铜系金属及其氧化物纳米材料的低温液相合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文工作中,我们利用低温液相合成法实现了铜系金属及其氧化物纳米材料的简单制备,对反应机理及内在规律进行了探讨。分别从纳米材料的制备、形成机理、性质表征和应用研究等方面进行论述,内容涉及CuO纳米叶、不同结构Cu纳米材料、Ni催化还原Cu纳米材料、多足状Cu_2O微晶及SiO_2保护Cu纳米粒子等材料的制备、反应机理及催化性能研究。
     首先,我们以CuSO_4和NaOH为原料,在简单的室温水溶液条件下由Cu(OH)_2制备出了CuO纳米叶。根据转化机理Cu(OH)_2→Cu(OH)42–→CuO中OH~–的作用方式可知整个转化反应的速度受NaOH的用量或浓度影响较大,调节合适的NaOH用量和浓度,可以使反应在30~60min内转化完全。通过向体系中引入表面活性剂可以有效地改善样品的形貌及分散性,得到稳定悬浮性很好的CuO纳米叶。
     然后,我们以室温下水溶液中制备的CuO纳米叶为起始物,还原制备出了不同结构的Cu纳米材料。反应速度较快时,CuO纳米叶被迅速还原到Cu_2O并在几分钟内还原到Cu纳米粒子,Cu纳米粒子发生聚集生长并随着生长时间的延长形成花状Cu;通过适当调节还原剂的用量和反应时间,经Cu_2O八面体形貌遗传机理可以得到八面体笼状Cu。TG–DTA分析表明八面体笼状Cu具有相对较好的热稳定性。将纳米Cu组装成电化学无酶传感器用于葡萄糖检测,具有响应快速、稳定,选择性好,抗干扰能力强等优点,花状Cu的检测灵敏度优于八面体笼状Cu。
     我们还对油酸钠(SOA)在室温合成CuO纳米叶过程中的作用方式进行了考察研究。SOA对Cu(OH)_2向CuO的转化具有抑制作用,且当体系中OA–含量足够多时,会导致CuO纳米叶顶端分叉并分裂为1D棒状产物。以SOA修饰的CuO为起始物还原制备Cu时,其抑制作用仍然存在,通过向体系中引入少量Ni2+可以催化还原反应快速进行。TG–DTA分析显示,与无Ni催化的八面体笼状Cu相比,加Ni催化制备的八面体笼状Cu具有更好的稳定性。SOA修饰的CuO和Cu纳米材料组装成的电化学无酶传感器对葡萄糖检测均有很好的响应效果,检测灵敏度分别为:CuO:26.6μAmmol~(-1)L,Cu:39.04μA mmol~(–1)L。
     另外,我们还利用NaH_2PO_2在不同环境中的还原性差别,分别在碱性条件和酸性条件下还原制备出了多足状Cu_2O微晶和Cu纳米粒子。在碱性条件下,从Cu(OH)42–出发制备出了多足状的Cu_2O晶体,随着CuSO_4浓度的增大,在相同反应时间内所得样品的形貌呈现出连续变化的过程:八面体、面心带洞八面体、分裂八面体、六足花和箭头。利用NaH_2PO_2在酸性环境中发生键价结构转变的机理,适当调节溶液pH=5~6制备出了Cu纳米粒子,通过后步SiO_2包覆处理对其进行抗氧化保护,TG–DTA分析表明随着SiO_2引入量的增大,样品的抗氧化性能得到明显提高。且SiO_2的引入可以抑制Cu纳米粒子聚集,改善样品的分散性。
     最后,我们利用低温液相法制备出来的CuO纳米叶、Cu纳米材料及多足状Cu_2O微晶催化AP热分解,考察了不同催化剂添加量、催化次数对AP热分解性能的影响。用CuO进行催化时,可将AP的主要分解温度由472.7oC降低到300oC,热分解的单位焓变提高(CuO用量为1%时,AP热分解单位焓变由20.33Jg~(–1)s~(–1)提高到了36.32J g~(–1)s~(–1)),且表现出很好的重复可利用性。纳米Cu由于其更加活泼的催化性能,添加量为0.05%时就有很好的催化效果,纳米Cu用量为2%时,AP的主要分解温度降低了150oC,热分解单位焓变达到79.07J g~(–1)s~(–1),约为纯AP的3.9倍,实现了AP在低温区的快速高效分解放热。
     综上所述,本论文的工作很好地涵盖了铜系金属及其氧化物纳米材料的合成、表征和应用性能研究。整个论文工作所选用的材料合成方法简单易行,所制得的材料在电化学无酶传感器及催化高氯酸铵热分解领域具有广阔的应用前景。
In this paper, the copper and copper oxide nanomaterials were synthesized at lowtemperature in aqueous solution. Reaction mechanism and properties characterizationswere also conducted. Investigations are based on several aspects including synthesis,mechanism, properties and applications. The content mainly involve preparation,reaction mechanism and properties study of CuO nanoleaves, Cu flowers, Cuoctahedral cages, Ni-catalyzed Cu nanocrystals, multi-rods Cu_2O crystals andSiO_2-protected Cu nanoparticles.
     Firstly, CuO nanoleaves were successfully synthesized from Cu(OH)_2precipitation at room temperature in aqueous solution. According to thetransformation mechanism, Cu(OH)_2→Cu(OH)_4~(2–)→CuO, amounts orconcentrations of NaOH in the system plays an important role in controlling thereaction velocity. Transformation can be accomplished in15~30min by adjustingNaOH solution in a appropriate amount and concentration. Morphologies anddispersibility of samples were improved by introducing surfactants into the system.The obtained CuO nanoleaves were stably suspended in ethanol.
     Then, CuO nanoleaves synthesized at room temperature were reduced to Cunanostructures by adding reducing agent into the system. Cu nanocrystals withdifferent structures were obtained by adjusting the reducing agent quantity andreduction time. When the reducing reaction took place fast, CuO nanoleaves werereduced to Cu_2O and then to Cu nanoparticles. Cu particles aggregated togetherforming Cu spheres, and Cu flowers were finally obtained with further growth.Accurate controlling the reducing agent quantity and reduction time, Cu octahedralcages were obtained through the morphology heredity from Cu_2O octahedra.TG–DTA analysis illuminated that Cu octahedral cages had higher stability than Cuflowers. The as-prepared Cu nanostructures were used to construct non-enzymaticglucose sensor, which has a well-defined, stable and fast amperometric response.
     We also studied the behavior of oleic sodium (SOA) in preparation of CuO nanoleaces at room temperature. It was found that adding SOA could not only slowdown the transformation velocity from Cu(OH)_2to CuO, but also effect themorphology of CuO nanoleaves. When the amount of OA–is sufficient in the system,top of the CuO nanoleaf would be branched and separated into nanorod finally. Theinhibited effect of SOA also existed when reducing the SOA-decorated CuOnanoleaves to Cu nanocrystals. By introducing Ni~(2+)into the system, reducing reactionwas catalyzed and could accomplish in a short time. TG–DTA results implied that theNi-assisted Cu octahedral cages had higher stability than Cu octahedral cages withoutNi.
     Otherwise, reducing behavior of NaH2PO_2was studied under different conditions.Multi-rods Cu_2O crystals were obtained from Cu(OH)_4~(2–)under alkaline condition.Increasing the concentration of CuSO_4, morphologies of Cu_2O crystals change asoctahedron, divided octahedron, six-rods and arrow. According to the bond-valencestructure transformation of NaH_2PO_2in acidic condition, Cu nanoparticles weresuccessfully synthesized by adjusting the solution pH to5~6. SiO_2were introducedto protect the Cu nanoparticles from oxidation. TG–DTA characteration informed thatas the SiO_2content increased, the stability of Cu nanopaticles was improved.Moreover, introducing SiO_2could also improve the morphologies and dispersibility ofCu nanoparticles.
     Finally, the as-prepared CuO nanoleaves, Cu nanoparticles and multi-rods Cu_2Ocrystals were used as catalysts for the thermal decomposition of AP. The hightemperature of AP decomposition decreased from472.7oC to308oC when CuO1%was used, and the unit enthalpy of AP decomposition increased. Moreover, CuOnanoleaves were recyclable for AP decomposition. Thank to its higher catalyticactivity, nano-Cu showed good catalytic effect for AP decomposition. The maindecomposition temperature of AP was decreased to319oC when nano-Cu2%wasused. The unit enthalpy was improved to79.07J g~(–1)s~(–1), which is about3.9times ofpure AP. Fast heat release of AP decomposition with high exothermic is realized atlow temperature under Cu nanoparticles’ catalysis.
     In summary, our research invoved the synthesis, characteration ang propertiesstudy of copper and copper oxide nanomaterials. The preparation method is facil andsimple, the as-prepared samples have widely use in non-enzymatic glucose sensor anddecomposition of AP.
