基于微生物隐性生长的嗜热菌污泥减量化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是目前应用最广泛的污水生物处理工艺,但会产生大量剩余污泥。目前,剩余污泥的处理与处置已成为污水处理厂一个令人头痛的问题,其费用占到污水处理厂总运行费用的25%~40%,甚至高达60%。因其费用高昂及其污泥最终处置对环境污染潜在的危害等问题,一直制约着污水处理厂的建设和发展。污泥减量化技术正是在这一背景下应运而生的。
     所谓污泥减量化,是指在保证污水处理效果的前提下,采用适当的措施使处理相同量的污水产生的污泥量降低的各种技术。本文综合介绍了国内外有报道的三种常见的污泥减量化技术:降低细菌合成量的解偶联技术、增强微生物利用二次基质进行隐性生长的各种溶胞技术、利用食物链作用强化微型动物对细菌捕食的技术。并针对基于隐性生长的生物溶胞作用的污泥减量化作了深入探讨。
     本研究中嗜热菌污泥减量化技术分为两个部分,包括污泥在嗜热菌作用下的好氧消化与污泥传统高温好氧消化的对比研究;另外,进行了嗜热菌污泥减量化影响因素分析,分别考察温度、污泥初始浓度、溶解氧、嗜热菌接种量等因素对嗜热消化过程的影响。
     研究表明污泥在嗜热菌作用下的好氧消化效果和消化效率均优于传统高温好氧消化,具体表现在TSS、VSS去除率以及消化周期上,嗜热好氧消化TSS、VSS去除率分别达到55%和65%,高出传统高温好氧消化的40%和50%,另外其消化周期约为72 h,而传统好氧消化为96 h,缩短了近1/4。通过对消化过程中TCOD、SCOD、NH4+-N等指标的测定,污泥在嗜热菌作用下的好氧消化过程以上指标变化过程均明显优于传统的好氧消化。
     研究表明温度是嗜热菌污泥减量化的重要影响因素之一。随着温度的升高,污泥嗜热菌好氧消化周期逐渐缩短、污泥消化的效果逐渐提高。但也并不是温度越高越好,针对本研究中的嗜热菌而言,在65℃条件下活性最大,对污泥的降解也比较彻底,TSS、VSS降解和去除率上,最高可达到55%和65%。
     污泥的初始浓度也影响着嗜热菌污泥减量化效果,污泥初始浓度越高,消化过程中VSS的去除率会越低;而对VSS去除量而言,污泥的初始浓度越高,污泥嗜热好氧消化过程中VSS的去除量就会越高。
     溶解氧浓度对嗜热菌污泥减量化的影响也比较明显,溶解氧DO的浓度大小影响着VSS去除率,当DO≥2 mg/L时,污泥消化系统中的DO浓度增加时,污泥消化过程中VSS的去除率并无明显增加。当DO浓度达到一定值时,再增加DO浓度的情况下, VSS去除率不仅不会增加,反而开始变得下降,最佳溶解氧浓度应控制在2 mg/L左右。
     嗜热菌菌种接种量大小对嗜热菌污泥减量化过程中的VSS去除率也有一定影响,但并不是主要影响因素,当接种量为>1%时,反应系统中的嗜热菌接种量增大,污泥消化过程中VSS的去除率有增加,但增效不明显。当嗜热菌接种量达到一定比例时,再增加嗜热菌接种量的情况下,污泥的嗜热菌消化效果没有什么变化,接种量应控制在5%为宜。
Now the actived sludge process has been used more and more extensively, but a large quantity of excess sludge was produced. The problems of treatment and disposition to the excess sludge become difficult and troublesome, the cost can account for 25% to 40%, up to 60% of total plant operation costs. The final sludge disposal became more and more difficult with potential pollution to the environment as well as the limitation of the land area available for the disposal. The sludge reduction technologies are studied in lately decades.
     The sludge reduction are some technologies which can reduce the quantity of sludge priduction, ensuring the same sewage quantity and treatment quality with having been taken some measures.The possible approaches for sludge reduction may be based on three aspects: uncoupling metabolism, cryptic growth enhanced through cell lysis and microfauna pry. Relevant research works were reviewed, characteristics of each technology were compared, and the sludge reduction based on cryptic growth was discussed particularly.
     The sludge reduction technology with thermophilic bacteria was divided into two parts, including sludge digestion by the aerobic Thermophilic bacteria was compared with the conventional aerobic sludge digestion at 60, 65, 70℃, and the influences of temperature, the initial concentration values of sludge, dissolved oxygen and the inoculation quantity of thermophilic bacteria were each studied in this paper.
