掺镁钽酸锂晶体的非线性光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先利用刀口法对固体激光器聚焦的高斯光束束腰半径进行了实验测量,以利于用Z扫描和泵浦-探测实验测量镁掺杂近化学计量比钽酸锂晶体的非线性光学性质。
     利用Z扫描技术,以连续脉冲激光器作为光源(功率在50kw/cm2的水平,波长532nm),首次研究不同镁掺杂(0.5mol%,0.7mol%,1.0mol%,1.2mol%)近化学计量比钽酸锂晶体的三阶非线性光学性质,获得了晶体的三阶非线性折射系数与双光子吸收系数等重要数据,并发现掺镁1.2mol%钽酸锂的吸收是饱和吸收,与掺镁0.7mol%和1.0mol%钽酸锂晶体的吸收系数符号相反。
     利用泵浦(514 nm)探测(633 nm)技术测量晶体的光致双折射变化研究光折变效应,发现:在不掺杂,掺杂0.5mol%,0.7mol%的MgO的近化学计量比的钽酸锂晶体中,都产生了光致双折射变化,且光致双折射变化随掺杂浓度的增加而减少,随泵浦光的增大而增强;对掺杂1.0mol%MgO以上的晶体,当光强低于8MW/m~2时,几乎探测不到光致双折射变化,当光强高于8MW/m2时,随光强的增加晶体的光致双折射变化线性增加,但当关闭泵浦光时,光致双折射变化迅速消失,说明这是晶体的热光效应所致。结果表明,近化学计量比钽酸锂掺杂MgO的抗光损伤(光折变)阈值在0.7mol%和1.0mol%之间。
     结合Z扫描实验和光致双折射测量实验,我们研究了近化学计量比MgO掺杂钽酸锂晶体的非线性光学性质,测量的三阶非线性光学系数以及光折变效应对掺杂的依赖关系,结果对这种材料的进一步应用提供了重要的参考。
In this dissertation, we first use the 90/10 kniefe-edge method to measure the radius and location of focused beam from a semiconductor laser, in order to perform the Z-scan and pump-probe experiments for characterizing the nonlinear optical propertiest in Mg-doped stoichiometric LiTaO3. The third-order nonlinear optical properties are measured in several stoichiometric Mg-doped LiTaO3 crystals with different doping concentration (0.7mol%, 1.0mol%, 1.2mol% ) by the Z-scan method with a continuous-wave semiconductor laser operating the wavelength of 532 nm and an intensity level of 50 kw/cm~2. The third-order optical nonlinear refractive indexγand nonlinear absorption coefficientβare determined. In Mg doped stoichiometric crystals with Mg concentrations 1.2mol%, the absorption are saturation absorption, which is negative Mg-dopant level below 1.0mol%.
     The light-induced briefringence changes of the samples are measured by pump-probe method. We find that the light-induced birefringence changes are observed in nominally pure and 0.5 and 0.7 mol% MgO-doped SLT crystals, and the changes of light-induced briefringence decrease with the dopant, as well as increase with pumping intensity. In the crystals with concentration of Mg higher than 1.0 mol%, the light-induced birefringence changes are too small to detect at lower intensities than 8 MW/m2, and the changes almost increase linearly with intensities higher than 8 MW/m2.When pump beam is closed, light-induced briefringence changes vanish quickly, which shows that thermal-optic effect happen in these crystals with high concentration of Mg higher than 1.0 mol%. As a result, the photorefractive threshold in Mg-doped stoichiometric LiTaO3 is between 0.7mol% and 1.0mol%.
     By using the Z-scan and pump-probe methods, we investigate the nonlinear optical properties, i.e., dependence of the third-order nonlinear optical coefficients and light-induced birefringence changes on the doping concentration in the Mg-doped stoichiometric LiTaO3 crystals. The results are useful for advanced applications of this material.
引文
[1] Gunter P. Nolinear Optical Matericals. Proc of SPIE, 1990, 1273(3): 1~46.
    [2] Malovichko G. I, Grachev V. G, Yurchenko L. P, et al. Improvement of LiNbO3 microstructure by crystal growth with potassium. Phys. Stat. Sol (a), 1992, 133(7): 29~32.
    [3] Kitamura K, Yamamoto J. K, Iyi N, et al. Stoichiometric LiNbO3 single crystal growth by double crucible czochralski method using automatic powder supply system. J. Crystal Growth, 1992, 116(3): 327~332.
    [4] Fay H, Alford W. J, Dess H. M, Dependence of second harmonic phase matching temperature in LiNbO3 crystals on melt-composition. Appl. Phys. Lett, 1968, 12(3): 89~72.