引文
[1] Klabunde K J. Nanoscale Materials in Chemistry [M]. New York: John Wiley&Sons Inc.,2001.
    [2]李凤生,杨毅.纳米/微米复合技术及应用[M].北京:国防工业出版社,2002.
    [3]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [4] Hagfeld A, Gratzer M. Light-induced redox reactions in nanocrystallinesystems [J]. Chem. Rev.,1995,95:49–68.
    [5] Wang Y, Herron N. Nanometer-sized semiconductor clusters: materialssynthesis, quantum size effects, and photophysical properties [J]. J. Phys. Chem.,1991,95:525–532.
    [6] Bayansal F, Kahraman S, ankaya G, et al. Growth of homogenous CuOnano-structured thin films by a simple solution method [J]. J. Alloys Compd.,2011,2094–2098.
    [7] Zhang G, Liu M. Effect of particle size and dopant on properties ofSnO2-based gas sensors [J]. Sens. Actuators B,2000,69:144–152.
    [8] Carnes C L, Stipp J, Klabunde K J. Synthesis, characterization, andadsorption studies of nanocrystalline copper oxide and nickel oxide [J]. Langmuir,2002,18:1352–1359.
    [9] Brus L E. A simple model for the ionization potential, electron affinity, andaqueous redox potentials of small semiconductor crystallites [J]. J. Chem. Phys.,1983,79:5566–5571.
    [10] Steigerwald M L, Brus L E. Semiconductor crystallites: A class of largemolecules [J]. Acc. Chem. Res.,1990,23:183–188.
    [11] Brus L E. Electron-electron and electron-hole interactions in smallsemiconductor crystallites: the size dependence of the lowest excited electronic state[J]. J. Chem. Phys.,1984,80:4403–4409.
    [12] Alivisatos A P. Perspectives on the physical chemistry of semiconductornanocrystals [J]. J. Phys. Chem.,1996,100:13226–13239.
    [13] Ramaniah L M, Nair S V. Electronic structure of semiconductor quantumdots [J]. Phys. B,1995,212:245–250.
    [14]张梅,陈焕春,杨绪杰,等.纳米材料的研究现状及展望[J].导弹与航天运载技术,2000,245(3):11–16.
    [15] Staduik Z M, Griesbach P, Dehe P, et al. Ni m ssbauer study of thehyperfine magnetic field near the Ni surface [J]. Phys. Rev. B,1987,35:6588–6592.
    [16] Ball P, Garwin L. Science at the atomic scale [J]. Nature,1992,355:761–766.
    [17]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [18] LaiHing K, Wheeler R G, Wilson W L, et al. Photoionization dynamics andabundance patterns in laser vaporized tin and lead clusters [J]. J. Chem. Phys.,1987,87:3401–3409.
    [19] Xu C K, Liu Y K, Xu G D, et al. Preparation and characterization of CuOnanorods by thermal decomposition of CuC2O4precursor [J]. Mater. Res. Bull.,2002,37:2365–2372.
    [20] Li F, Zhang H G, Jia D Z, et al. Synthesis of perovskite-type compositeoxides nanocrystals by solid-state reactions [J]. Mater. Lett.,2002,53:282–286.
    [21] Holmes J D, Johnston K P, Doty R C, et al. Control of thickness andorientation of solution-grown silicon nanowires [J]. Science,2000,287:1471–1473.
    [22]张邦维.纳米材料物理基础[M].北京:化学工业出版社,2009.
    [23] Raming T, Winnubst L, Verweij H. The synthesis and characterisation ofmixed Y2O3-doped ZrO2and α-Fe2O3nanosized powders [J]. J. Mater. Chem.,2002,12:3705–3711.
    [24] Eshuis A, Elderen G R A V, Koning C A J. A descriptive model for thehomogeneous precipitation of zinc sulfide from acidic zinc salt solutions [J]. Colloidsand Surfaces A: Physicochem. Eng. Aspects,1999,151:505–512.
    [25] Khollam Y B, Dhage S R, Potdar H S, et al. Microwave hydrothermalpreparation of submicron-sized sphefical magnetite (Fe3O4) powders [J]. Mater. Lett.,2002,56:571–577.
    [26] Moura A P, Cavalcante L S, Sczancoski J C, et al. Structure and growthmechanism of CuO plates obtained by microwave-hydrothermal without surfactants[J]. Adv. Powder Technol.,2010,21:197–202.
    [27] Boutonnet M, Kizling J, Stenius P. The preparation of monodispersecolloidal metal particles from micro-emulsions [J]. Colloids Surf.,1982,5:209–225.
    [28] Chen H, Gao Y, Zhang H, et al. Transmission-electron-microscopy study onfivefold twinned silver nanorods [J]. J. Phys. Chem. B,2004,108:12038–12043.
    [29] Fujita F E.On the small atomic clusters dispersed in solids [J]. Mater. Trans.,JIM,1997,38:659–667.
    [30] Routkevitch D, Haruyama J. Non-lithographic nano-wire arrays: fabrication,physics, and device applications [J]. IEEE Trans. Electr. Dev.,1996,43:1646–1658.
    [31] Provenzano V, Holtz R L. Nanocomposites for high temperatureapplications [J]. Mater. Sci. Eng., A,1995,204:125–134.
    [32] Wu G W, Yu D M. Preparation of a novel infrared low-emissive coatingfrom the Cu powder modified by the polyethylene wax [J]. Infrared Phys. Technol.,2012,55:26–31.
    [33]谭树松.有色金属材料学[M].北京:冶金工业出版社,1993.
    [34]田荣璋,等.金属材料知识手册[M].湖南:湖南科学技术出版社,1993.
    [35] Wang J, Zhang W D. Fabrication of CuO nanoplatelets for highly sensitiveenzyme-free determination of glucose [J]. Electrochim. Acta,2011,56:7510–7516.
    [36] Lisiecki I, Filankembo A, Sack-Kongehl H, et al. Structural investigations ofcopper nanorods by high-resolution TEM [J]. Phys. Rev. B: Condens. Matter Mater.Phys.,1999,61:4968–4974.
    [37]洪伟良,等.纳米CuO制备及其对热分解特性的影响[J].推进技术,2001,22:254–257.
    [38]林鸿溢.纳米材料与纳米技术[J].材料导报,1993,6:42–45.
    [39] Stem E A, Siegel R W, Newville M, et al. Are nanophase grain boundariesanomalous?[J]. Phys. Rev. Lett.,1995,75:3874–3877.
    [40]于鹤龙,徐滨士,许一,等.纳米铜颗粒作为润滑油添加剂的研究进展[J].材料导报,2005,19:53–55.
    [41]刘成雁,李在元,翟玉春,等.纳米铜粉研制的新进展[J].中国有色冶金,2005,12:21–24.
    [42] Frietsch M, Zudock F, Goschnick J, et al. CuO catalytic membrane asselectivity trimmer for metal oxide gas sensors [J]. Sens. Actuators B,2000,65:379–381.
    [43]罗明凤,李丽霞,杨毅.纳米CuO制备与应用技术进展[J].微纳电子技术,2010,47:297–303.
    [44]王元生,黄兆新.二氧化锡纳米粉掺杂及其微结构[J].材料研究学报,1998,12:531–534.
    [45]王文亮,李东升,秦振平,等. Cu(II)源对铜系氧化物催化分解H2O2活性的影响[J].催化学报,2001,22:301–303.
    [46] Yin M, Wu C K, Lou Y B, ea al. Copper oxide nanocrystals [J]. J. Am.Chem. Soc.,2005,127:9506–9511.
    [47]刘科辉,颜流水,罗国安.纳米氧化铜催化化学发光性能及其氨基酸检测[J].分析化学研究简报,2005,33:847–849.
    [48]闫波,王新,邵纯红,等.纳米氧化铜的制备及常温脱硫效能研究[J].无机化学学报,2007,23:1869–1874.
    [49]郭峰,李镇江,岑伟,等.金属粒子/光催化氧化物型复合纳米抗菌剂的研究发展[J].化工新型材料,2008,36:74–76.
    [50] Mahapatra O, Bhagat M, Gopalakrishnan C, et al. Ultrafine dispersed CuOnanoparticles and their antibacterial activity [J]. J. Exp. Nanosci.,2008,3:185–193.
    [51] Kim Y S, Hwang I S, Kim S J, et al. CuO nanowire gas sensors for airquality control in automotive cabin [J]. Sen. Actuators B,2008,135:298–303.
    [52] Chowdhuri A, Gupta V, Kumar R, et al. Improved response of H2S gassensors with CuO nanoparticles on SnO2film [J]. Proc. IEEE,2003,1:201–205.
    [53] Chen J J, Wang K, Hartman L, et al. H2S detection by vertically alignedCuO nanowire array sensors [J]. J. Phys. Chem. C,2008,112:16017–16021.
