准相位匹配技术测量晶体折射率及级联非线性相移的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要是基于准相位匹配光学频率变换技术,利用二次谐波发生过程和光学参量振荡过程对非线性光学晶体掺镁近化学计量比钽酸锂晶体的折射率进行测量,拟合得到用于计算不同温度和频率光波在此晶体中的折射率公式——Sellmeier公式,并用数值模拟方法研究了准相位匹配结构参数以及通过电光效应调节二次谐波发生过程中所产生的级联非线性相移。
     本文主要内容如下:
     1.阐述了准相位匹配技术的概念,介绍了国内外研究历史、现状与热点,并着重介绍了周期极化晶体;
     2.从理论上研究了周期性极化介质中的耦合波方程,系统地阐述了准相位匹配技术的原理,并着重介绍了多个利用准相位匹配技术实现光学频率转换的应用过程;
     3.介绍了钽酸锂晶体的物理和光学特性,并介绍了对钽酸锂晶体折射率测量研究的国内外历史,并通过OPO和SHG实验对基于掺镁近化学计量比钽酸锂晶体的变频过程进行了测量,通过曲线拟合的方法得到了计算此晶体折射率的Sellmeier方程
     4.介绍了非线性相移产生的原理,并对QPM结构中的级联非线性相移对SHG转换效率的影响进行了分析,对通过设计各种参数调节非线性相移来提高SHG转换效率。同时利用数值模拟手段对通过电光效应调节级联非线性相移进行控制的过程作了研究,并介绍了非线性相移的各种应用。
     本文的研究意义:
     基于准相位匹配技术的非线性光学频率转换过程在如今受到了广泛的关注。本文研究的非线性晶体掺镁近化学计量比钽酸锂折射率测量方法以及所得结果,对基于此种晶体的光学应用提供了重要的参数。本文研究的级联非线性相移的控制调制对光学频率转换效率的优化以及利用非线性相移的各种光学器件的设计提供了很大的技术支持。
The temperature-dependent refractive indices of near-stoichiometric LiTaO3 (SLT) doped with MgO, i.e., Sellmeier equation, were presented by means of the quasi-phase-matched (QPM) second-harmonic generation (SHG) and optical parametric oscillator (OPO) processes. The cascaded nonlinear phase shifts in the QPM structure were investigated by adjusting the structure parameters and applying the external field by means of the numerical analysis..
     The main contents of this dissertation are as follows:
     1. We introduce the quasi-phase matching technique concept and its advantages,describe the history and domestic and overseas development in this field. The periodically poled nonlinear optical crystals are emphasized;
     2. The coupled-wave equation in the periodically poled crystal is studied theoretically and the principles of QPM technology was elaborated systematically with emphasis on several wavelength conversion applications based on this technology;
     3. The physical and optical characteristics of LiTaO3 and the history of research on the refractive indices of this crystal were introduced. And then we conducted the SHG and OPO experiments based on the Mg-doped SLT and used the derived experimental data to obtain the Sellmeier equation of Mg-doped SLT with least-square curving fitting method;
     4. We theoretically introduced the nonlinear phase shifts, numerically analysis its effect on the efficiency of SHG process based on QPM technology and by designing different parameters we optimize the efficiency. Control of the nonlinear phase shifts by electro-optic effect was also studied by numerical simulating method and different applications of the nonlinear phase shifts were introduced.
     The significance of this dissertation: wavelength conversion process based on QPM technology has been attracting wide attention recently. The Sellmeier equation of MgO-doped SLT will be helpful optical applications based on this material because of the accurate parameters. And the study and analysis on the cascaded nonlinear phase shifts in QPM structure will provide support for the designing and application of optical devices based on QPM technology.