    [5] Peterson G. E, Carnevale A, Nb NMR. Linewidths in nonstiochiometric Lithium Niobate. J. Chem. Phys, 1972, 56(10): 4848~4852.
    [6] Smyth D. M, Defects and transport in LiNbO3 ferroelectrics.1983, 50(1): 93~102.
    [7] Lerner P, Legras C, Dumas J. P. Stoechimetrie des monocristaux de metaniobate de Lithium. J. crystal. growth, 1968, 3(4): 231~235.
    [8] Polgar K, Peter C, Ferriol M. Phase relations in the growth of stoichiometric Lithium Niobate. Phy Stat Sol(a), 1999,201(2): 284~288.
    [9] Class A. M, Von der Linde D, Negran T. J. High voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett, 1974, 25(2): 233~235.
    [10] Wang Q. Q, Shi J, Yang B. F, et al. A Z scan study of LiNbO3 thin films. Chin. Phys. Lett, 2002, 19(5): 677~679.
    [11] Palfalvi L, G.almasi J. Nonlinear refraction and absorption of Mg doped stoichiometric and congruent LiNbO3. Jour of Appl. Phy, 2004, 95(3): 902~907.
    [12] Anderson R. J, Larson C. Reflective relay optics for use in laser deflection systems. App1. Opt, 1971,10(7): l605~l608.
    [13] Dickson L. D. Ronchi ruling method for Gaussian beam diameter. Optical Engineering, 1979,18(10): 70~75.
    [14]杨向刚,周望龙,邬敏贤,光盘读写斑点二维强度分布测量,应用激用,1986,6(4): l63~l65.
    [15]竺子民,冯辉,阮玉,基于泰伯效应的高斯光束尺寸测量,光学学报, 1996, 16(7): 982~987.
    [16] Vallese L. M. Measurement of the beam parameters of a Laser. Appl. Opt, 1971, 10(4): 959~960.
    [17] Suzaki Y. and Tachibana A. Measurement of theμm sized radius of Gaussian laser beam usingthe scanning knife-edge. Appl. Opt, 1975, 14(12): 2809~2810.
    [18] Moran M. J, She C. Y, Carman R. L, Interferometric measurements of the nonlinear refractive index coefficient relative to CS2 in laser system related materials. J. Quan. Elec , 1975, 11(6): 259~263.
    [19] Friberg S. R, Smith P. W. Nonlinear optical glass for ultrafast optical switches. J. Quan. Elec, 1987, 23(12): 2089~2094.
    [20] Yech P. Exact solution of a nonlinear model of two-wave mixing in Kerr media, Opt .Soc. Am B, 1986, 3(5): 747~750.
    [21] Owyoung A. Elipse rotation studies in laser host materials. J. Quan. Elect, 1973, 9(11): 1064~1069.
    [22] Williams W. E, Soileau M. J, Van Stryland E. W. Optical switching and measurements in CS2. Opt. Com, 1984, 50(4): 256~260.
    [23] Sheik-bahae M, Said A. A, Hagan D. J, et al. Sensitive measurement of optical nonlinearities using a single beam. J Quan Elec, 1990, 26(4): 760~769.
    [24] Castillo J, Kozich V. P, Marcano A. O. Thermal lensing resulting from one-and two-photon. absorption with a two-color time-resolved Z-scan. Opt Lett, 1994, 19(3): 171~173.
    [25]余力,单光束相位测量系统研究,福建省自然科学基金申请书, 1996.
    [26]余力,陈谋智,黄美纯等,测量光学非线性的Z扫描方法,量子电子学报, 1998, 15(5): 433~440.
    [27] Gaskill J. D. Linear Systems.Fourier Transforms and Optics, Wiley New York: Gaskill J. D 1978, 12~14.
    [28] Weaire D. Some remarks on the arrangement of grains in a polycrystal.Opt Lett, 1974, 7(2): 157~160.
    [29] Ashkin A, Boyd G. D, Dziedzic J. M, et al. Optical- induced refractive index inhomogeneity in LiNbO3 and LiTaO3. Appl. Phys. Lett, 1966, 9(1): 72~74.
    [30] Chen F S, Lamacchia J T, Fraser D. B, Holographic storage in Lithium niobate. Appl. Phys. Lett, 1968, 13(7): 223~225.
    [31] Townsend R. L, LaMacchia J T. Optically induced refractive index changes in BaTiO3. J. Appl. Phys, 1970, 41(13): 5188~5192.
    [32] Ewbank M. D, Neurgaonkar R. R, Cory W. K, et al. Photorefractive properties of strontium-Barium Niobate, J. Appl. Phys, 1987, 62(2): 374~380.
    [33] Vally G. C, Smirl A. L, Klein M. B, et al.Picosecond photorefractive beam coupling in GaAs. Opt Lett, 1986(11): 747~649.