    [54] Wang X, Hu C G, Liu H, et al. Synthesis of CuO nanostructures and theirapplication for nonenzymatic glucose sensing [J]. Sens. Actuators B,2010,144:220–225.
    [55] Liao L, Zhang Z, Yan B, et al. Multifunctional CuO nanowire devices:p-type field effect transistors and CO gas sensors [J]. Nanotechnology,2009,20:085203.
    [56]付丽君,杨黎春,刘浩,等.锂离子电池纳米负极材料的研究和开发[J].复旦学报(自然科学版),2004,43:571–579.
    [57] Zheng S F, Hu J S, Zhong L S, et al. Introducing dual functional CNTnetworks into CuO nanomicrospheres toward superior electrode materials forlithium-ion batteries [J]. Chem. Mater.,2008,20:3617–3622.
    [58] Chanquía C M, Sapag K, et al. Nature and location of copper nanospecies inmesoporous molecular sieves [J]. J. Phys. Chem. C,2010,114:1481–1490.
    [59] Zhang F, Zhu A W, Luo Y P, et al. CuO nanosheets for sensitive andselective determination of H2S with high recovery ability [J]. J. Phys. Chem. C,2010,114:19214–19219.
    [60] Song J Y, Sun I H. Design and characterization of new Cu alloys tosubstitute Cu–25%Ni for coinage applications [J]. Mater. Des.,2011,32:1790–1795.
    [61] Jeong S, Song H C, Lee W W, et al. Stable aqueous based Cu nanoparticleink for printing well-defined highly conductive features on a plastic substrate [J].Langmuir,2011,27:3144–3149.
    [62] Zhang X J, Wang G F, Zhang W, et al. Fixure-reduce method for thesynthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-freeglucose sensor [J]. Biosens. Bioelectron.,2009,24:3395–3398.
    [63] Wang J. Electrochemical Glucose Biosensors [J]. Chem. Rev.,2008,108:814–825.
    [63] Wilson R, Turner A P F. Glucose oxidase: an ideal enzyme [J]. Biosens.Bioelectron.,1992,7:165–185.
    [64] Shoji E, Freund M S. Potentiometric sensors based on the inductive effecton the pKaof poly(aniline): A nonenzymatic glucose sensor [J]. J. Am. Chem. Soc.,2001,123:3383–3384.
    [65] Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors[J]. Anal. Chim. Acta,2006,556:46–57.
    [66] Matsumoto F, Harada M, Koura N, et al. Electrochemical oxidation ofglucose at Hg adatom-modified Au electrode in alkaline aqueous solution [J].Electrochem. Commun.,2003,5:42–46.
    [67] Wittstock G, Strübing A, Szargan R, et al. Glucose oxidation atbismuth-modified platinum electrodes [J]. J. Electroanal. Chem.,1998,444:61–73.
    [68] Zhao J, Wang F, Yu J J, et al. Electro-oxidation of glucose at self-assembledmonolayers incorporated by copper particles [J]. Talanta,2006,70:449–454.
    [69] Casella I G, Gatta M, Guascito M R, et al. Highly-dispersed coppermicroparticles on the active gold substrate as an amperometric sensor for glucose [J].Anal. Chim. Acta,1997,357:63–71.
    [70] Vassilyev Y B, Khazova O A, Nikolaeva N N. Kinetics and mechanism ofglucose electrooxidation on different electrode-catalysts: Part I. Adsorption andoxidation on platinum [J]. J. Electroanal. Chem.,1985,196:105–125.
    [71] Luo P F, Zhang F Z, Baldwin R P. Comparison of metallic electrodes forconstant-potential amperometric detection of carbohydrates, amino acids and relatedcompounds in flow systems [J]. Anal. Chim. Acta,1991,244:169–178.
    [72] Farrell S T, Breslin C B. Oxidation and photo-induced oxidation of glucoseat a polyaniline film modified by copper particles [J]. Electrochim. Acta,2004,49:4497–4503.
    [73] Salimi A, Roushani M. Non-enzymatic glucose detection free of ascorbicacid interference using nickel powder and nafion sol–gel dispersed renewable carbonceramic electrode [J]. Electrochem. Commun.,2005,7:879–887.
    [74] Aoun S B, Bang G S, Koga T, et al. Electrocatalytic oxidation of sugars onsilver-UPD single crystal gold electrodes in alkaline solutions [J]. Electrochem.Commun.,2003,5:317–320.
    [75] Poizot P, Laruelle S, Grugenon S, et al. Nano-sized transition-metal oxidesas negative-electrode materials for lithium-ion batteries [J]. Nature,2000,407:496–499.
    [76] Biswas S, Drzal L T. Multilayered nano-architecture of variable sizedgraphene nanosheets for enhanced supercapacitor electrode performance [J]. ACSAppl. Mater. Interfaces,2010,2:2293–2300.
    [77] Chou C H, Chen J C, Tai C C, et al. A nonenzymatic glucose sensor usingnanoporous platinum electrodes prepared by electrochemical alloying/dealloying in awater-insensitive zinc chloride-1-ethyl-3-methylimidazolium chloride ionic liquid[J]. Electroanalysis,2008,20:771–775.
    [78] Li Y, Song Y Y, Yang C, et al. Hydrogen bubble dynamic template synthesisof porous gold for nonenzymatic electrochemical detection of glucose [J].Electrochem. Commun.,2007,9:981–988.
    [79] Khan A A, Akhtar T. Synthesis, characterization and analytical applicationof nano-composite cation-exchange material, poly-o-toluidine Ce(IV) phosphate: Itsapplication in making Cd(II) ion selective membrane electrode [J]. Solid State Sci.,2011,13:559–568.
    [80] Wang J, Thomas D F, Chen A. Nonenzymatic electrochemical glucosesensor based on nanoporous PtPb networks [J]. Anal. Chem.,2008,80:997–1004.
    [81] Song Y Y, Zhang D, Gao W, et al. Nonenzymatic glucose detection by usinga three-dimensionally ordered, macroporous platinum template [J]. Chem. Eur. J.,2005,11:2177–2182.
    [82] Yuan J H, Wang K, Xia X H. Highly ordered platinum-nanotubule arrays foramperometric glucose sensing [J]. Adv. Funct. Mater.,2005,15:803–809.
    [83] Cui H F, Ye J S, Zhang W D, et al. Selective and sensitive electrochemicaldetection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbonnanotube nanocomposites [J]. Anal. Chim. Acta,2007,594:175–183.
    [84] Miller B. Split-ring disk study of the anodic processes at a copper electrodein alkaline solution [J]. J. Electrochem. Soc.,1969,116:1675–1680.
    [85] Kano K, Torimura M, Esaka Y, et al. Electrocatalytic oxidation ofcarbohydrates at copper(II)-modified electrodes and its application to flow-throughdetection [J]. J. Electroanal. Chem.,1994,372:137–143.
    [86] Luo M Z, Baldwin R P. Characterization of carbohydrate oxidation atcopper electrodes [J]. J. Electroanal. Chem.,1995,387:87–94.
    [87] Torto N, Ruzgas T, Gorton L. Electrochemical oxidation of mono-anddisaccharides at fresh as well as oxidized copper electrodes in alkaline media [J]. J.Electroanal. Chem.,1999,464:252–258.
    [88] You T, Niwa O, Tomita M, et al. Characterization and electrochemicalproperties of highly dispersed copper oxide/hydroxide nanoparticles in graphite-likecarbon films prepared by RF sputtering method [J]. Electrochem. Commun.,2002,4:468–471.
    [89] Kang X H, Mai Z B, Zou X Y, et al. A sensitive nonenzymatic glucosesensor in alkaline media with a copper nanocluster/multiwall carbonnanotube-modified glassy carbon electrode [J]. Anal. Biochem.,2007,363:143–150.
    [90] Wang G F, Wei Y, Zhang W, et al. Enzyme-free amperometric sensing ofglucose using Cu–CuO nanowire composites [J]. Microchim. Acta,2010,168:87–92.
    [91] Zhuang Z J, Su X D, Yuan H Y, et al. An improved sensitivitynon-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode [J].Analyst,2008,133:126–132.
    [92]梁彦,张弛,郑宏建.火箭推进剂的发展特点分析[J].推进技术,2003,7:47–55.
    [93] Fitzgerald R P, Brewster M Q. Flame and surface structure of laminatepropellants with coarse and fine ammonium perchlorate [J]. Combust. Flame,2004,136:313–326.
    [94]红陶,张庆明,何远航. AP/HTPB/ferrocene混合体系粉尘爆炸特性研究[J].含能材料,2009,17:283–286.
    [95] Duan H Z, Lin X Y, Liu G P, et al. Synthesis of Co nanoparticles and theircatalytic effect on the decomposition of ammonium perchlorate [J]. Chin. J. Chem.Eng.,2008,16:325–328.
