碱金属(Li,Na,K)钽酸盐粉体的可控制备及其结构性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钽酸锂(LiTaO3,LT)晶体具有优异的铁电、热电、光电等性能,是一种非常重要的多功能晶体材料。周期极化钽酸锂(Periodically Poled LiTaO3, PPLT),作为一种光学超晶格材料,因其较高的抗光伤阈值,较弱的光弹效应,较宽的通光范围,在准相位匹配技术中具有重要的应用价值。
     同成分钽酸锂(Congruent LiTaO3, CLT)具有组分均匀的优点,传统的粉料合成采用固相法,在固液同成分配比([Li]/[Ta]=48.6/51.4)熔体中用提拉法生长,但是Li离子的缺失造成晶体中存在大量的空位缺陷,使晶体的许多物理性能受到很大影响。与CLT相比,近化学计量比钽酸锂(Stoichiometric LiTaO3, SLT)晶格完整,缺陷大大减少,电光系数和非线性系数提高,畴反转电压下降,发光强度提高,光折变性能大幅提高。与SLT相比,掺镁化学剂量比钽酸锂(Mg dopedStoichiometric LiTaO3, Mg:SLT)抗光损伤阈值更高,可以实现非临界相位匹配,可透过波段范围更宽,电光和非线性特性更好。
     制备优质的粉体对后期的晶体生长至关重要,传统生长晶体用的粉料采用固相合成法,虽然简单易行,但在掺杂MgO时掺杂量少,熔点高,反应受扩散控制,容易掺杂不均匀而导致出现包裹体、散射颗粒等缺陷,严重影响晶体的光学质量。因此合成出掺杂均匀的优质Mg:LiTa03粉体对生长高质量光学级晶体是非常重要的。
     本文以氢氧化钽(Ta(OH)5)、碳酸锂(Li2CO3)、柠檬酸(CA)、盐酸(HCl)、氨水(NH3H2O)作为原料采用溶液-煅烧法合成出化学计量比LT及掺杂均匀的Mg:LT粉体。合成工艺包括:水热环境下Ta(OH)5在浓盐酸中的活化;Ta-CA稳定络合物溶液的制备;过滤掉未溶解的杂质;通过热重分析精确确定溶液中的Ta含量;根据热重得到的Ta含量加入化学剂量比的含Li溶液及需要掺杂的含Mg溶液;对前驱体溶液进行过滤除去不溶解的杂质;对前驱体溶液进行喷雾干燥得到尺寸均匀形貌规则的球形颗粒;最后对前驱体粉料进行煅烧,得到不含杂质的单相多晶粉料。对合成的具体过程、中间产物及最终产物进行了分析,主要内容包括以下几个方面:
     (1)对合成反应机理进行了探索。
     (2)对络合反应前后的干燥粉体进行红外分析,证实了络合反应的发生及发生络合反应的原子。
     (3)对前驱体粉体进行热重分析,得知了粉体在煅烧过程中的具体热行为。
     (4)对不同煅烧温度下得到的产物进行红外分析对比,得出了确保产物中不含有机杂质的最低煅烧温度。
     (5)通过对产物进行XRD表征,确定了产物的结晶相。
     (6)通过对不同温度煅烧得到的粉体进行SEM表征,观察了产物的具体形貌。
     (7)通过对纯相LT及不同掺杂量的Mg:LT进行XRD表征,确定了Mg元素确实掺进了LT的晶格中,而且随着掺杂量增加,晶胞参数减小。
     (8)为了确定产物中Li的含量,测量了合成粉体的居里温度,从而证明了合成产物的化学剂量比符合摩尔比[Li]:[Ha]=49.9:50.1。
     实验合成过程中所用原料价格便宜,无毒,对环境不会造成污染;采用溶液法合成粉体,各种元素在溶液中在原子级别混合均匀,化学计量比容易控制,有利于后期晶体生长长出掺杂均匀的近化学计量比晶体;对前驱体溶液进行喷雾干燥,可以使生产批量化进行,得到尺寸均匀并且可调的球形颗粒,有利于后期生长晶体时的自动连续加料;煅烧温度与固相合成法相比大大降低,避免了锂组分在高温下的挥发,而且煅烧温度低,得到的产物尺寸小,熔点降低,有利于后期多晶粉料化料温度的降低。
     钽酸钠(NaTaO3)可以用作介电材料和铁电材料,具有优良的光催化性能;钽酸钾(KTaO3)作为铁电材料,具有电、磁和光学性质,庞大的磁阻效应,还有光致发光和催化活性。无机纳米颗粒的可控合成是非常重要的,因为材料的性质会强烈地依赖于颗粒的尺寸和形状,理解晶粒的生长机理对实现材料的可控合成起着非常重要的作用。
     本文采用水热法合成了NaTaO3及KTaO3粉体,通过XRD,SEM等测试方法对产物进行表征,对其相变特征、生长机理及光化学特征进行了探索,发现:(1)以Ta(OH)5和NaOH,KOH为反应原料,当碱液浓度低时,产物为烧绿石相,当碱液浓度高时,产物为钙钛矿相;(2)当反应原料中同时加入NaOH和KOH时,生成NaTaO3的趋势要远远大于生成KTaO3的趋势;(3)烧绿石相的产物比表面积大,形貌多为八面体,对甲基橙溶液在紫外灯光照下的催化降解能力更强:在反应体系中加入乙醇或柠檬酸可以有效控制产物的形貌,减小产物尺寸,提高光催化降解能力;(4)通过形貌分析发现,碱液浓度低时合成的烧绿石相产物粒度分布较为均匀,而浓度高时合成的产物粒度分布范围广;水热条件下纳米晶粒的生长会采取奥斯瓦尔德熟化、孪晶生长机制和定向聚集的方式。
As an important multi-functional material, lithium tantalate (LiTaO3, LT) crystal possesses excellent ferroelectric, piezoelectric and photoelectric properties. Periodically Poled LiTaO3, PPLT, as a kind of optical superlattice material, has important value for quasi phase match technology due to its higher damage threshold, weak photoelastic effect, wide light range.
