1987,12:66-67.
    [55] Woombs M.and Johanna L.P..The role of nematodes in low rate percolating filter sewage treatment works.Wat.Res, 1986,20(6):781-787.
    [56] Ratsak C.H.,Koouman S.A.L.M.,Kooi B.W. Modelling the growth of an oligochaete on activated sludge. Wat.Res, 1993,27(5):739-747.
    [57] ResinkJ.H., RulkensW.H. Using metazoan to reduce sludge production.Wat.Sci.Tech. 1997,36(11): 171-179
    [58] 吉方英,罗固源,周健等.蚯蚓与污水土地处理试验研究.重庆环境科学,1998,20(4):12-27.
    [59] Suzuki T.,Kurihara Y. Studies of the ecological characheristics of bacteria,protazoa and aquatic oligochaete in continuous cultures. Shuishizhiodaku, 1984,7(6):384-392
    [60] Inamori Y., Ding G.Measurement of controlling bad organism for obtaining good performance of Gapei-shori Joukaso.Monthly Joukaso,2000,290(6):56-63
    [61] Inamori Y.KuniyasuY. and Sudo R. Role of smaller metazoan in water purification and sludge reduction. Japanese Jour. Of Water Treatment Biology, 1987,23(2): 17-23
    [62] 翟小蔚,潘涛,Ghoot W.and Verstraete W.利用原生动物削减剩余活性污泥产量.中国给水排水,2000,16(11):6-9.
    [63] Ghyoot W., Verstraete W. Reduced sludge production in a two-stage membrane-assisted bioreactor. Wat.Res.,199934 (1):205-215
    [64] 张绍园,闫百瑞.二段淹没式膜生物反应器处理城市污水的研究.工业用水与废水.2003, 34(6):40-42
    [65] 张辉明,文一波.SNP悬浮型生物填料设计及使用方法.化工环保.1995,15(3):180-183
    [66] 王宝贞,李高奇,王琳等.淹没式生物膜法污水处理厂的设计及运行.中国给水排水.2000, 16(3): 16-19
    [67] 梁鹏,黄霞,钱易等.环境因子对红斑顠体虫生长的影响.中国环境科学.2004,24(5): 610-613
    [68] 梁鹏,黄霞,钱易.利用红斑瓢体虫减少剩余污泥产量的研究.中国给水排水.2004,20(1): 13-17
    [69] 白润英,梁鹏,黄霞.卷贝进行污泥减量的应用研究.给水排水.2005,31(7):9-21
    [70] 陈旸,肖亿群,邱江平.蚯蚓生物滤池处理城市污水初步试验.上海交通大学学报(农业科学 版).2003,21(4):336-339
    [71] 魏源送,刘俊新.利用寡毛类蠕虫反应器处理剩余污泥的研究.环境科学学报.2005,25(6): 803-808
    [72] 吴敏,杨健.蚯蚓生态床处理剩余污泥.中国给水排水.2003,19(5):59-60.
    [73] Salvado H.,Gracia M.Eand Amigo J.M.Capability of ciliated protazoa asindicators of effluent quality in actived sludge plants.Wat.Res.,1995,29(4):1041-1050
    [74] 魏源送,樊耀波。污泥减量技术的研究及其应用.中国给水排水,2001,21(3):47-51
    [75] 李仁熙.水温对正颤蚓繁殖的影响.水生生物学报,2003,27(4):443-444
    [76] 李仁熙.正颤蚓的生长发育及繁殖生物学的研究.水生生物学报,2001.25(1):14-20
    [77] 任泉,王月鹅,王效平.中华颤蚓的生态习性.阴山学刊(自然科学版),1995,13(1): 87-91
    [78] ANKyoungJin. Reduction of excess sludge in an oxic-settling-anaerobic(OSA) systerm: a modified activated sludge process. 2004, Ph. D Thesis, The Hong Kong University of Science and Technology.
    [79] 国家环保局《水和废水监测分析方法》编委会(1989)水和废水监测分析方法.北京:中国环境科学出版社,第三版
    [80] Xia Huang, Peng Liang and Yi Qian. Excess Sludge Reduction By Oligochaeta in a Recycled Sludge Reactor. Journal of Biotechnology, 2007, 127:443-451.
    [81] 梁鹏,黄霞,钱易,杨乃鹏.3种生物处理方式对污泥减量效果的比较及优化.环境科学.2006, 27(11):2339-2343
    [82] 张斌,吉芳英等,污泥减量工艺OSA系统的影响因素研究.重庆建筑大学学报.2006,28(1): 92-95.
    [83] AlonsoJ.L.,Mascellaro S and Moreno Y. et al.Double-Staining method for Differentiation of Morphological changes and membrane intergrity of Campylobacter coli cells.Applied and Enbironmental Microbiology,2002,68(10):5151-5154
    [84] LIVE/DEAD BacLight Bacterial Viablity Kits. Product Information. 26. January,2001 School of Chemical Engineering,The University of Birmingham, John Wiley&Sons,Inc.2001
    [85] 梁鹏.利用微型动物进行污泥减量的研究.2004[清华大学工学博士论文].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700