    [34] Glass A, Johnson A, Olsen D, et al. Four-wave mixing in semi-insulating InP and GaAs using the photorefractive effect, Appl. Phys. Lett, 1984, 44(10): 948~950.
    [35] Grabmaier B. C. Growth and investigation of MgO-doped LiNbO3. J. Crystal. Growth, 1986, 79(1-3): 682~688.
    [36] Zhang Y, Burzynski R, Ghosal S, et al. Photorefractive polymers and composites advanced materials, Advanced Materials, 1996, 8(2): 111~125.
    [37] Zhong G, Jin J, Wu Z. Measurements of optically induced refractive-index damage of Lithium niobate doped with different concentrations of MgO (A). J. Opt. Soc. Am, 1980, 70(6): 631~631.
    [38] Volk T, Rubinina N, Wohlecke M. Optical damage resistant Impurities in Lithium Niobate. J. Opt. Som. Am. B, 1994, 11(9): 1681~1687.
    [39] Volk T, Wohlecke M, Rubinina N, et al. LiNbO3 with the Damage Resistant Impurity indium. Appl. Phys. A, 1995, 60(2): 217~225.
    [40] Kong Y. F, Wen J. K, Wang H. H. New doped Lithium Niobate crystal with high resistance to photorefraction LiNbO3: In. Appl. Phys. Lett, 1995, 66(3): 280~281.
    [41] Yamamoto J. K, Kitamura K, Iyi N. Increased optical damage resistance in Sc2O3-doped LiNbO3. 1992, 61(18): 2156~2158.
    [42]冯锡淇,张启仁,应继锋等,掺镁铌酸锂晶体阈值效应的研究,中国科学, 1989, 6(A): 665~672.
    [43] Bryan D. A, Gerson R, Tomaschke H. E. Increased optical damage resistance in Lithium niobate. Appl. Phys. Lett, 1984, 44(9): 847~849.
    [44] Kovacs L, Polgar K, Capelletti R. Ir absorption study of OH-1 in pure and Mg doped LiNbO3 crystals. Cryst. Latt. Def and Amorph Ma, 1987, 15(3): 115~120.
    [45] Wen J, Wang L, Tang Y, et al. Enhanced resistance to photorefraction and photovoltaic effect in Li-rich LiNbO3: Mg crystals. Appl. Phys. Lett, 1988, 53(4): 260~261.
    [46] Furukawa Y, Kitamura K, Takekawa S, et al. Stoichiometric Mg: LiNbO3 as an effective material for nonlinear optics. Opt. Lett, 1998, 23(24): 1892~1894.
    [47] Kong Y. F, Li B, Chen Y. L, et al. The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold. Opt Soc .Amer, 2003(87): 53~55.
    [48] Sweeney K. L, Halliburton L. E, Bryan D. A, et al. Threshold effect in Mg-doped Lithium niobate. Appl. Phys. Lett, 1984, 45(7): 805~807.
    [49] Feng H. X, Wen J. K, Wang H. F. Studies of absorption spectra and the photovoltaic effect in LiNbO3: Mg: Fe crystals. Appl. Phys. A, 1990, 51(5): 394~397.
    [50]温金珂,唐燕生等,富锂高掺镁铌酸锂晶体,中国, CN87104070, 1987.
    [51] Nightingale J. L, Silva W. J, Reade G. E, et al. Fifty percent conversion efficiency second harmonic generation in magnesium oxide doped lithium niobate. Proc. SPIE, 1987, 681(3): 20~24.
    [52] Kozlovsky W. J, Gustafson E. K, Eckardt R. C, et al. Efficient monolithic MgO: LiNbO3 singly resonant optical parametric oscillator. Opt. Lett, 13(12): 1102~1104.
    [53] Jackel J. L, Hackwood S, Veselke J. J, et al. Electrowetting switch for multimode optical fibers. J. Opt. Commun, 1983, 22 (11): 1765~1770.
    [54] Kappers L. A, Sweeney K. L, Halliburton L. E, et al. Low Oxygen vacancies in Lithium tantalite. Phys. Rev. B, 1985, 31(10): 6792~6794.
    [55] Mattews P. J, Mickelson A. R, Properties of proton exchange waveguides in Lithium tantalite. J. Appl. Phys, 1992, 72(7): 2562~2574.
    [56] Chen F. S. Optically induced change of refractive indices in LiNbO3 and LiTaO3. J. Appl. Phy, 1969, 40(8): 3389~3396.
    [57] Ailllerie M, Theofanous N, Fontana M. D. Measurement of the electro-optic coefficients: description and comparison of the experimental techniques. Appl. Phy. B, 2000,70(3): 317~334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700