化学镀法制备Si_3N_4—Co复合纳米粉末新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以常温化学镀法制备高质量的纳米氮化硅—钴磷复合粉末为目标,研究镀液组分及其工艺参数对纳米氮化硅超声波化学镀钴的影响规律,得到了纳米氮化硅超声波化学镀的优化配方,制得了镀层均匀,分散性好的纳米复合粉末。完成的主要工作如下:
     通过在纳米氮化硅的活化及化学镀反应过程中施加超声波,实现纳米氮化硅的常温化学镀,解决纳米粉末分散性的问题。
     用高分辨电镜观察复合粉体的形貌,进行电子衍射分析;用D/3AX 3B型X射线衍射仪作复合粉体的物相分析;用PV9900型能谱仪作复合粉末的成分分析。
     通过对比实验,分别就镀液组分及其工艺参数对纳米氮化硅化学镀钴反应孕育期、反应速度、复合粉末外观、形貌,镀层成份及相结构的影响规律进行了深入研究。
     孕育期是反映化学镀液质量,影响化学镀效率的重要参数。硫酸钴和次亚磷酸钠浓度的增加,镀液的PH值升高,装载量的增大,反应的孕育期变短;
     镀速是反应时间与增重综合作用的结果。实验表明:镀液PH值和施镀温度升高,次亚磷酸钠和缓冲剂浓度增加,镀速提高。硫酸钴浓度增加,镀速增加,浓度30g/l时有最大值。络合剂在浓度较低时对化学镀有加速作用,浓度太高反而会延缓镀速。
     镀液的PH值与次亚磷酸钠和硫酸钴的摩尔比对镀层成分、及相结构的影响较为显著。镀液PH值升高,镀层磷含量减少,形成非晶镀层的趋势增大。次亚磷酸钠与硫酸钴的摩尔比I增大,镀层磷含量增加,形成非晶态镀层的趋势增加。
     PH值在9.5~11.0之间,镀液稳定性好,所得复合粉末镀覆均匀,磁性较好。硫酸钴浓度18~40g/l,次亚磷酸钠浓度20~40g/l,可以得到镀覆均匀、分散性好的复合粉末;增加其浓度,复合粉体的镀覆质量得以提高。使用酒石酸钾钠作络合剂时,其浓度在120~135g/l范围内,使用柠檬酸钠作络合剂时,其浓度在40~65之间,可以得到镀覆均匀、分散性好的复合粉末。装载量在1~10g/l之
    
    间,可以实现纳米氮化硅粉末的完全包覆,得到镀覆均匀、分散性较好的复合粉
    末。装载量小,复合粉体金属钻磷合金的含量高,镀层厚:装载量大,复合粉体
    中的金属钻磷合金的含量低,镀层薄。
     预处理过程对化学镀的影响较大,活化效果好,研磨较细,较干燥的施镀粉
    木,反应孕育期短,镀速快,镀覆质量好。
     通过综合考虑镀液稳定性和复合粉末的质量,在上述对比实验的基础上,筛
    选优化配方,得出了纳米氨化硅常温化学镀的优化配方,经TEM、XRD、EDX
    分析,表明所得复合粉末粒径均匀,分散性高,镀层质量好。
The objective of the paper is to get nano SisN^Co composite powder of high quality by electroless plating at normal temperature. The rules were researched that the composition of electroless plating solution and reaction condition had an influence on the reaction of electroless plating of nano-Si3N4 with ultrasonic wave. The best composition of electroless plating solution was obtained. Mostly tasks as follows:
    It was realized that electroless cobalt plating of nano-Sis^ at normal temperature with ultrasonic wave. The problem of dispersion of the nano-powder was solved.
    The morphologies of powder were observed by using high-resolution transmission electron microscopy(HRTEM); X-ray diffraction (XRD) pattern was used to analyze the phases of the powder; Energy dispersive X-ray spectroscopy(EDX) was used to analyze the component of composite powder.
    Through parallel experiments, the rules were studied more that the composition of electroless plating solution and reaction condition affected on the reaction of electroless cobalt plating of nano-SiaN4 with ultrasonic wave, such as " induction period", the speed of reaction, appearance and morphology of composite powder, the component and phases of the plating et al.
    "induction period" was reflected the quality of electroless plating solution ,and affected the efficiency of electroless plating, "induction period" was shortened with the increase of the concentration of NaH2?O2 ?I-hO and CoSO4. It was shortened by increasing the PH and the loading of powder.
    The speed of electroless plating was the result of the added weight divided by the "plating time". The experiments showed that these factors could increase the plating rate which the concentration of NaH2?O2 't^O, the PH and the temperature of electroless plating had been risen. The speed of electroless plating was increased with the increase of concentration of CoSCU. When the concentration of CoSC>4 was 30g/l, the plating rate was max. With the increasing of KNaC4H4O6 * 4H2O and NaaCeHsO? ?2H2O, the speed of plating was increasing when the concentration of them was low. However, when the concentration of them was enough higher, the
    in
    if.
    