    [96] Song L M, Zhang S J, Chen B, et al. A hydrothermal method for preparationof α-Fe2O3nanotubes and their catalytic performance for thermal decomposition ofammonium perchlorate [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2010,360:1–5.
    [97] Fu T M, Liu F Q, Liu L, et al. Catalytic thermal decomposition ofammonium perchlorate using manganese oxide octahedral molecular sieve (OMS)[J].Catal. Commun.,2008,10:108–112.
    [98] Wang Y P, Zhu J W, Yang X J, et al. Preparation of NiO nanoparticles andtheir catalytic activity in the thermal decomposition of ammonium perchlorate [J].Thermochim. Acta,2005,437:106–109.
    [99] Chen L J, Li L P, Li G S. Synthesis of CuO nanorods and their catalyticactivity in the thermal decomposition of ammonium perchlorate [J]. J. Alloys Compd.,2008,464:532–536.
    [100] Duan G R, Yang X J, Chen J, et al. The catalytic effect of nanosized MgOon the decomposition of ammonium perchlorate [J]. Powder Technol.,2007,172:27–29.
    [101] Sun X F, Qiu X Q, Li L P, et al. ZnO twin-cones: synthesis,photoluminescence, and catalytic decomposition of ammonium perchlorate [J]. Inorg.Chem.,2008,47:4146–4152.
    [102]李凤生.特种超细粉体制备技术及应用[M].北京:国防工业出版社,2002.
    [103]张智宏,李凤生.纳米CuO的制备及与高氯酸铵复合方式对其热分解的影响[J].固体火箭技术,2010,33:564–568.
    [104]张汝冰,刘宏英,李凤生.复合纳米材料制备研究[J].火炸药学报,2000,23:59–62.
    [105]马振叶,李凤生,崔平,等.纳米Fe2O3的制备及其对高氯酸铵热分解的催化性能[J].催化学报,2003,24:795–798.
    [106]刘磊力,李凤生,谈玲华,等.纳米金属粉对高氯酸铵热分解特性的影响[J].应用化学,2004,21:488–492.
    [107]杨毅,曹新富,刘磊力,等.纳米过渡金属粉对AP热分解的催化作用[J].含能材料,2005,13:273–277.
    [108]罗元香,陆路德,汪信,等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究[J].含能材料,2002,10:148–152.
    [109]罗元香,陆路德,刘孝恒,等.纳米CuO的制备及对NH4ClO4热分解的催化性能[J].无机化学学报,2002,18:1211–1214.
    [110] Xu H L, Wang W Z, Zhu W, et al. Hierarchical-oriented attachment: fromone-dimensional Cu(OH)2nanowires to two-dimensional CuO nanoleaves [J]. Cryst.Growth Des.,2007,7:2720–2724.
    [111] Chang Y, Teo J J, Zeng H C. Formation of colloidal CuO nanocrystallitesand their spherical aggregation and reductive transformation to hollow Cu2Onanospheres [J]. Langmuir,2005,21:1074-1079.
    [112] Jang K S, Kim J D. Facile and large-scale route to the fabrication of CuOnanosheets from a lamellar mesophase and their reversible self-assembly [J].Langmuir,2009,25:6028–6031.
    [113] Song X Y, Yu H Y, Sun S X. Single-crystalline CuO nanobelts fabricatedby a convenient route [J]. J. Colloid Interface Sci.,2005,289:588–591.
    [114] Moghadassi A R, Hosseini S M, Henneke D E. Effect of CuO nanoparticlesin enhancing the thermal conductivities of monoethylene glycol and paraffin fluids [J].Ind. Eng. Chem. Res.,2010,49:1900–1904.
    [115] Zou G F, Li H, Zhang D W, et al. Well-aligned arrays of CuO nanoplatelets[J]. J. Phys. Chem. B,2006,110:1632–1637.
    [116] Widmer R, Haug F J, Ruffieux P, et al. Surface chirality of CuO thin films[J]. J. Am. Chem. Soc.,2006,128:14103–14108.
    [117] Manna S, Das K, De S K. Template-free synthesis of mesoporous CuOdandelion structures for optoelectronic applications [J]. ACS Appl. Mater. Interfaces,2010,2:1536–1542.
    [118] Hansen B J, Kouklin N, Lu G H, et al. Transport, analyte detection, andopto-electronic response of p-type CuO nanowires, J. Phys. Chem. C,2010,114:2440–2447.
    [119] Liu Y L, Liao L, Li J C, et al. From copper nanocrystalline to CuOnanoneedle array: synthesis, growth mechanism, and properties [J]. J. Phys. Chem. C,2007,111:5050–5056.
    [120] Jiang X C, Herricks T, Xia Y N. CuO nanowires can be synthesized byheating copper substrates in air [J]. Nano Lett.,2002,2:1333–1338.
    [121] Zhang J T, Liu J F, Peng Q, et al. Nearly monodisperse Cu2O and CuOnanospheres: preparation and applications for sensitive gas sensors [J]. Chem. Mater.,2006,18:867–871.
    [122] Yang S Y, Wang C F, Chen L, et al. Facile dicyandiamide-mediatedfabrication of well-defined CuO hollow microspheres and their catalytic application[J]. Mater. Chem. Phys.,2010,120:296–301.
    [123] Gao D Q, Yang G J, Li J Y, et al. Room-temperature ferromagnetism offlowerlike CuO nanostructures [J]. J. Phys. Chem. C,2010,114:18347–18351.
    [124] Zhu G X, Xu H, Xiao Y Y, et al. Facile fabrication and enhanced sensingproperties of hierarchically porous CuO architectures [J]. ACS Appl. Mater. Interfaces,2012,4:744751.
    [125] Li J Y, Xiong S L, Xi B J, et al. Synthesis of CuO perpendicularlycross-bedded microstructure via a precursor-based route [J]. Cryst. Growth Des.,2009,9:41084115.
    [126] Guan X F, Li L P, Li G S, et al. Hierarchical CuO hollow microspheres:controlled synthesis for enhanced lithium storage performance [J]. J. Alloys Compd.,2011,509:3367–3374.
    [127] Ni Y H, Li H, Jin L N, et al. Synthesis of1D Cu(OH)2nanowires andtransition to3D CuO microstructures under ultrasonic irradiation, and theirelectrochemical property [J]. Cryst. Growth Des.,2009,9:3868–3873.
    [128] Taubert A, Uhlmann A, Hedderich A, et al. CuO particles from ionicliquid/water mixtures: evidence for growth via Cu(OH)2nanorod assembly and fusion[J]. Inorg. Chem.,2008,47:10758–10764.
    [129] Lu C H, Qi L M, Yang J H, et al. Simple template-free solution route forthe controlled synthesis of Cu(OH)2and CuO nanostructures [J]. J. Phys. Chem. B,2004,108:17825–17831.
    [130] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: formationof “dandelions”[J]. J. Am. Chem. Soc.,2004,126:8124–8125.
    [131] Liu J P, Huang X T, Li Y Y, et al. Self-assembled CuO monocrystallinenanoarchitectures with controlled dimensionality and morphology [J]. Cryst. GrowthDes.,2006,6:1690–1696.
    [132] Vaseem M, Umar A, Kim S H, et al. Low-temperature synthesis offlower-shaped CuO nanostructures by solution process: formation mechanism andstructural properties [J]. J. Phys. Chem. C,2008,112:5729–5735.
    [133] Singh D P, Ojha A K, Srivastava O N. Synthesis of different Cu(OH)2andCuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wetchemical route [J]. J. Phys. Chem. C,2009,113:3409–3418.
    [134] Siegfried M J, Choi K S. Elucidating the effect of additives on the growthand stability of Cu2O surfaces via shape transformation of pre-grown crystals [J]. J.Am. Chem. Soc.,2006,128:10356–10357.
    [135] Huang L, Peng F, Yu H, et al. Synthesis of Cu2O nanoboxes, nanocubesand nanospheres by polyol process and their adsorption characteristic [J]. Mater. Res.Bull.,2008,43:3047–3053.
    [136] Hua Q, Shang D L, Zhang W H, et al. Morphological evolution of Cu2Onanocrystals in an acid solution: stability of different crystal planes [J]. Langmuir,2011,27:665–671.
    [137] Ng C H B, Fan W Y. Shape evolution of Cu2O nanostructures via kineticand thermodynamic controlled growth [J]. J. Phys. Chem. B,2006,110:20801–20807.
    [138] Zhang D F, Zhang H, Guo L, et al. Delicate control of crystallographicfacet-oriented Cu2O nanocrystals and the correlated adsorption ability [J]. J. Mater.Chem.,2009,19:5220–5225.
    [139] Huang W C, Lyu L M, Yang Y C, et al. Synthesis of Cu2O nanocrystalsfrom cubic to rhombic dodecahedral structures and their comparative photocatalyticactivity [J]. J. Am. Chem. Soc.,2012,134:1261–1267.