引文
[1] J. A. Armstrong, N. Bloembergen, J. Ducuing, et al., Interactions between light waves in a nonlinear dielectric, Phys. Rev., 1962, 127: 1918~1939
    [2] R. C. Miler, Optical harmonic generation in single crystal BaTiO3, Phys. Rev., 1964, 134(A): 1313~1319
    [3] L. O. Hocker, C. F. Dewey, Enhancement of second-harmonic generation in zinc selenide by crystal defects, Appl. Phys. Lett., 1976, 28: 267~270
    [4] D. E. Thompson,J. D. McMullen, D. B .Anderson, Second-harmonic generation in GaAs”stack of plates”using high-power CO2 laser radiation, Appl. Phys. Lett., 1976, 29: 113~115
    [5] D. F. Feng, N. B. Ming Y. N. Wang, et al., Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains, Appl. Phys. Lett., 1980, 37(7): 607
    [6] M. Yamada, N. Nada, M. Saitoh, et al., First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient field blue second-harmonic generation, App1. Phys. Lett., 1993, 62:435~436
    [7] M. L. Bortz,M. A. Arbore, and M. M. Fejer, Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides, Opt. Lett., 1995, 20: 49~51
    [8] L. E. Myers, G. D. Miller, R. C. Eckardt, et al., Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3, Opt. Lett., 1996, 20: 52~54
    [9] D. Chen, D. Hinkley, J. Pyo et al., Single-frequency low-threshold continuous-wave 3-μm periodically poled lithium niobate optical parametric oscillator, J. Opt. Soc. Am. B, 1998, 15(6):1693~1697
    [10] I. D. Lindsay, G. A. Turnbull, M. H. Dunn, et al., Doubly resonant continuous-wave optical parametric oscillator pumped by a single-mode diode laser, Opt. Lett., 1998, 67: 2126~2128
    [11] J. Webjorn, V. Pruneri, P. S. J. Russell, et al., Quasi-phase-matched blue light generation in bulk lithium niobate electrically poled via periodic liquid electrodes, Ele. Lett., 1994, 30(11): 894~895
    [12] V. Pruneri, S. D. Butterworth, D. C. Hanna, Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate, Appl. Phys. Lett., 1996, 69: 1029
    [13] V. Pruneri, S. D. Butterworth, D. C. Hanna, Highly efficient green-light generation byquasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser, Opt. Lett., 1996, 21(6): 390~392
    [14] P. E. Britton, D. Taverner, K. Puech, et al., Optical parametric oscillation in periodically poled lithium niobate driven by a diode-pumped Q-switched erbium fiber laser, Opt. Lett., 1998, Vol.23(8): 582~584
    [15] C. McGowan, D. T. Reid, Z. E. Penman, et al., Femtosecond optical parametric oscillator based on periodically poled lithium niobate, J. Opt. Soc. Am. B, 1998, 15(2): 694~701
    [16] C. J. Lee, G. W. Baxter, J. C. Diettrich, et al., Periodically poled lithium niobate optical parametric oscillator pump-tuned by a single-axial-mode Ti:sapphire laser, Opt. Eng., 2002, 41: 848
    [17] K. Kawase, T. Hatanaka, H. Takahashi, et al., Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate, Opt. Lett., 2000, 25(23): 1714~1716
    [18] T. Hatanaka, K. Nakamura,T. Taniuchi, et al., Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3, Opt. Lett., 2000, 25(9): 651~653.
    [19]闵乃本,探索新晶体湖南,湖南科学技术出版社, 1998: 22~23
    [20] L. E. Myers, R. C. Eckardt, M. M. Fejer, et al., Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, 1995, 12(11):2102~2116
    [21]姚江宏,李冠告,许京军等,准相位匹配(QPM)技术研究新进展,量子电子学报, 1999, 16(4):289~294
    [22] Y. Chen, J. Yao, B. Yan, et al., Harmonic violet light generation in periodically poled bulk near-stoichiometric MgO-doped LiNbO3, Optics Communications, 2003, 224:149~153
    [23] D. Taverner, P. Britton, P. G. R. Smith, et al., Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber: periodically poled lithium niobate source, Opt. Lett., 1998, 23(3):162~164