     Congruent LiTaO3 (CLT) crystal is grown by Czochralski method with a molar ratio of [Li]/[Ta]=48.6/51.4. However, the deficiency of lithium ions creates a large number of oxygen vacancies and will degrade the performance of CLT crystals. Compared with CLT, stoichiometric LiTaO3 (SLT), with a perfection of lattice and low density of defects, higher electro-optic coefficient and nonlinear coefficient, reduced domain inversion voltage, enhanced luminous intensity and photorefractive performance. Compared with SLT, Mg doped Stoichiometric LiTaO3 (Mg:SLT) can remarkably increase the damage threshold, and has better electro-optical and nonlinear properties.
     The synthesis of powders of high quality is of importance to grow crystals. Traditionally, solid state method is used to synthesize powders, however, the amount of the doping MgO, with high melting point, is a little, and the reaction is controlled by diffusion, defects such as solid inclusion and scattering particles resulted from un-uniform doping will greatly affect the optical properties. Hence, the successful synthesis of homogenious Mg:LiTaO3 powders is critical to grow optical crystals of high quality.
     In this thesis, a solution-calcination method was applied to synthesize LiTaO3 and Mg:LiTaO3 powders. The synthesis process is as follows:Ta(OH)5 firstly reacted with HCl under hydrothermal environment, then was cooled down at room temperature; the upper liquid was poured out and deionized water was added to dissolve the white deposite, then a-hydroxy acid citric acid was chosen as coordination agent to form stable Ta-CA, which can further react with Li2CO3 and MgO; after pH value was adjusted to 7 with ammonia, liquid precursor was gained, filter the liquid precursor and dry it with spray drier; the dry powders were calcined at 720℃for 2 h. Analysis about the synthesis mechanism, characterization on the intermediate product and the final product is performed, the main contents are as follows:
     (1) The reaction mechanism is investigated.
     (2) IR analysis is used to characterize the dried powders before and after the coordination, and confirm the coordination atoms.
     (3) TG-DSC analysis is performed on the precursor to study the thermal behaviors during calcination.
     (4) Comparison on the IR spectra of products obtained through different calcination temperatures is made, and the lowest calcination temperature is fixed to ensure there is no organic impurity.
     (5) The crystal phase of the product is confirmed through XRD characterization.
     (6) Through SEM images about the products obtained under different calcination temperature, the morphology is observed.
     (7) Through XRD analysis on pure LT and Mg:LT, we conclude that Mg element is doped in LT lattice, and the unit-cell parameters decrease with the enhanced amount of doping.
     (8) To make sure the content of Li, curie temperature is measured to confirm that the molar ratio of [Li]:[Ta]= 49.9:50.1.