    [140] Xu Y Y, Chen D R, Jiao X L, et al. Nanosized Cu2O/PEG400compositehollow spheres with mesoporous shells [J]. J. Phys. Chem. C,2007,111:16284–16289.
    [141] Kuo C H, Huang M H. Fabrication of truncated rhombic dodecahedralCu2O nanocages and nanoframes by particle aggregation and acidic etching [J]. J. Am.Chem. Soc.,2008,130:12815–12820.
    [142] Xu J, Tang Y B, Zhang W X, et al. Fabrication of architectures with dualhollow structures: arrays of Cu2O nanotubes organized by hollow nanospheres [J].Cryst. Growth Des.,2009,9:4524–4528.
    [143] Zhang Z L, Che H W, Wang Y L, et al. Facile synthesis of mesoporousCu2O microspheres with improved catalytic property for dimethyldichlorosilanesynthesis [J]. Ind. Eng. Chem. Res.,2012,51:1264–1274.
    [144] Chang Y, Zeng H C. Manipulative synthesis of multipod frameworks forself-organization and self-amplification of Cu2O microcrystals [J]. Cryst. Growth Des.,2004,4:273–278.
    [145] Siegfried M J, Choi K S. Directing the architecture of cuprous oxidecrystals during electrochemical growth [J]. Angew. Chem.,2005,117:3282–3287.
    [146] Wang Z B, Lu K, Wilde G, et al. Effects of grain growth on interfacediffusion in nanostructured Cu [J]. Scripta Mater.,2011,64:1055–1058.
    [147] Yang J Q, Chen J W, Zhou Y K, et al. A nano-copper electrochemicalsensor for sensitive detection of chemical oxygen demand [J]. Sens. Actuators B,2011,153:78–82.
    [148] Ahmadi E, Malekzadeh M. Sadrnezhaad S K. W–15wt%Cunano-composite produced by hydrogen-reduction/sintering of WO3–CuOnano-powder [J]. Int. J. Refract. Met. Hard Mater.,2010,28:441–445.
    [149] Gao F, Pang H, Xu S P, et al. Copper-based nanostructures: promisingantibacterial agents and photocatalysts [J]. Chem. Commun.,2009,3571–3573.
    [150] He C, Zhang W X, Deng J L. Electric field and size effects on atomicstructures and conduction properties of ultrathin Cu nanowires [J]. J. Phys. Chem. C,2011,115:3327–3331.
    [151] Liu Y, Chu Y, Zhuo Y J, et al. Controlled synthesis of various hollow Cunano/microstructures via a novel reduction route [J]. Adv. Funct. Mater.,2007,17:933–938.
    [152] Xu R, Xie T, Zhao Y G, et al. Single-crystal metal nanoplatelets: cobalt,nickel, copper, and silver [J]. Cryst. Growth Des.,2007,7:1904–1911.
    [153] Chang Y, Lye M L, Zeng H C. Large-scale synthesis of high-qualityultralong copper nanowires [J]. Langmuir,2005,21:3746–3748.
    [154] Su X D, Zhao J Z, Bala H, et al. Fast synthesis of stable cubic coppernanocages in the aqueous phase [J]. J. Phys. Chem. C,2007,111:14689–14693.
    [155] Salzemann C, Urban J, Lisiecki I, et al. Characterization and growthprocess of copper nanodisks [J]. Adv. Funct. Mater.,2005,15:1277–1284.
    [156] Jang D C, Cai C, Greer J R. Influence of homogeneous interfaces on thestrength of500nm diameter Cu nanopillars [J]. Nano Lett.,2011,11:1743–1746.
    [157] Tung H T, Song J M, Dong T Y, et al. Synthesis of surfactant-free alignedsingle crystal copper nanowires by thermal-assisted photoreduction [J]. Cryst. GrowthDes.,2008,8:3415–3419.
    [158] Jiang C L, Zhang W Q, Liu Y K, et al. Self-assembled copper nanowallsinto microstructures with different shapes: a facile aqueous approach [J]. Cryst.Growth Des.,2006,6:2603–2606.
    [159] Shrestha K M, Sorensen C M, Klabunde K J. Synthesis of CuO nanorods,reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO andCu nanomaterials in the near infrared region [J]. J. Phys. Chem. C,2010,114:14368–14376.
    [160] Carroll K J, Reveles J U, Shultz M D, et al. Preparation of elemental Cuand Ni nanoparticles by the polyol method: an experimental and theoretical approach[J]. J. Phys. Chem. C,2011,115:2656–2664.
    [161] Huang Y F, Shih H S, Lin C W, et al. Morphology control of Cu crystals onmodified conjugated polymer surfaces [J], Cryst. Growth Des.,2012,12:1778–1784.
    [162]荔霞,刘永明,齐志明,等.纳米铜毒性研究紧张[J].动物医学进展,2010,31:74–78.
    [163]赵宇亮,柴之芳.纳米毒理学—纳米材料安全应用的基础[M].北京:科学出版社,2010.
    [164] Zhou G J, Lu M K, Yang Z S. Aqueous synthesis of copper nanocubes andbimetallic copper/palladium core-shell nanostructures [J]. Langmuir,2006,22:5900–5903.
    [165] Wu S H, Chen D H. Synthesis of high-concentration Cu nanoparticles inaqueous CTAB solutions [J]. J. Colloid Interface Sci.,2004,273:165–169.
    [1] Nie Z H, Petukhova A, Kumacheva E. Properties and emerging applicationsof self-assembled structures made from inorganic nanoparticles [J]. Nat. Nanotechnol.,2009,5:15–25.
    [2] Lu A H, Salabas E L, Schüth F. Magnetic nanoparticles: synthesis, protection,functionalization, and application [J]. Angew. Chem. Int. Ed.,2007,46:1222–1244.
    [3] Wu C Z, Xie Y. Controlling phase and morphology of inorganicnanostructures originated from the internal crystal structure [J]. Chem. Commun.,2009,5943–5957.
    [4] Gong Y, Zhou M F, Andrews L. Spectroscopic and theoretical studies oftransition metal oxides and dioxygen complexes [J]. Chem. Rev.,2009,109:6765–6808.
    [5] Rackauskas S, Nasibulin A G, Jiang H, et al. A novel method for metal oxidenanowire synthesis [J]. Nanotechnology,2009,20:165603.
    [6] Yin M, Wu C K, Lou Y B, et al. Copper oxide nanocrystals [J]. J. Am. Chem.Soc.,2005,127:9506–9511.
    [7] Gao F, Pang H, Xu S P, et al. Copper-based nanostructures: promisingantibacterial agents and photocatalysts [J]. Chem. Commun.,2009,3571–3573.
    [8] Huang J, Wang S R, Zhao Y Q, et al. Synthesis and characterization ofCuO/TiO2catalysts for low-temperature CO oxidation [J]. Catal. Commun.,2006,7:1029–1034.
    [9] Li D D, Hu J, Wu R Q, et al. Conductometric chemical sensor based onindividual CuO nanowires [J]. Nanotechnology,2010,21:485502.
    [10] Venkatachalam S, Zhu H W, Masarapu C, et al. In-situ formation ofsandwiched structures of nanotube/CuxOy/Cu composites for lithium batteryapplications [J]. ACS Nano,2009,3:2177–2184.
    [13] Kumar R V, Elgamiel R, Diamant Y, et al. Sonochemical preparation andcharacterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) andits effect on crystal growth of copper oxide [J]. Langmuir,2001,17:1406–1410.
    [14] Jiang X C, Herricks T, Xia Y N. CuO nanowires can be synthesized byheating copper substrates in air [J]. Nano Lett.,2002,2:1333–1338.
    [15] Xiao H M, Fu S Y, Zhu L P, et al. Controlled synthesis and characterizationof CuO nanostructures through a facile hydrothermal route in the presence of sodiumcitrate [J]. Eur. J. Inorg. Chem.,2007,14:1966–1971.
    [16] Lu C H, Qi L M, Yang J H, et al. Simple template-free solution route for thecontrolled synthesis of Cu(OH)2and CuO vanostructures [J]. J. Phys. Chem. B,2004,108:17825–17831.
    [17] Xu H L, Wang W Z, Zhu W, et al. Hierarchical-oriented attachment: fromone-dimensional Cu(OH)2nanowires to two-dimensional CuO nanoleaves [J]. Cryst.Growth Des.,2007,7:2720–2724.
    [18] Ni Y H, Li H, Jin L N, et al. Synthesis of1D Cu(OH)2nanowires andtransition to3D CuO microstructures under ultrasonic irradiation, and theirelectrochemical property [J]. Cryst. Growth Des.,2009,9:3868–3873.