    [24] G. D. Miller, R. G. Batchko, W. M. Tulloch, et al., 42% efficiency single-pass CW second-harmonic generation in periodically poled lithium niobate, Opt. Lett., 1997, 22(24): 1834~1836
    [25] G. W. Ross, M. Pollnau, P. R. G. Smith, et al., Generation of high-power blue light in periodically poled LiNbO3, Opt. Lett., 1998, 23(3): 171~173
    [26] W. R. Bosenberg, J. I. Alexander, L. E. Myers, et al., 2.5W continuous-wave, 629nm solid-state laser source, Opt. Lett., 1998, 23(3): 207~209
    [27] P. Baldi, C. J. Trevifio-Palacios, G. I. Stegeman, et al., Simultaneous generation of red, greenand blue light in room temperature periodically poled lithium niobate waveguides using single source, Electron. Lett., 1995, 31(16): 1350~1351
    [28] T. Sugita, K. Mizuuchi, R. W. Eason, et al., 31% efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of a AlGaAs diode, Opt. Lett., 1999, 24(22): 1590~1592
    [29] J. Zheng, Y. Lu, G. Luo, et al., Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through up-conversion and quasi-phase-matched frequency doubling, Appl. Phys, Lett., 1998,72(15): 1808~1810
    [30] J. Capmany, E. Montoya, V. Bermudez, et al., Self-frequency doubling in Yb3+ doped periodically poled LiNbO3:MgO bulk crystal, Appl. Phys. Lett., 2000, 76(11): 1374~1376
    [31] Y. Liu, S. Kurimura, M. Nakamura, et al., Effective aperture in periodically poled Mg-doped stoichiometric LiTaO3 for quasi-phase-matched optical parametric oscillation, Jpn. J. Appl. Phys., 2006, 45(5A):4064~4067
    [32] U. Bader, T. Mattern, T. Bauer, et al., Pulsed nanosecond optical parametric generator based on periodically poled lithium niobate, Optics Communications, 2003, 217: 375~380
    [33] P. E. Powers, K. W. Aniolek, T. J. Kulp, et al., Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator, Opt. Lett., 1998, 23(24):1886~1888
    [34] K. W. Aniolek, R. L. Schmitt, T. J. Kulp, et al., Microlaser-pumped periodically poled lithium niobate optical parametric generator and optical parametric amplifier, Opt. Lett., 2000, 25(8):557~559
    [35] M. Rahm, U. Bader, G. Anstett, et al., Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate, Applied Physics B Lasers and Optics, 2002, 75(1):47~51
    [36] W. R. Bosenberg, A. Brobshoff, J. I. Alexander, et al., 93% pump depletion, 3.5W continuous-wave, single resonant optical parametric oscillator, Opt. Lett., 1996, 21(17):1336~1338
    [37] L. Goldberg, W. K. Burns, R. W. McElnanon, Wide acceptance bandwidth difference frequency generation in quasi-phase-matched LiNbO3, Appl. Phys. Lett., 1995, 67:2910~2912
    [38] K. P. Petrov, L. Goldberg, W. K. Burns, et al., Detection of CO in air by diode-pumped 4.6μm difference-frequency generation in quasi-phase-matched LiNbO3, Opt. Lett., 1996, 21(1):86~88
    [39] L. Lefort, K. Puech, G. W. Ross, et al., Optical parametric oscillation out to 6.3μm in periodically poled lithium niobate under strong idler absorption, Opt. Lett., 1998,73(12):1610~1612
    [40] C. W. Hsu, C. C. Yang, Broadband infrared generation with nonlinear optical parametric processes on periodically poled LiNbO3, Opt. Lett., 2001, 26(18):1412~1414
    [41] M. A. Arbore, A. Galvanauskas, D. Harter, et al., Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate, Opt. Lett., 1997, 22(17):1341~1343
    [42] Y. Hirano, LiNbO3 OPO reaches 60.2W of output, Photonics Spectra, 2000, 58:27~29
    [43] I. Camlibel, Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method, J. Appl. Phys., 1969, 40(4):1691~1693
    [44] M. Yamada, N. Nada, M. Saitoh, et al., First-order quasi-phase-matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue, second-harmonic generation, Appl. Phys. Lett., 1993, 62(5):435~436
    [45] P. E. Powers, T. J. Kulp, S. E. Bisson, Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design, Opt. Lett., 1998, 23(3):159~161