     The raw materials used in the synthesis process are non-poisonous and environmental benign. All elements exist in the solution in atomic level, and it is easy to control the stoichiometry and the homogeneity of the final product. A spray drier was used to dry the precursor solution, and powders with uniform size and composition were obtained, and this is favorable for continued automatic feeding. The low calcination temperature can avoid Li volatilization compared with solid state method. Beside, the melting point of the product decreases due to its small size.
     Sodium tantalate (NaTaO3) is a useful dielectric and ferroelectric material, possessing excellent photocatalytic performance. Potassium tantalate (KTaO3), as an incipient ferroelectric material, exhibits electric, magnetic, optical properties and bulk magnetoresistive (MR) effects. Besides, it has photoluminescence and photocatalytic properties. Controlled synthesis of inorganic nanomaterials is important because their properties depend intensively on the morphology and size of the particles. An in-depth understanding of crystal growth mechanism is of importance to realize controlled synthesis.
     We synthesized NaTaO3 and KTaO3 powders via hydrothermal method. XRD and SEM were performed to characterize the products, the photocatalysis performance and growth mechanism were investigated. We find that:(1) when at low alkali concentration, the product was attributed to pyrochlore phase, when at high alkali concentration, the product was attributed to perovskite phase; (2) when NaOH and KOH exist at the same time, there is a stronger trend to create NaTaO3 than KTaO3; (3) the specific surface area for pyrochlore product is large, with octahedron morphology, showed a strong ability to catalyze the decomposition of methyl orange exposed at UV light; the morphology of the product can be effectively controlled when surfactant ethanol or citric acid was added to the synthesis system, and the photocatalysis ability was enhanced. (4) Through SEM analysis, we find that pyrochlore product synthesized at low alkali concentration possesses uniform particle sizes; product synthesized at high alkali concentration showed a broad size distribution; the growth of nanoparticles in hydrothermal environment can take Oswald riping, oriented attachment and twin-assisted growth mechanisms.
引文
[1]Abrahams S.C., Buehler E., Hamilton W.C., Laplaca S.J., Ferroelectric Lithium Tantalate-Ⅲ. Temperature Dependence of the Structure In the Ferroelectric Phase and the Para-electric Structure at 940 K, Journal of Physics and Chemistry of Solids,1973, 34 (3):521-532.
    [2]Satapathy S., Varma K.B.R., Oriented Nano Grain Growth and Effect of Annealing on Grain Size in LiTaO3 Thin Films Deposited by Sol-Gel Technique, Journal of Crystal Growth,2006,291:232-238.
    [3]Gonhzalez A.H.M., Simoes A.Z., Zaghete M.A., Effect of Preannealing on the Morphology of LiTaO3 Thin Films Prepared from the Polymeric Precursor Method, Materials Characterization,2003,50 (2-3):233-238.
    [4]Zhu S., Cao W., Imaging of 180°Ferroelectric Domains in LiTaO3 by Means of Scanning Electron Microscopy, Physical Status Solidi A,1999,173 (2):495-502.
    [5]Mizota H., Nakanishi Y., Oohashi H., X-ray Emission from LiTaO3 Induced by Thermal Changes and Structure Analysis, Radiation Physics and Chemistry,2006,75 (11):1626-1629.
    [6]Wang K.M., Chen F., Hu H., Zhang J.H., Lu F., Shi B.R., Lu Q.M., Ma C.Q., Waveguide formation in LiTaO3 and LiB3O5 by keV hydrogen ion implantation, Optics Communications,2001,196 (1-6):215-219.
    [7]Cheng Z.X., Kimura H., Ozawa K., Ferroelectric Lithium Tantalate Thin Deri-ved from Peroxide, Journal of Alloys and Compounds,2005,402 (1-2):208-212.
    [8]权茂华,聚合物前驱体法制备钽酸锂薄膜的研究,理学硕士学位论文,2006年6月。
    [9]Takeshi K. Sakiko S., Hironori M. et al, Ultra-Thin Fatigue-Free Bi4Ti3O12 Films for Nonvolatile Ferroelectric Memories, Japanese Journal of Applied Physics,1996,35 (2):1246-1250.
    [10]Warren W. L., Dimos D., Photo Electric Effects in BaTiO3 Crystals, Integrated Ferroelectrics,1995,6:237-246.
    [11]Li L., Lin C.T., Effects of Laser Radiation on Photo-Conductivity in PZT Thin Films, Integrated Ferroelectrics,1995,7:33-44.