    [19] Li C F, Yin Y D, Hou H G, et al. Preparation and characterization ofCu(OH)2and CuO nanowires by the coupling route of microemulsion withhomogenous precipitation [J]. Solid State Commun.,2010,150:585–589.
    [20] Li J Y, Xiong S L, Xi B J, et al. Synthesis of CuO perpendicularlycross-bedded microstructure via a precursor-based route [J]. Cryst. Growth Des.,2009,9:4108–4115.
    [21] Liu B, Zeng H C. Mesoscale organization of CuO nanoribbons: formation of“dandelions”[J]. J. Am. Chem. Soc.,2004,126:8124–8125.
    [22] Zou G F, Li H, Zhang D W, et al. Well-aligned arrays of CuO nanoplatelets[J]. J. Phys. Chem. B,2006,110:1632–1637.
    [23] Zhu H T, Zhang C Y, Tang Y M, et al. Novel synthesis and thermalconductivity of CuO nanofluid [J]. J. Phys. Chem. C,2007,111:1646–1650.
    [24] Singh D P, Ojha A K, Srivastava O N. Synthesis of different Cu(OH)2andCuO (nanowires, rectangles, seed-, belt-, and sheetlike) nanostructures by simple wetchemical route [J]. J. Phys. Chem. C,2009,113:3409–3418.
    [25] Liu Y, Chu Y, Zhuo Y J, et al. Anion-controlled construction of CuOhoneycombs and flowerlike assemblies on copper foils [J]. Cryst. Growth Des.,2007,7:467–470.
    [26] Wang H H, Shen Q, Li X P, et al. Fabrication of copper oxide dumbbell-likearchitectures via the hydrophobic interaction of adsorbed hydrocarbon chains [J].Langmuir,2009,25:3152–3158.
    [27] Xu L P, Sithambaram S, Zhang Y S, et al. Novel urchin-like CuOsynthesized by a facile reflux method with efficient olefin epoxidation catalyticperformance [J]. Chem. Mater.,2009,21:1253–1259.
    [28] Vaseem M, Umar A, Kim S H, et al. Low-Temperature synthesis offlower-shaped CuO nanostructures by solution process: formation mechanism andstructural properties [J]. J. Phys. Chem. C,2008,112:5729–5735.
    [29] Cudennec Y, Lecerf A. The transformation of Cu(OH)2into CuO, revisited[J]. Solid State Sci.,2003,5:1471–1474.
    [30] Jia W Z, Reitz E, Sun H, et al. From Cu2(OH)3Cl to nanostructured sisal-likeCu(OH)2and CuO: synthesis and characterization [J]. J. Appl. Phys.,2009,105:064917.
    [1] Auffan M, Rose J, Bottero J Y, et al. Towards a definition of inorganicnanoparticles from an environmental, health and safety perspective [J]. Nat.Nanotechnol.,2009,4:634–641.
    [2] Xuan S H, Wang F, Lai J M Y, et al. Synthesis of biocompatible, mesoporousFe3O4nano/microspheres with large surface area for magnetic resonance imaging andtherapeutic applications [J]. ACS Appl. Mater. Interfaces,2011,3:237–244.
    [3] Wu C Z, Xie Y. Controlling phase and morphology of inorganicnanostructures originated from the internal crystal structure [J]. Chem. Commun.,2009,5:943–957.
    [4] Rackauskas S, Nasibulin A G, Jiang H, et al. A novel method for metal oxidenanowire synthesis [J]. Nanotechnology,2009,20:165603.
    [5] Basiruddin S K, Saha A, Pradhan N, et al. Advances in coating chemistry inderiving soluble functional nanoparticle [J]. J. Phys. Chem. C,2010,114:11009–11017.
    [6] Kim S W, Kim M, Lee W Y, et al. Fabrication of hollow palladium spheresand their successful application to the recyclable heterogeneous catalyst for suzukicoupling reactions [J]. J. Am. Chem. Soc.,2002,124:7642–7643.
    [7] Narayanan R, El-Sayed M A. Effect of catalysis on the stability of metallicnanoparticles: suzuki reaction catalyzed by PVP-palladium nanoparticles [J]. J. Am.Chem. Soc.,2003,125:8340–8347.
    [8] Hu L H, Peng Q, Li Y D. Selective synthesis of Co3O4nanocrystal withdifferent shape and crystal plane effect on catalytic property for methane combustion[J]. J. Am. Chem. Soc.,2008,130:16136–16137.
    [9] She J C, Xiao Z M, Yang Y H, et al. Correlation between resistance and fieldemission performance of individual ZnO one-dimensional nanostructures [J]. ACSNano,2008,2:2015–2022.
    [10] Peng Z M, You H J, Wu J B, et al. Electrochemical synthesis and catalyticproperty of sub-10nm platinum cubic nanoboxes [J]. Nano Lett.,2010,10:1492–1496.
    [11] Poizot P, Laruelle S, Grugenon S, et al. Nano-sized transition-metal oxidesas negative-electrode materials for lithium-ion batteries [J]. Nature,2000,407:496–499.
    [12] Khan A A, Akhtar T. Synthesis, characterization and analytical applicationof nano-composite cation-exchange material, poly-o-toluidine Ce(IV) phosphate: Itsapplication in making Cd(II) ion selective membrane electrode [J]. Solid State Sci.,2011,13:559–568.
    [13] Biswas S, Drzal L T. Multilayered nano-architecture of variable sizedgraphene nanosheets for enhanced supercapacitor electrode performance [J]. ACSAppl. Mater. Interfaces,2010,2:2293–2300.
    [14] Mcalpine M C, Ahmad H, Wang D W, et al. Highly ordered nanowirearrays on plastic substrates for ultrasensitive flexible chemical sensors [J]. Nat. Mater.,2007,6:379–384.
    [15] Vogel R, Willmott G, Kozak D, et al. Quantitative sizing ofnano/microparticles with a tunable elastomeric pore sensor [J]. Anal. Chem.,2011,83:3499–3506.
    [16] Zeng X D, Li X F, Xing L, et al. Electrodeposition of chitosan–ionicliquid–glucose oxidase biocomposite onto nano-gold electrode for amperometricglucose sensing [J]. Biosens. Bioelectron.,2009,24:2898–2903.
    [17] Xu Y H, Liu X J, Ding Y P, et al. Preparation and electrochemicalinvestigation of a nano-structured material Ni2+/MgFe layered double hydroxide as aglucose biosensor [J]. Appl. Clay Sci.,2011,52:322–327.
    [18] Chang S Y, Chen D S.10-nm-thick quinary (AlCrTaTiZr)N film aseffective diffusion barrier for Cu interconnects at900oC [J]. Appl. Phys. Lett.,2009,94:231909.
    [19] Haas I, Shanmugam S, Gedanken A. Pulsed sonoelectrochemical synthesisof size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone)[J]. J.Phys. Chem. B,2006,110:16947–16952.
    [20] Dong C S, Gu Y, Zhong M L, et al. Fabrication of superhydrophobic Cusurfaces with tunable regular micro and random nano-scale structures by hybrid lasertexture and chemical etching [J]. J. Mater. Process. Technol.,2011,211:1234–1240.
    [21] Shrestha K M, Sorensen C M, Klabunde K J. Synthesis of CuO nanorods,reduction of CuO into Cu nanorods, and diffuse reflectance measurements of CuO andCu nanomaterials in the near infrared region [J]. J. Phys. Chem. C,2010,114:14368–14376.
    [22] Salzemann C, Urban J, Lisiecki I, et al. Characterization and growth processof copper nanodisks [J]. Adv. Funct. Mater.,2005,15:1277–1284.
    [23] He C, Zhang W X, Deng J L. Electric field and size effects on atomicstructures and conduction properties of ultrathin Cu nanowires [J]. J. Phys. Chem. C,2011,115:3327–3331.
    [24] Wang G F, Wei Y, Zhang W, et al. Enzyme-free amperometric sensing ofglucose using Cu-CuO nanowire composites [J]. Microchim. Acta,2010,168:87–92.
    [25] Kang X H, Mai Z B, Zou X Y, et al. A sensitive nonenzymatic glucosesensor in alkaline media with a copper nanocluster/multiwall carbonnanotube-modified glassy carbon electrode [J]. Anal. Biochem.,2007,363:143–150.
    [26] Sui Y M, Fu W Y, Yang H B, et al. Low temperature synthesis of Cu2Ocrystals: shape evolution and growth mechanism [J]. Cryst. Growth Des.,2010,10:99–108.
    [27] Cao Y B, Fan J M, Bai L Y, et al. Morphology evolution of Cu2O fromoctahedra to hollow structures [J]. Cryst. Growth Des.,2010,10:232–236.
    [28] Kuo C H, Huang M H. Facile synthesis of Cu2O nanocrystals withsystematic shape evolution from cubic to octahedral structures [J]. J. Phys. Chem. C,2008,112:18355–18360.