     The research results indicated that the digestion effect and efficiency of sludge by the aerobic thermophilic bacteria were much better than the conventional aerobic sludge digestion at each three temperature as said before. The removal rate of TSS and VSS was just 40% and 50% for the conventional aerobic sludge digestion process, but in the thermophilic bacteria sludge digestion, The removal rate of TSS and VSS respectively reached 55% and 65%, corresponding to the before both higher fifteen percents. In addition, the digestion cycle was declined from 96 hours to 72 hours, and was shortened by 1/4 than the simple aerobic digestion. The changes about the parameter of TCOD、SCOD、NH4+-N et al. in the thermophilic bacteria sludge digestion were more clearly and better than the conventional process.
     Temperature was an important effect factor to the thermophilic bacteria sludge digestion. The cycle of sludge digestion was shortened, and the efficiency of sludge digestion was enhanced. But, it was oppositely, not endless. When temperature reached 70℃, its tend of improvement became so unconspicuous. The best temperature for the excess sludge digestion with thermophilic bacteria appeared at 65℃, when the biodegradation for sludge was more completely, The removal rate of TSS and VSS were higher.
     The thermophilic bacteria sludge digestion with the different initial concentration values of sludge was studied. When the initial concentration values of sludge was very low, higher removal rate of TSS and VSS has been achieved; when the initial concentration value was very high, the removal rate of TSS and VSS was also very low, the aim to remove much VSS from the excess sludge through digestion method with the thermophilic bacteria will be not obtained. Further more, the phenomenon that removal quantity of TSS and VSS was increased along with the increasing initial concentration value of sludge was indicated in the research results.
     Dissolved oxygen was one more important effect factor to the thermophilic bacteria sludge digestion. When the dissolved oxygen concentration was around 2mg/L, the thermophilic bacteria could be enriched and the removal rate of TSS and VSS was increasing along with the DO. The DO reached one value while the removal rate of TSS and VSS became steady gradually, no increasing. With the increasing DO, the removal had even declined. The best DO concentration value for the excess sludge digestion with thermophilic bacteria appeared at around 2 mg/L.
     The inoculation quantity of thermophilic bacteria was one effect factor to the thermophilic bacteria sludge digestion. But the research results indicated that its influence was not so important and obvious. There were no different changes in the removal rate of TSS and VSS if the inoculation quantity changed, and the best inoculation quantity to the thermophilic bacteria or sludge of this study was 5% (volume ratio).
引文
[1] Low E W, Chase H. A. Reducing production of excess biomass during wastewater treatment.Water Research,1999,33(5):1119-1132
    [2] 何品晶 , 顾国维 , 李笃中 , 等 . 城市污泥处理与利用 . 北京 : 科学技术出版社2003,12-13
    [3] 赵庆祥.污泥资源化技术.北京:化学工业出版社,2002,4-5
    [4] 尹军,谭学军.污水污泥处理处置与资源化利用.北京:化学工业社,2004,4-5
    [5] 张全,陆鲁.剩余污泥微氧消解工艺研究.上海环境科学,1995,14(11):15-16
    [6] 曹秀芹,陈增.污水处理厂污泥处理存在问题分析.北京建筑工程学院学报,2002, 18 (1):1-4
    [7] 彭永臻,陈滢,王淑莹,等.污泥好氧消化的研究进展.中国给水排水,2003,19(2): 36-39
    [8] 张艳萍,彭永臻,汪苹,等.污泥高温好氧消化的研究进展.四川环境,2006,25,(4): 105-106
    [9] Garcia C,Harnandez T,Costa F.Study on water extract of sewage sludge composts. Soil Science and Plant Nutrition,1991,37:399-408