    [12]Yoshikazu F., Naoki I., Takashi N. et al, Development of Low Dielectric Constant Ferroelectric Materials for the Ferroelectric Memory Field Effect Transistor, Japanese Journal of Applied Physics,1977,36 (9):5935-5938.
    [13]张添立,国内热释电红外仪器的进展,红外技术,1984,6(3):1~2.
    [14]Guo Y.P., Kakimoto K., Ohsato H., (Na0.5K0.5)NbO3-LiTaO3 Lead-Free Piezoelectric Ceramics, Materials Letters,2005,59 (2-3):241-244.
    [15]Lutz Y., Musset O., Boquillon J.P., and Hirth A., Efficient Pulsed 946 nm laser emission from Nd:YAG Pumped by a titanium-doped sapphire Laser, Applied Optics, 1998,37 (15):3286-3289.
    [16]Miller G.D., Disseration P.D., Stanford University,1995.
    [17]He J.L., Wang H.M., Pan S.D., Liu J., Li H.X., Zhu S.N., Laser performance of Nd:YAG at 946 nm and frequency doubling with periodically poled LiTaO3, Journal of Crystal Growth,2006,292:337-340.
    [18]Popov S.V., Chernikov S.V., Taylor J.R.,62W average power green light generation using seeded high power Ytterbian fiber amplifier and periodically poled KTP, Optics Communications,2000,174 (1):231-234.
    [19]冯鸣,阮双琛,杜晨林等,掺Yb3+双包层光纤激光器中频率上转换产生可见光的实验研究,光子学报,2004,33(6):648~650.
    [20]杨玲珍,陈国夫,王屹山等,双包层掺Yb3+光纤环形脉冲激光形成研究,光子学报,2004,33(4):389~392.
    [21]陈柏,陈兰荣,范薇等,掺Yb3+双包层光纤激光器波长调谐输出,光子学报,1999,128(19):835~838.
    [22]Cross L.E., Optical Microscopy of KTaO3, Philosophical Magazine,1956,1 (1): 76-80.
    [23]Aleksandrowicz A,Wojcik K, Electrical properties of single crystals and ceramic samples of NaTaO3 Ferroelectrics,1989,99 (1):105-113.
    [24]Ismailzade I.G., Powder Diffraction Study on KTaO3 [J].
    [25]Kennedy J., Prodjosantoso A.K., Howard C.J., Powder Neutron Diffraction Study of the High Temperature Phase Transitions in NaTaO3, J Physics:Condensed Matter, 1999,11 (33):6319-6327.
    [26]Hwang D.W., Cha K.Y., Kim J., Kim H.G., Bae S.W., Lee J.S., Photocatalytic degradation of CH3Cl over a nickel-loaded layered perovskite, Industrial & Engineering Chemistry Research,2003,42 (6):1184-1189.
    [27]Goh GK.L., Haile S.M., Levi C.G, Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalite, Journal of Materials Research,2002, (17): 3168-3176.
    [28]Duan N.G., Tian Z.R., Willis W.S., Suib S.L., Newman J.M., Levine S.M., Hydrothermal Synthesis and Structure of a Potassium Tantalum Defect Pyrochlore, Inorganic Chemistry,1998,37 (18):4697-4701.
    [29]Maclaren I., Ponton C.B., Low temperature hydrothermal synthesis of Ba(Mg1/3Ta2/3)O3 sol-derived powders, Journal of Materials Science,1998,33:17-22.
    [30]Salce B., Gravil J.L., Boatner L.A., Disorder and thermal transport in undoped KTaO3, Journal of Physics, Condensded Matter,1994,6:4077-4092.
    [31]Nishihata Y., Kamishima O., Maeda H., Ishii T., Sawada A., Terauchi H., EXAFS study on the local structure in potassium tantalite, Physica B:Condensed Matter,1995, 208-209:311-312.
    [32]Kudo A., Kato H., Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting, Chemical Physics Letters,2000,331 (5-6):373-377.
    [33]Vikhmin V., Eden S., Aulich M., Kapphan S., The origin of the red luminescence in incipient ferroelectric KTaO3, Solid State Communications,2000,113 (8):455-460.
    [34]Nakamura K., Imai K., Jpn. Kokai Tokkyo Koho JP 08196328 (1996).
    [35]Tagantsev A., dc-electric-field-induced microwave loss in ferroelectrics and intrinsic limitation for the quality factor of a tunable component, Applied Physics Letters,2000, 76:1182-1184.