    [46] S. Zhu, Y. Zhu, N. Ming, Quasi phase matched third-harmonic generation in a quasi-periodic optical superlattice, SCIENCE, 1997, 278(31):843~845
    [47] F. Xu, J. He, J. Liao, et al., Simultaneous high-efficiency and equal-level second and third harmonic generation achieved by controllable linear grating in a quasi-periodic optical superlattice, Physical Review A, 2003, 68:053803-1~053803-5
    [48] K. F. Kashi, A. Arie, P. Urenski, et al., Multiple nonlinear optical interactions with arbitrary wave vector differences, Phys. Rev. Lett., 2002, 88(2):023903-1~023903-4
    [49] L. E. Myers, Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators, IEEE JOURNAL OF QUANTUM ELECTRONICS, 1997, 33(10):1663~1672
    [50] H. Ishizuki, I. Shoji, T. Taira, High-energy quasi-phase-matched optical parametric oscillation in a 3-mm-thick periodically poled MgO:LiNbO3 device, Opt. Lett., 2004 29(21):2527~2529
    [51] H. Kanbara, H. Itoh, M. Asobe, et al., All-optical switching based on cascading of second-order nonlinearities in a periodically poled titanium-diffused lithium niobate waveguide, Photonics Technology Letters, 1999, 11(3):328~330
    [52]张浩,基于周期极化铌酸锂晶体的角度调谐光学参量振荡器, [硕士学位论文],天津,天津大学, 2004
    [53]石顺翔,陈国夫,赵卫等,非线性光学,西安西安电子科技大学出版社, 2003:124~147
    [54] M. M. Fejer, G. A. Magel, D. H. Jundt, et al., Quasi-phase-matched second harmonic generation:tuning and tolerances, Journal of Quantum Electronics, 1992, 28(11):2631~2653
    [55] A. Kuroda, S. Kurimura, Y. Uesu, Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields, Appl. Phys. Lett., 1996, 69(11):1565~1567
    [56] K. S. Abedin, H. Ito, Temperature-dependent dispersion relation of ferroelectric lithium tantalate, J. Appl. Phys., 1996, 80(11):6561~6563
    [57] J. P. Meyn, M. M. Fejer, Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate, Opt. Lett., 1997, 22(16):1214~1216
    [58] M. Nakamura, S. Higuchi, S. Takekawa, et al., Refractive indices in undoped and MgO-doped near-stoichiometric LiTaO3 crystals, J. Appl. Phys, 2002, 41:465~467
    [59] A. Bruner, D. Eger, M. B. Oron, et al., Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate, Opt. Lett., 2003, 28(3):194~196
    [60] V. Z. Kolev, M. W. Duering, B. L. Davies, Corrections to refractive index data of stoichiometric lithium tantalate in the 5-6μm range, Opt. Lett., 2006, 31(13):2033~2035
    [61] G. I. Stegeman, M. Sheik-Bhae, E. V. Stryland, et al., Large nonlinear phase shifts in second-order nonlinear-optical processes, Opt. Lett., 1993, 18(1):13~15
    [62] R. DeSalvo, D. J. Hagan, M. Sheik-Bahae, et al., Self-focusing and self-defocusing by cascaded second-order effects in KTP, Opt. Lett., 17(1):28~30
    [63] K. Koynov, S. Saltiel, Nonlinear phase shift via multistepχ(2)cascading, Opt. Comm., 1998, 152:96~100
    [64] R. H. Stolen, W. A. Reed, K. S. Kim, et al., Measurement of the nonlinear refractive index of long dispersion-shifted fibers by self-phase modulation at 1.55μm, Journal of Lightwave Technology, 1998, 16(6):1006~1012
    [65] G. Assanto, I. Torelli, Cascading effects in type II second-harmonic generation: applications to all-optical processing, Opt. Comm., 1999, 119(1-2):143~148
    [66] Y. S. Kivshar, A. A. Sukhorukov, S. M. Saltiel, Two- color multistep cascading and parametric soliton-induced waveguides, Phys. Rev. E, 1999, 10:R5056~5061
    [67] C. B. Clausen, O. Bang, Y. S. Kivshar, Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media, Phys. Rev. Lett., 1997, 78:4749~4752
    [68] K. Wang, L. Qian, D. Zhang, et al., Cascaded nonlinear phase shifts in quasi-phase-matched structures, Phys. Rev. A, 2007, 76(013805):1~6
    [69]吕同富,康兆敏,方秀男,数值计算方法,北京清华大学出版社, 2008:145~158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700