    [29] Zhang D F, Zhang H, Guo L, et al. Delicate control of crystallographicfacet-oriented Cu2O nanocrystals and the correlated adsorption ability [J]. Mater.Chem.,2009,19:5220–5225.
    [1] Liu C J, Shan Y, Zhu Y L, et al. Magnetic monolayerfilm of oleicacid-stabilized Fe3O4particles fabricated via Langmuir-Blodgett technique [J]. ThinSolid Films,2009,518:324–327.
    [2] Jiang J X, Liu J, Liu C, et al. Roles of oleic acid during micropore dispersingpreparation of nano-calcium carbonate particles [J]. Appl. Surf. Sci.,2011,257:7047–7053.
    [3] Ramos-González R, García-Cerda L A, Quevedo-López M A. Study of thesurface modification with oleic acid of nanosized HfO2synthesized by thepolymerized complex derived sol–gel method [J]. Appl. Surf. Sci.,2012,258:6034–6039.
    [4] Liu Y, Jiang W, Wang Y, et al. Synthesis of Fe3O4/CNTs magneticnanocomposites at the liquid–liquid interface using oleate as surfactant and reactant[J]. J. Magn. Magn. Mater.,2009,321:408–412.
    [5] Khanna P K, Kale T S, Shaikh M, et al. Synthesis of oleic acid capped coppernano-particles via reduction of copper salt by SFS [J]. Mate. Chem. Phys.,2008,110:21–25.
    [6] Ohno Y, Tomita K, Komatsubara Y, et al. Pseudo-cube shaped brookite (TiO2)nanocrystals synthesized by an oleate-modified hydrothermal growth method [J].Cryst. Growth Des.,2011,11:4831–4836.
    [7]李铁龙,王丹,金朝晖,等.油酸钠/Fe纳米粒子的制备及其脱氯性能研究[J].功能材料,2008,39:1385–1388.
    [8] Schladt T D, Graf T, K hler O, et al. Synthesis and magnetic properties ofFePt@MnO nano-heteroparticles [J]. Chem. Mater.,2012,24:525–535.
    [9] Liascukiene I, Aissaoui N, Asadauskas S J, et al. Ordered nanostructures on ahydroxylated aluminum surface through the self-assembly of fatty acids [J]. Langmuir,2012,28:5116–5124.
    [10] Bagaria H G, Kini G C, Wong M S. Electrolyte solutions improvenanoparticle transfer from oil to water [J]. J. Phys. Chem. C,2010,114:19901–19907.
    [11] Wang L L, Gao L. Morphology-controlled synthesis and magnetic propertyof pseudocubic iron oxide nanoparticles [J]. J. Phys. Chem. C,2009,113:15914-15920.
    [12] Roonasi P, Holmgren A. A fourier transform infrared (FTIR) andthermogravimetric analysis (TGA) study of oleate adsorbed on magnetitenano-particle surface [J]. Appl. Surf. Sci.,2009,255:5891–5895.
    [13] Chen Y F, Kim M, Lian G D, et al. Side reactions in controlling the quality,yield, and stability of high quality colloidal nanocrystals [J]. J. Am. Chem. Soc.,2005,127:13331–13337.
    [14] Shevchenko E V, Talapin D V, Schnablegger H, et al. Study of nucleationand growth in the organometallic synthesis of magnetic alloy nanocrystals: the roleof nucleation rate in size control of CoPt3nanocrystals [J]. J. Am. Chem. Soc.,2003,125:9090–9101.
    [15] Chun C L, Baer D R, Matson D W, et al. Characterization and reactivity ofiron nanoparticles prepared with added Cu, Pd, and Ni [J]. Environ. Sci. Technol.,2010,44:5079–5085.
    [16] Zheng H G, Zeng J H, Yu H M, et al. Study on behavior of hydrazinehydrate in synthesis of metallic nanopowders [J]. J. Chin. Univers. Sci. Tech.,1999,29:722–726.
    [17] Cangiano M D L A, Ojeda M W, Carreras A C, et al. A study of thecomposition and microstructure of nanodispersed Cu–Ni alloys obtained by differentroutes from copper and nickel oxides [J]. Mater. Charact.,2010,61:1135–1146.
    [18] Derosa P A, Seminario J M, Balbuena P B. Properties of small bimetallicNi-Cu clusters [J]. J. Phys. Chem. A,2001,105:7917–7925.
    [19] Carroll K J, Calvin S, Ekiert T F, et al. Selective nucleation and growth ofCu and Ni core/shell nanoparticles [J]. Chem. Mater.,2010,22:2175–2177.
    [20] Naghash A R, Etsell T H, Xu S. XRD and XPS study of Cu-Ni interactionson reduced copper nickel aluminum oxide solid solution catalysts [J]. Chem. Mater.,2006,18:2480–2488.
    [21]孟凡爱,王建强,樊云昌.纳米Ni粉对Cu粉末烧结性能的影响[J].石家庄铁道学院学报(自然科学版),2008,21:9–11.
    [22] Li X R, Wang Y Q, Song G J, et al. Fabrication and magnetic properties ofNi/Cu shell/core nanocable arrays [J]. J. Phys. Chem. C,2010,114:6914–6916.
    [23] Chen C H, Chen B H, Hong L. Role of Cu2+as an additive in an electrolessnickel-phosphorus plating system: a stabilizer or a codeposit?[J]. Chem. Mater.,2006,18:2959–2968.
    [24] Wu J, Wang S X, Zhang M, et al. Research and prospects on electrolesscopper plating using hypophosphite as reducing reagent [J]. Metallization&Plating,2010,7:26–29.
    [25] Bao N Z, Shen L M, An W, et al. Formation mechanism and shape control ofmonodisperse magnetic CoFe2O4nanocrystals [J]. Chem. Mater.,2009,21:3458–3468.
    [26] Cudennec Y, Lecerf A. The transformation of Cu(OH)2into CuO, revisited[J]. Solid State Sci.,2003,5:1471–1474.
    [27] Wu C F, Williams P T. A novel nano-Ni/SiO2catalyst for hydrogenproduction from steam reforming of ethanol [J]. Envion. Sci. Technol.,2010,44:5993–5998.
    [28] Faramarzi A, Sanjabi S. Stepwise melting model for the formationmechanism of Ni catalyst nanoparticles for carbon nanotube growth [J]. J. Phys.Chem. C,2011,115:18958–18966.
    [29] Wang J, Fan G L, Wang H, et al. Synthesis, characterization, and catalyticperformance of highly dispersed supported nickel catalysts from Ni–Al layereddouble hydroxides [J]. Ind. Eng. Chem. Res.,2011,50:13717–13726.
    [30] Al-Haydari Y K, Saleh J M, Matloob M H. Adsorption and decompositionof hydrazine on metal films of iron, nickel, and copper [J]. J. Phys. Chem.,1985,89:3286–3290.
    [31] Singh S K, Xu Q. Bimetallic Ni–Pt nanocatalysts for selectivedecomposition of hydrazine in aqueous solution to hydrogen at room temperature forchemical hydrogen storage [J]. Inorg. Chem.,2010,49:6148–6152.
    [1] Chao J B, Liu J F, Yu S J, et al. Speciation analysis of silver nanoparticles andsilver ions in antibacterial products and environmental waters via cloud pointextraction-based separation [J]. Anal. Chem.,2011,83:6875–6882.
    [2] Eluri R, Paul B. Microwave assisted greener synthesis of nickel nanoparticlesusing sodium hypophosphite [J]. Mater. Lett.,2012,76:36–39.
    [3] Wu Y, Zhou Q F, Li H C, et al. Effects of silver nanoparticles on thedevelopment and histopathology biomarkers of Japanese medaka (Oryzias latipes)using the partial-life test [J]. Aquat. Toxicol.,2010,100:160–167.
    [4] Tang S C, Vongehr S, Zheng Z, et al. Co dendrite based bimetallic structureswith nanoflake-built Pt covers and strong catalytic activity [J]. J. Colloid InterfaceSci.,2010,351:217–224.
    [5] Liu J F, Chao J B, Liu R, et al. Cloud point extraction as an advantageouspreconcentration approach for analysis of trace silver nanoparticles in environmentalwaters [J]. Anal. Chem.,2009,81:6496–6502.
    [6] Liu Y C, Huang C Y, Chen Y W. Liquid-phase selective hydrogenation ofp-chloronitrobenzene on Ni P B nanocatalysts [J]. Ind. Eng. Chem. Res.,2006,45:62–69.
    [7]吴婧,王守绪,张敏,等.次亚磷酸钠还原化学镀铜工艺研究及展望[J].孔化与电镀,2010,7:26–29.
    [8] Engels V, Benaskar F, Patil N, et al. Cu-based nanoalloys in the base-freeullmann heterocyle-aryl ether synthesis [J]. Org. Process Res. Dev.,2010,14:644–649.