    [36]Chakoumakos B., Systematics of the pyrochlore structure type, ideal A2B2X6Y, Journal of Solid State Chemistry.1984,53 (1):120-129.
    [37]李竟先,吴基球,鄢程,纳米颗粒的水热法制备,中国陶瓷,2002,38(5):56~61.
    [38]文玉华,周富信,刘日武,纳米材料的研究进展,力学进展,2001,31(1):47~48.
    [39]张泰,纳米材料的制备技术及进展,辽宁化工,1999,28(1):3~5.
    [40]施尔畏,夏长泰,王步国,仲维卓,水热法的应用与发展,无机材料学报,1996,11(2):193~206.
    [42]苏勉曾,谢高阳,申伴文等译,固体化学及其应用,复旦大学出版社,1989.
    [42]Guo M., Diao P., Cai S., Hydrothermal growth of perpendicularly oriented ZnO nanorod array film and its photoelectrochemical properties, Applied Surface Science, 2005,249 (1-4):71-75.
    [43]Lee J.H., Kang M., Choung S.J., et al, The preparation of TiO2 nanometer photocatalyst film by a hydrothermal method and its sterilization performance for giardia iamblia, Water Research,2004,38 (3):713-719.
    [44]Zhang T., Jin C.G., Qian T., Lu X.L. et al., Hydrothermal synthesis of single-crystalline La0.5Ca0.5MnO3 nanowires at low temperature, Journal of material chemistry,2004,14:2787-2789.
    [45]Yanagisawa K., Nishioka M., Immobilization of Radioactive Wastes in Hydrothermal Synthetic Rock, (Ⅲ), Journal of Nuclear Science and Technology,1986, 23:550-558.
    [46]Yanagisawa K., Nishioka M., Immobilization of Low-Level Radioactive-Waste Containing Sodium-Sulfate by Hydrothermal Hot-Pressing, Journal of Nuclear Science and Technology,1989,26:395.
    [47]Barrer R.M., Hydrothermal chemistry of zeolites, London:Academic Press,1982, 1-360.
    [48]Kennedy G.C., PVT Relations in Water at Elevated Temperatures and pressures, Amer. J. Sci.,1950,248:540-564.
    [49]施尔畏,陈之战,元如林等,水热结晶学,科学出版社,2004年1月出版。
    [50]Gu H.S., Dong C., Chen P.Z. et al, Growth of Latered Perovskite Bi4Ti3O12 Thin Films by Sol-Gel Process, Journal of Crystal Growth,1998,186:403-408.
    [51]Kong D.B., Ma J., Randomly Oriented Bi4Ti3O12 Thin Films Derived from Hybrid Sol-Gel Process, Thin Solid Films,2000,379:89-93.
    [52]Masahiro T., Yukio H., Kunisaburo T.et al, Ferroelectric Properties and Fatigue Characteristics of Bi4Ti3O12 Thin Films by Sol-Gel Processing, Japanese Journal of Applied Physics,1994,33 (9):5543-5548.
    [53]Szanics J., Kakihana M., A Novel Tantalic Acid-Based Polymerizable Complex Route to LiTaO3 Using Neither Alkoxides nor Chlorides of Tantalum, Chemistry of Materials,1999,11 (10):2760-2763.
    [54]李立宏,邢献然,陈骏等,熔盐法合成LiTaO3粉体,无机化学学报,2006,8:1491~1494.
    [55]Kalinnikov V.T., Gromov O.G., Kunshina G.B., Kuz'min A.P., Lokshin E.P., Ivanenko V.I., Preparation of LiTaO3, LiNbO3 and NaNbO3 from Peroxide Solutions, Inorganic Material,2004,40:411-414.
    [56]Liu M.N., Xue D.F., An efficient approach for the direct synthesis of lithium niobate powders, Solid State Ionics,2006,177 (3-4):275-280.
    [57]Vioux A., Nonhydrolic sol-gel route to oxides, Chemistry of Materials,1997,9(11): 2292-2299.
    [58]Szanics J., Okubo T., Kakihana M., Preparation of LiTaO3 powders at reduced temperatures by a polymerized complex method, Journal of Alloys and Compounds, 1998,281(2):206-210.
    [59]Muthurajan H., Kumar H.H., Natarajan N., Ravi V., A novel technique to prepare LiTaO3 at low temperature, Ceramics International,2006,34 (3):669-670.