    [10] 赵书勤,吴星.城市污水污泥堆肥化技术的研究进展.四川环境,2003,22(6): 10-11
    [11] 王恂.略述城市污水厂污泥热化学处理技术.武汉工业大学学报,1999,21(6):40- 42
    [12] 张立峰,吕荣湖.剩余活性污泥的热化学处理技术.化工环保,2003, 23(3):146- 148
    [13] 张辰 ,王国华 ,孙晓 ,等 .污泥处理处置技术与工程实例 .北京 :化学工业出社,2006,40-44
    [14]王静,卢宗文,田顺,等.国内外污泥研究现状及进展.市政技术,2006,24(3):141- 142
    [15] 孙颖.污泥的处理处置与农林林用研究进展.环境保护科学,2002,28(6):28-30
    [16] 刘烨,田一梅,从月宾.污泥处置与资源化技术探讨.四川环境,2004,23(6):55-56
    [17] 蒋成爱,黄国锋,吴启堂.城市污水污泥处理利用研究进展.农业环境与发展, 1999,21(1):13-17
    [18] 彭绪亚,黄文雄,余毅.污泥与生活垃圾混合填埋产沼的模拟实验研究.重庆建筑大学学报,2002,24 (4):40-44
    [19] Zubay G L. Biochemistry.Boston:WCB Publisher,1998,50-69
    [20] Chudoba P,Capdeville B,Chudoba J.Aspect of energetic uncoupling of microbial growth in the activated sludge process-OSA system.Water Science and Technology,1992,26(9~10):2477-2480
    [21] Low E W,Chase H A,Milner M G,et al.Uncoupling of metabolism to reduce biomass production in the activated sludge process.Water Research,2000,34(12): 3204-3212
    [22] Chen G H, Mo H K, Liu Y.Utilization of a metabolic uncoupler,3,3',4', 5-tetrachlorosalicylanilide (TCS) to reduce sludge growth in activated sludge culture.Water Research,2002,36(8):2077-2083
    [23] Strand S E, Harem G N, Stensel H D.Activated sludge yield reduction using chem- ical uncouplers.Water Environment Research,1999,71(4):454-458
    [24] Liu Y. Effect of chemical uncoupler on the observed growth yield in batch culture of activated sludge.Water Research,2000,34(7):2025-2030
    [25] Yang X F, Xie M L, Liu Y. Metabolic uncouplers reduce excess sludge production in an activated sludge process. Process Biochemistry,2003,38(9):1373-1377
    [26] 叶芬霞,陈英旭,冯孝善.化学解偶联剂对活性污泥工艺中污泥产率的影响.环境科学,2003,24(6):112-115
    [27] 王琳,王宝贞.污泥减量技术.给水排水,2000,26 (10):28-31
    [28] 魏源送,樊耀波.污泥减量技术的研究及其应用.中国给水排水,2001,17(7): 23-26
    [29] Low E W, Chase H A.The use of chemical uncouplers for reducing biomass production during biodegradation.Water Science and Technology,1998,37(4~5): 399-402
    [30] 陈志英,王磊,周琪.解偶联代谢技术用于活性污泥减量化的研究进展及发展方向.四川环境,2006,25(1):74-77
    [31]杨健.生物滤池污泥的生态稳定试验研究.上海环境科学,2002,21(9):533-535
    [32] Salvado H, Gracia M P, Amigo J M. Capability of ciliated protozoa as Indicatorsof effluent quality in activated sludge plants.Water Research,1995,29 (4):1041-1050
    [33] Horan N J. Biological Wastewater Treatment Systems.Chichester: John Wiley and Sons,1990,35-42
    [34] Lee N M, Welander T.Use of protozoa and metazoan for decreasing sludge production in aerobic wastewater treatment.Biotechnology Letters,1996,18(4): 429-434
    [35]瞿小蔚,潘涛,Ghyoot W,等.利用原生动物削减剩余活性污泥产量.中国给水排水,2000,16(11):6-9
    [36] Ratsak C H, Kooi B W, van Verseveld H W.Biomass reduction and mineralizati- on increase due to the ciliate Tetrahymena pyriformis grazing on the bacterium Pseudomonasfuorescens.Water Science and Technology,1994, 29(7):119-128
    [37] Cech J S, Hartman P, Macek M.Bacteria and protozoa population dynamics in bioloical phosphate remval systems. Water Science and Technology,1994,29 (7):109-117
    [38] Ghyoot W, Verstraete W.Reduced sludge production in a two-stage membrane- assisted bioreactor.Water Research,2000,34(1):205-215
    [39] Mart A G. Growth rate of Escherichia coli.Microbiol.Microbiological Reviews, 1991,55 (2):316-333
    [40] Rocher M,Goma G,Begue A P. Towards a reduction in excess sludge production in activated sludge processes:biomass physicochemical treatment and biodegradation.Applied Microbiology and Technology,1999,51:883-890
    [41] Rocher M.Excess sludge reduction in activated sludge processes by integrating biomass alkaline heat treatment.Water Science and Technology,2001,44:437-444