    [9] Zhang X J, Wang G F, Zhang W, et al. Seed-mediated growth method forepitaxial array of CuO nanowires on surface of Cu nanostructures and its applicationas a glucose sensor [J]. J. Phys. Chem. C,2008,112:8856–8862.
    [10]郭雨,石国亮,王军锋,等.均相还原法制备铜纳米粒子[J].西安工程大学学报,2008,22:179–191.
    [11] Xu R, Xie T, Zhao Y G, et al. Single-crystal metal nanoplatelets: cobalt,nickel, copper, and silver [J]. Cryst. Growth Des.,2007,7:1904–1911.
    [12]文瑾,李洁,陈启元.次亚磷酸钠还原法制备纳米铜颗粒[J].功能材料,2011,42:189–192.
    [13]陈宏,旷亚非,周海晖,等.化学镀方法制备纳米级铜粉及镍-磷粉[J].电镀与精饰,2002,24:1–4.
    [14] Zhu H T, Zhang C Y, Yin Y S. Rapid synthesis of copper nanoparticles bysodium hypophosphite reduction in ethylene glycol under microwave irradiation [J]. J.Cryst. Growth,2004,270:722–728.
    [15] Jiang C L, Zhang W Q, Liu Y K, et al. Self-assembled copper nanowallsinto microstructures with different shapes: a facile aqueous approach [J]. Cryst.Growth Des.,2006,6:2603–2606.
    [16] Cheng Z P, Xu J M, Zhong H, et al. Repeatable synthesis of Cu2O nanorodsby a simple and novel reduction route [J]. Mater. Lett.,2011,65:1871–1874.
    [17] Zhang X J, Wang G F, Liu X W, et al. Copper dendrites: synthesis,mechanism discussion, and application in determination of L-tyrosine [J]. Cryst.Growth Des.,2008,8:1430–1434.
    [18] Huber D L, Venturini E L, Martin J E, et al. Synthesis of highly magneticiron nanoparticles suitable for field structuring using aβ-diketone surfactant [J]. J.Magn. Magn. Mater.,2004,278:311–316.
    [19] Liu Q, Liu H J, Han M, et al. Nanometer-sized nickel hollow spheres [J].Adv. Mater.,2005,17:1995–1999.
    [20] Lisicecki I, Billoudet F, Pilemi M P. Synthesis of copper nanoparticles ingelified micromulsion and in reverse micelles [J]. J. Mol. Liq.,1997,72:251–261.
    [21] Guo L, Huang Q J, Li X Y, et al. PVP-coated iron nanocrystals anhydroussynthesis, characterization, and electrocatalysis for two species [J]. Langmuir,2006,22:7867–7872.
    [22] Hirai H, Wakabaiashi H, Komiyama M. Interactions ofpoly(N-vinyl-2-pyrrolidone) with colloidal copper particles [J]. Makromol. Chem.,Rapid Commun.,1984,5:381–384.
    [23] Zhou G J, Lu M K, Yang Z S. Aqueous synthesis of copper nanocubes andbimetallic copper/palladium core-shell nanostructures [J]. Langmuir,2006,22:5900–5903.
    [24] Wu S H, Chen D H. Synthesis of high-concentration Cu nanoparticles inaqueous CTAB solutions [J]. J. Colloid Interface Sci.,2004,273:165–169.
    [25]郑化桂,李成韦,刘元晖,等.金属铜胶体的表面修饰与氧化研究[J].中国科学技术大学学报,1998,28:722–725.
    [1]张端庆.火药用原材料性能与制备[M].北京:北京理工大学出版社,1995.
    [2] Shusser M, Culick F E C, Cohen N S. Combustion response of ammoniumperchlorate composite propellants [J]. J. Propul. Power,2002,18,1093–1100.
    [3] Fitzgerald R P, Brewster M Q. Flame and surface structure of laminatepropellants with coarse and fine ammonium perchlorate [J]. Combust. Flame,2004,136:313–326.
    [4]朱慧,张炜,王春华,等. GAP贫氧推进剂组分的常压热分解特性研究[J].火炸药学报,2001,1:57–59.
    [5]张汝冰,刘宏英,李凤生.含能催化复合纳米材料的制备研究[J].火炸药学报,2000,3:9–12.
    [6]马振叶,李凤生,崔平,等.纳米Fe2O3的制备及其对高氯酸铵热分解的催化性能[J].催化学报,2003,24:795–798.
    [7]红陶,张庆明,何远航. AP/HTPB/ferrocene混合体系粉尘爆炸特性研究[J].含能材料,2009,17:283–286.
    [8] Duan H Z, Lin X Y, Liu G P, et al. Synthesis of Co nanoparticles and theircatalytic effect on the decomposition of ammonium perchlorate [J]. Chin. J. Chem.Eng.,2008,16:325–328.
    [9] Song L M, Zhang S J, Chen B, et al. A hydrothermal method for preparationof α-Fe2O3nanotubes and their catalytic performance for thermal decomposition ofammonium perchlorate [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2010,360:1–5.
    [10] Liu H B, Jiao Q Z, Zhao Y, et al. Cu/Fe hydrotalcite derived mixed oxides asnew catalyst for thermal decomposition of ammonium perchlorate [J]. Mater. Lett.,2010,64:1698–1700.
    [11] Li L P, Sun X F, Qiu X Q, et al. Nature of catalytic activities of CoOnanocrystals in thermal decomposition of ammonium perchlorate [J]. Inorg. Chem.,2008,47,8839–8846.
    [12] Chen L J, Li, L P, Li G S. Synthesis of CuO nanorods and their catalyticactivity in the thermal decomposition of ammonium perchlorate [J]. J. Alloys Compd.,2008,464:532–536.
    [13] Sun X F, Qiu X Q, Li L P, et al. ZnO twin-cones: synthesis,photoluminescence, and catalytic decomposition of ammonium perchlorate [J]. Inorg.Chem.,2008,47,4146–4152.
    [14] Zhang Y F, Liu X H, Nie J R, et al. Improve the catalytic activity of α-Fe2O3particles in decomposition of ammonium perchlorate by coating amorphous carbon ontheir surface [J]. J. Solid State Chem.,2011,184:387–390.
    [15] Chaturvedi S, Dave P N. A review on the use of nanometals ascatalysts for the thermal decomposition of ammonium perchlorate [J]. J. SaudiChem. Soc., doi:10.1016/j.jscs.2011.05.009.
    [16] Kishore K, Verneker V R P, M, Sunitha M R. Effect of manganese dioxideon the thermal decomposition of ammonium perchlomte [J]. J. Appl. Chem. Biotech.,1977,27:415–422.
    [17] Jaeobs E W M, Jones R A. The thermal decomposition and ignition ofmixtures of ammonium perchlorate and copper chromite. Proceedings of the11stSymposium on Combustion. The Combustion Institute, Pittsburgh,1967,457–462
    [C].
    [18] Santacesaria E. Thermal decomposition of ammonium perchlorate in thepresence of manganese dioxide [J]. Ribista dei Combustibili,1973,27:468–473.
    [19] Solymosi F, Dobu K. The effect of impurities on the thermal decompositionof ammonium perchlomte. Proceedings of the5st international symposium onreactibity of solids Munich, FRG,1964[C].
    [20] Kuratani K. Some studies on solid propellants, I: Kinetics of thermaldecomposition of ammonium perchlorate. Proceedings of Aeconautical ResearchInstitute Universtity of Tokyo,1962,28:79[C].
    [21] Solymosi F, Revesz L. Thermal decomposition of ammonium perchlorate inpresence of zinc oxide [J]. Nature,1961,192:64–65.
    [22] Solymosi F, Fonagy K. The effect of cadmium oxide and cadmiumperchlorate on decomposition and ignition of ammonium perchlorate. Proceedings ofthe11th International Symposium on Combustion. The Combustion Institute,Pittsburgh, PA,1966,268[C].
    [23] Patil K C, Verneker V R P, Jain S R. The role of lithium and magnesiumperchlorate amines in ammonium perchlorate decomposition [J]. Combus. Flame,1976,27:295–298.
    [24] Acheson R J, Jacobs P. Thermal decomposition of magnesium perchlorateand of ammonium perchlorate mixtures [J]. J. Phys. Chem.,1970,74:281–288.
    [25] Subramanian R, Shankar P. Synthesis of nanocrystalline yttria by sol-gelmethod [J]. Mater. Lett.,2001,48:342–346.
    [26] Svetlov B S, Koroban V A, On the inhibition of thermal decomposition ofammonium perchlorate by the products of decomposition [J]. Kinet. Katal.,1967,8:456–459.
    [27] Boldyrev V V, Alexadrov V V, Boldreva A V, et al. On the mechanism of thethermal decomposition of ammonium perchlorate [J]. Combust. Flame,1970,15:71–77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700