    [60]He Y., Zhu Y.F., Wu N.Z., Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance, Journal of Solid State Chemistry,2004,177 (11): 3868-3872.
    [61]Nelson J.A., Wagner M.J., Synthesis of Sodium Tantalate Nanorods by Alkalide Reduction, Journal of the American Chemical Society,2003,125 (2):332-333.
    [62]Xu J.S., Xue D.F., Yan C.L., Chemical synthesis of NaTaO3 powder at low-temperature, Materials Letters,2005,59 (23):2920-2922.
    [63]Digamber G., Maggard A., Flux synthesis of La-doped NaTaO3 and its photocatalytic activity, Journal of Solid State Chemistry,2006,179 (6):1727-1732.
    [64]Goh J.K.L., Haile S.M., Levi C.G., Lange F.F., Hydrothermal synthesis of perovskite and pyrochlore powders of potassium tantalite, Journal of Materials Research,2002,17 (12):3168-3176.
    [65]He Y., Zhu Y., Solvothermal Synthesis of Sodium and Potassium Tantalate Perovskite Nanocubes, Chemistry Letters,2004,33:900-901.
    [66]Wu Z.B., Yoshimura M., The formation of pyrochlore potassium tantalate thin films by soft solution processing, Thin Solid Films,2000,375 (1):46-50.
    [67]Wu Z.B., Tsukada T., Yoshimura M., (2000) J Mater Res 15:1154.
    [68]Wu Z.B., Tsukada T., Yoshimura M., Direct synthesis of potassium tantalate thin films by hydrothermal-electrochemical method, Journal of Materials Science,2000,35 (11):2833-2839.
    [69]Goh G.K.L., Levi C.G., Lange F.F., Hydrothermal epitaxy of KTaO3 thin films, Journal of Materials Research,2002,17 (11):2852-2858.
    [70]Zou Y.N., Hu Y.M., Gu H.S., Wang Y, Optical properties of octahedral KTaO3 nanocrystalline, Materials Chemistry and Physics,2009,115:151-153.
    [71]He Y, Zhu Y.F., Wu N.Z., Mixed solvents:a key in solvothermal synthesis of KTaO3, Journal of Solid State Chemistry,2004,177 (9):2985-2990.
    [72]Lee Y.G., Watanabe T., Takata T., Kondo J.N., Hara M., Yoshimura M., Domen K., Preparation and Characterization of Sodium Tantalate Thin Films by Hydrothermal-Electrochemical Synthesis, Chemistry of Materials,2005,17 (9): 2422-2426.
    [73]何俣,新型钽酸盐光催化剂的合成及其性能研究,申请清华大学理学硕士学位论文,2004年6月。
    [74]Wang X.H., Zheng S.L., Zhang Y., A novel method to prepare ultrafine potassium tantalate powders, Materials Letters,2008,62:1212-1214.
    [75]Ciambelli P., Cimino S., DeRossi S. et al, Appl. Cata1. B:Environmental,2004,24 (324):243-253.
    [76]Vinodgopal K., Wynkoop D.E., Kamat P.V., Environmental photochemistry on semiconductor surfaces:photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light, Environmental Science & Technology,1996,30 (5):1660-1666.
    [77]Butterfield I.M., Christensen P.A., Hamnett A., Shaw K.E., Walker G.M., Walker S.A., Howarth C.R., Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water. Journal of Applied Electrochemistry,1997,27 (4):385-395.
    [78]Goswami D.Y., Trivedi D.M., Block S.S., Photocatalytic disinfection of indoor air, J Solar Energy Engineering-Transactions of the Asme,1997,119 (1):92-96.
    [79]郭新斌,乔庆东,太阳能光解水制氢催化剂研究进展,化工进展,2006,25(7):729~732,764.
    [80]Bikiaris D., Aburto J., ALric I. etal, Mechanical properties and biodegradability of LDPE blends with fatty-acid esters of amylose and starch, Journal of Aplied Polymer Science,1999,71 (7):1089-1100.
    [81]赵杨,魏宏斌,徐迪民,光催化氧化法处理表面活性剂废水,中国给水排水,2004,20(10):26~29.
    [82]张雯,王绪绪,林华香,付贤智,磁场对光催化反应羟基自由基生成速率的影响,无机化学学报,2005,63(18):1765~1768.