    [42] Abbassi B,Dullstein S, Rabiger N.Minimization of excess sludge production by increase of oxygen concentration in activated sludge flocs:experimenta and the oretical approach.Water Research,2000,34 (1):139-146
    [43] 曹秀芹.超声波技术在污泥处理中的研究及应用.环境工程,2002,20(4):23-25
    [44] Yasui H,Nakamura K,Sakuma S,et al.A full-scale operation of a novel activated sludge process without excesss ludge production.Water Science and Technology, 1996,34(3~4):395-404
    [45] Sakai Y,Fukase T,Yasui H,et al.An activated sludge process without excess sludge production. Water Science and Technology,1997,36(11):163-170
    [46] Kamiya T,Hirotsuji J. New combined system of biological process and intermittent ozonation for advanced waster water treatment. Water Science and Technology,1998,38(8~9):145-153
    [47] Saby S,Djafer M. Feasibility of using a chlorination step to reduce excess sludge in activated sludge process.Water Research,2002,36:656-666
    [48] Liu Y, Tay J H.Strategy for minimization of excess sludge production from the activated sludge process.Biotechnology Advances,2001,19:97-107
    [49] 王宝贞,李高奇,王琳,等.淹没式生物膜法污水处理厂的设计及运行.中国给水排水,2000,16(3):16-19
    [50] 迟军,王宝贞,李高奇.广州生活小区污水处理厂设计及运行研究.哈尔滨商业大学学报, 2003,19(2):183-186
    [51] 晏波,蒋文举,谢嘉.三相好氧生物流化床污水处理技术研究应用进展.四川环境,2001,20(3):5-9
    [52] 肖宏亮,韦朝海,高孔荣,等.三相流化床生物反应器在降解有机废水方面的应用研究.现代化工,1997,(3):15-18
    [53] 任 源,吴超飞,吴海珍.新型生物流化床组合工艺处理工业有机废水的工程应用分析.环境工程,2002,20(1):7-13
    [54] 国家环保局编委会.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1997,96-120
    [55] 马挺,刘如林.嗜热菌耐热机理的研究进展.微生物学通报,2002,29(2):86-88
    [56] 黄 红 英 , 常 志 州 . 嗜 热 菌 的 筛 选 及 菌 种 的 初 步 鉴 定 . 江 苏 农 业 科 学 , 2003,(3):81-83
    [57] Lapara T M, Alleman J E.Thermophilic aerobic biological wastewater treatment. Water Research,1999,33(4):895-908
    [58] 汪慧贞,沈家杰.pH 对剩余污泥好氧消化的影响.给水排水,1990,16(2):14-16
    [59] 王勇,王圭勋.城市污水厂混合污泥好氧消化研究.中国环境管理干部学院学报, 2005,15(1):61-63
    [60] Bernard S, Gray N F.Aerobic digestion of pharmaceutical and demestic waste- water sludges at ambient temperature.Water Research,2000,34(3):725-734
    [61] Daigger G T, Bailey E.Improving aerobic digestion by prethickening,staged operation and aerobic-anoxic operation:Four full-scale demonstrayions. Water Environment Research,2000,72(3):260-270
    [62] Banat F A, Prechtl S B, Bischof F.Aerobic thermophilic treatment of sewage sludge contaminated with 4-nonylphenol.Chemosphere,2000,41(3): 297-302
    [63] 程洁红,张善发,陈华,等.自热式高温好氧消化的污泥稳定化中试.中国给水排水,2005,21(11):18-22
    [64] 程洁红,冯磊,尹炳奎,等.反应温度对自热式高温好氧消化(ATAD)中试系统运行的影响.环境工程,2006,24(2):74-77
    [65] Sakai Y, Aoyagi T, Shiota N, et al. Complete decomposition of biological waste sludgeby thermophilic aerobic bacteria.Water Science and Technology,2000,42 (9):81-88
    [66] Aoki N, Kawase M.Development of high-performance thermophilic to two- phase digestion process. Water Science and Technology,1991,23:1147–1156
    [67] Mark C M, Loosdrecht V, Henze M. Maintenance, endogeneous respiration, lysis, decay and predation.Water Science and Technology,1999,39(1):107-117
    [68] Hamer A, Mason C A, Hamer G. Death and lysis during aerobic thermophilic sludge treatment: characterization of recalcitrant products.Water Research, 1994,28(4):863-869
    [69] Muller J A.Prospects and problems of sludge pretreatment process. Water Science and Technology,2001,44(10):121-128
    [70] Shanableh A, Joma S. Production and transformation of volatile fatty acids from sludge subjected to hydrothermal treatment. Water Science and Technology,2001, 44(10):129-135
    [71] RaviSankar Arunachalam, Hemant K.Shah,L-Kwang Ju. Monitoring aerobic sludge digestion by online scanning fluorometry.Water Research,2005,39:1205 -1214