    [83]韩世同,习海玲,史瑞雪等,半导体光催化研究进展与展望,化学物理学报,2003,16(5):339~349.
    [84]蒋勤,张守臣,王立秋,刘长厚,钙钛矿型光催化剂的制备及应用研究进展,化工进展,2006,25(2):136~139.
    [85]Kato H., Kudo A., Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts, Catalysis Today,2003,78 (1-4):561-569.
    [86]孙超,黄浪欢,刘应亮,钽酸盐光催化分解水研究进展,化工新型材料,2005,33(9):29.
    [87]Kato H., Kudo A., Photocatalytic water splitting into H2 and O2 over various tantalite photocatalysts, Catalysis Today,2003,78 (1-4):561-569.
    [88]Kudo A., Development of photocatalyst materials for water splitting, International Journal of Hydrogen Energy,2006,31 (2):197-202.
    [89]孙超,黄浪欢,刘应亮,制备条件对Na2Ta2O6光催化剂形貌的影响,暨南大学学报,2006,26(3):431~434.
    [90]孙超,黄浪欢,刘应亮,Na2Ta2O6光催化剂的制备与性能研究,高等学校化学学报,2006,27(9):1749~1751.
    [91]Tatsumi Ishihara, Nam Seok Baik, Naoko Ono, Hiroyasu Nishiguchi, Yusaku Takita, Effects of crystal structure on photolysis of H2O on K-Ta mixed oxide, Journal of Photochemistry and Photobiology A:Chemistry,2004,167:149-157.
    [92]Ikeda S., Fubuki M., Takahara Y. etal, Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting, Applied catalysis. A, General,2006,300 (2):186-190.
    [93]Roduner E., Nanoscopic Materials:Size-dependent Phenomena (RSC Publishing, Cambridge,2006).
    [94]罗裕基,无机化学丛书第八卷钒分族[M],北京:科学出版社,1998,173.
    [95]Ruzdic E., Brnicecvic N., Coordination properties of a-hydroxy carboxylic acids. I: Binuclear niobium(V) complex acids and some salts, Inorganica chimica acta,1984,88: 99-103.
    [96]Fairbrother F., Taylor J.B., Water-soluble complexes of niobium (columbium) and tantalum. Part Ⅰ. Complexes with a-hydroxy-acids and (2-hydroxyethyl)-amines, Journal of the Chemical Society,1956,12:4946-4954.
    [97]Fairbrother F., Robinson D., Taylor J.B., Some Water-soluble complexes of pentavalent niobium and tantalum, Journal of Inorganic and Nuclear Chemistry,1958,8: 296-301.
    [98]Brnicevic N., Djordjevic C., Co-Ordination Complexes of Nb and Ta. PT.11. Crystalline Malato Complexes of Nb 5, Journal of Less-common Metals,1971,23: 61-65.
    [99]Liu M. N., Xue D.F., An efficient approach for the direct synthesis of lithium niobate powders, Solid State Ionics,2006,177:275-280. [100] Zeng H.C., Tung S.K., Synthesis of Lithium Niobate Gels Using a Metal
    Alkoxide-Metal Nitrate Precursor, Chemistry of Materials,1996,8(11):2667-2672.
    [101]X. Zhang, S. Guo, W. Qiao. A synthesis method for near stoichiometry lithium tantalate crystal:China,200710165414 [P].2008-07-23.
    [102]Shannon R. D., Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Acta Crystallographica Section A,1976, A32: 751-767.
    [103]纳米催化材料的液相化学合成、生长机理及其性能研究,2009,刘淑娟,中国科学技术大学,博士学位论文。
    [104]Penn R.L., Kinetics of Oriented Aggregation, Journal of Physical Chemistry B, 2004,108:12707-12712.
    [105]郑燕青,施尔畏,李汶军,陈之战,仲维卓,胡行方,水热条件下二氧化锆同质变体的形成,中国科学(E),2002,31:289~295.
    [106]Zheng Y.Q., Shi E.W., Li W.J., Chen Z.Z., Zhong W.Z., Hu X.F., Formation of zirconia Polymorphs under Hydrothermal Conditions, Science in China (Series E),2002, 35,273-281.
    [107]Wang M., Muhammed M., Novel Synthesis of Al13-Cluster Based Alumina Materials, Nanostructured Materials,1999,11 (8):1219-1229.
    [108]Wong E.M., Bonevich J.E., Searson P.C., Growth Kinetics of Nanocrystalline ZnO Particles from Colloidal Suspensions, Journal of Physical Chemistry B,1998,102 (40):7770-7775.
    [109]Penn R.L., Banfield J.F., Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:insights from titania, Geochimica et Cosmochimica Acta,1999,63 (10):1549-1557.
    [110]Privman V., Goia D.V., Park J., Matijevic E., Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize precursors, Journal of Colloid and Interface Science 1999,213 (1):36-45.
    [111]Ocana M., Morales, M.P., Serna C.J., The growth mechanism of α-Fe2O3 ellipsoidal particles in solution, Journal of Colloid and Interface.1995,171 (1):85-91.
    [112]Penn R.L., Banfield J.F., Imperfect oriented attachment:dislocation generation in defect-free nanocrystals, Science,1998,281 (5379):969-971.
    [113]Banfield J.F., Welch S.A., Zhang H.Z., Ebert T.T., Penn R.L., Aggregation-based crystal growth and microstructure development in natural Iron Oxyhydroxide Biomineralization Products, Science,2000,289 (5480):751-754.
    [114]Alivisatos A.P., BIOMINERALIZATION:Enhanced:Naturally Aligned Nanocrystals, Science,2000,289 (5480):736-737.
    [115]Sugimoto T., Preparation of monodispersed colloidal particles, Advances in Colloid and Interface Science,1987,28:65-108.
    [116]刘志强,李小斌,彭志宏,童斌,刘桂华,湿化学法制备超细粉末过程中的上局机理及消除办法,化学通报,1999,7,54~57.
    [117]李国军,纳米NiO粉体和Al2O3/Ni金属陶瓷的制备研究,中国科学院上海硅 酸盐研究所博士论文,2001.
    [118]Scherer GW., Drying gels:I. General theory, Journal of Non-Crystalline Solids, 1986,87(1-2):199-255.
    [119]Banfeild J.F. and Hamers R.J., Geomicrobiology:Interactions Between Microbes and Minerals, vol.35 of Reviews in Mineralogy, Banfeild J.F. and Nealson K.H., Eds. (Mineralogical Society of America, Washington, DC,1997),86-122.
    [120]Zhang H.Z., Penn R.L., Hamers R.J., and Banfield J.F., Enhanced Adsorption of Molecules on Surfaces of Nanocrystalline Particles, Journal of Physical Chemistry B, 1999,103:4656-4662.
    [121]Penn R.L., Oskam G., Strathmann T.J., Searson P.C., Stone A.T., and Veblen D.R., Epitaxial Assembly in Aged Colloids, Journal of Physical Chemistry B,2001,105 (11):2177-2182.
    [122]Kirkpatrick R.J., Kinetics of Geochemical Processes, vol.8 of Reviews in Mineralogy, Lasaga A.S. and R. J. Kirkpatrick Eds. (Mineralogical Society of America, Washington, DC,1981), pp.321-398.
    [123]Penn R.L., and Banfield J.F., Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions:Insights from titania hydrothermal conditions:Insights from titania, Geochimica et Cosmochimica Acta, 1999,63(10):1549-1557.
    [124]Penn R.L., and Banfield J.F., Oriented attachment and growth, twinning, polytypism, and formation of metastable phases:Insights from nanocrystalline TiO2, American Mineralogist,1998,83:1077-1082.
    [125]Oskam G., Nellore A., Penn R.L., and Searson P.C., The Growth Kinetics of TiO2 Nanoparticles from Titanium (IV) Alkoxide at High Water/Titanium Ratio, Journal of Physical Chemistry B,2003,107:1734-1738.
    [126]Kang M.K., Yoo Y.S., and Kim D.Y., Growth of BaTiO3 Seed Grains by the Twin-Plane Reentrant Edge Mechanism, Journal of American Ceramics Society,2000, 83 (2):385-390.
    [127]Chen X.Y., Qiao M.H., Xie S.H., Fan K.N., Zhou W.Z., and He H.Y., Self-Construction of Core-Shell and Hollow Zeolite Analcime Icositetrahedra:A Reversed Crystal Growth Process via Oriented Aggregation of Nanocrystallites and Recrystallization from Surface to Core, Journal of American Chemistry Society,2007, 129,13305-13312.
    [128]Venables J.A., Introduction to surface and thin film Processes, Cambridge University Press, Cambridge,2000.
    [129]Wang Z.L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies, Journal of Physical Chemistry B,2000,104:1153-1175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700