    [72] Yang S F, Tay J H, Liu Y.Inhibition of free ammonia to the formation of aerobic granules.Biochemical Engineering Journal,2004,17(1):41-48
    [73] Ford D L, Churchwell R L, Kachtick J W.Compprehensive analysis of nitrification of chemical processing wastewaters.Water Pollution Control Federation,1980,52: 2726-2746
    [74]丁文川,龙腾锐,许龙.污泥好氧消化影响因素分析.给水排水,2004,30(7):23-26
    [75] Ugwuanyi J O, Harvey L M, McNeil B. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste. Bioresource Technology,2005,96:707-719
    [76] 韩相奎.煤气站废水剩余污泥好氧消化处理实验.环境科学,1992,13(6):39-42
    [77] 王治军,王伟.剩余污泥热水解试验.中国环境科学,2005,25:56-60
    [78] 戚以政,汪叔雄.生化反应动力学与反应器(第二版).北京:化学出版社,1999, 47-56
    [79] 周春生.剩余污泥好氧消化处理的效能及机理研究.中国给水排水,1992,8(1): 13-18
    [80] 沈耀良.污泥好氧消化处理工艺研究.苏州城建环保学院学报,1994,7(1):55-64
    [81] 曹申存.剩余活性污泥好氧消化的研究.中国环境科学,1986,6(9):44-48
    [82] Filali-Meknassi Y, Tyagi R D, Nasasiah K S. Simultaneous sewage sludge digestion and metal leaching:effect of aeration.Process Biochemistry,2000,36(3): 263-273
    [83] Wei Y S, Van Houten R T, Borger A R, et al. Minimization of excess sludge production for biological wastewater treatment. Water Research, 2003,37(18): 4453–4467
    [84] 冯生华.Vertad自热型高温好氧污泥消化工艺.中国给水排水,2003,19(10): 105-106
    [85]Marijoleine P J, Weemaes,Willy H V,et al.Evaluation of current wet sludge disintegration techniques.Journal of Chemical Technology Biotechnology, 1998,73:83-92
    [86] Liu Y,Tay J H.Strategy for minimization of excess sludge production from the activated sludge process.Biotechnology Advances,2001,19:97-107
    [87] Snaidr N,Amann R,Huber I,et al. Phylogenetic analysis and in situ identification of bacteria in activated sludge.Applied and Environmental Microbiology,1997, 63(7):2884-2896
    [88] Blackall L L, Burrell P C, Gwilliam H, et al. The use of 16rDNA clone libraries to describe the microbial diverity of activated sludge communities.Water Science and Technology,1998,37(45):451-454
    [89] 梁鹏,黄霞,钱易.污泥减量化技术的研究进展.环境污染治理技术与设备,2003,4 (1):47-48
    [90] 范秀容.微生物学实验.北京:高等教育出版社,1989,20-29
    [91] Cheunbarn T, Pagilla K R. Aerobic thermophilic and anaerobic mesophilic treatment of sludge.Environment Engineering,2000,126(9):790-795
    [92] Baier U, Zwiefelhofer H P. Effects of aerobic thermophilic pretreatment.Water Science and Technology,1991,23:56-63
    [93] Ward A. David H. Effect of autothermal treatment on anaerobic digestion on the dual digestion process.Water Science and Technology,1998,8(8-9):435-442
    [94] Pagilla K R, Craney K C.Aerobic therm ophilic pretreatment of mixed sludge for pathogen reduction and nocardia control.Water Enviroment Research,1996,68(7): 1093-1098
    [95] Tiehm A, Nickel K, Zellhorn M, Neis U. Ultrasonic waste activated sludge disintegration for impoving anaerobic stabilization.Water Research,2001,35(8): 2003-2009
    [96] Yasui H, Shibata M. An innovative approach to reduce excess sludge production in the activated sludge process.Water Science and Technology,1994,30(9):11-20
    [97] Low E W,Chase H A,Milner M G,et al.Uncoupling of metabolism to reduce biomass production in the activated sludge process. Water Research,2000,34(12): 3204-3212
    [98] Liu Y. Effect of chemical uncoupler on the observed growth yield in batch culture of activated sludge. Water Research,2000,34(7):2025-2030
    [99] Kim Y K, Choi J W. Fuzzy controller for thermophilic aerobic digestion using nicotinamide adenine dinucleotide fluorescence. Journal of Environmental Engineering,2004,130(7):759-765
    [100]张艳萍,彭永臻,王亚宜,等.调节好氧消化pH值提高污泥沉降和脱水性能.环境污染治理技术与设备,2006,7(2):35-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700