    
    
    plating rate was decreasing.
    Phosphorus was more in composite powder with the decreasing of the PH of solution, it is also more when the concentration of Nal-^POa ?I-bO is increased. If Phosphorus was adequacy in composite powder, Co-P alloy coating becomes non-crystalline.
    The quality of composite powder was better, and the stabilization of solution is improved with the increase of the PH from 9.5 to 11.0. The cladding of composite powder was of higher uniformity and dispersion with the increase of the concentration of NaH2P02 ?H20(20~40g/l) and CoS04(18~40g/l).When the bath loading is lower than 10g/l , the metal covered was full and composite powder was thin and disperse well. The Co-P alloy coating of powder was more and thickness of plate was incrassate with the decreasing of the loading.
    When the nano-Si3N4 was thinner and drier, and the effect of activation was better, the speed of plating was increased and "induction period" was shortened.
    The best composition of electroless plating solution and reaction condition was optimized by comparison experiment. The composite power was analyzed by EDX , XRD , TEM. The result indicated that the cladding of composite powder was of high uniformity and dispersion .
引文
1. Jianfeng Li,Chuanxian Ding, Inprovement in the Properties of plasma-sprayed chromium carbide coating using nickel-clad powders, 130(2000):15~19.
    2. Ichiro Takasu,Akihiko Yanagitani,Hitoshi Matsuda, Improvement of the sintering process in a Sendust alloy powder used as a magnetic recording head material,Journal of Magnetism and Magnetic Materials,1996,163(3):397~400.
    3. W.X.Chen,J.P. Tu,L.Y. wang, H.Y. Gan,Z.D.Xu,X.B.Zhang, Tribological application of carbon nanotubes in a metal-based composite coating and composites,Carbon,2003,41(2):215~222.
    4. Min Kang, Ji Man Kim, Jin Won Kim, Young Kil kim, Hyungsik Chung,Jae Eui Yie, Simple and fast microwave-enhanced wet etching of SiC particles for electroless Ni-P plating. Surface and Coatings Technology ,2002.161 (1):79~85.
    5.王尚军,化学镀法制备镍包覆纳米氧化铝的研究,硕士生论文,浙江大学,2001.3
    6.汪翔 丁厚福,SiC_p增强体表面改性对铁基复合材料组织性能地影响,宇航材料工艺2001(4) 49~54
    7. K.Yamaguchi,N.Takakura and S.Imatani,Compaction and Sintering Characteristics of Composite Metal Powders Journal of Materials Processing Technology 63(1997):364~369.
    8. K.T. Kim,S.C.Lee,H.S.Ryu,Densification behanior of aluminum alloy powder mixed with zirconia powder inclusion under cold compaction,Materials Science and Engineering A340(2003)41~48.
    9.张立德 牟季美,纳米材料学,辽宁科学技术出版社,1994.
    10.李容久,陶瓷—金属复合材料,冶金工业出版社,1995.
    11. I.Dlouhy, A.R.Boccaccini, Preparation,microstructure and mechanical properties of metal-particulate/glass-matrix composites, Composites Science and Technology, 1996, 56(12):1415~1424
    12.郦剑 茅东升 黄丽萍 郭绍义 毛志远,Al_2O_3-TiC-Co改性陶瓷的性能及其耐磨性,金属学报,1998,34(3):332~336.
    13.黄立萍,复合陶瓷Al2O3—TiC—SiCw-Co的制备及性能研究,浙江大学硕士学位论文,浙江大学,1998.
    
    
    14.张大伟 雷廷权 李强,激光熔覆金属表面改性的研究进展,中国表面工程,1999,45(4)11~15.
    15.郭伟 徐庆鸿 田锡唐,激光熔覆的研究发展状况,宇航材料工艺,1998(1),4~7.
    16.程风云 郭鹤桐 泰 学 唐致远,化学镀钴Ni(OH)_2电极的电化学行为,电池,2001,31(5)222-223
    17.郭为民 金丽华 涂加万,包覆钯对储氢合金粉末性能的影响,材料开发和应用,2000.4,15(2).
    18.魏美玲 任卫 程之强 何子臣 高杰,超细陶瓷粉及铁粉的表面化学包覆改性的研究,现代技术陶瓷,2000(1):3-6.
    19.夏章能 徐洁,A1N陶瓷表面化学镀Ni—P合金的研究[J].表面技术.1998(4):11—14.
    20.姜晓霞 沈伟,化学镀理论及实践,国防工业出版社,第一版,2000.
    21.郭海洋,化学镀技术应用新进展.金属热处理,2001,(1):9~12.
    22.刘建国 陈存华 郑家乐,非金属材料化学镀工艺中集体表面活化方法的研究,表面技术,2002,31(3):5~8.
    23.章葆澄,电镀工艺学,北京航空航天大学出版社,1993年3.
    24.张永峰 马玲俊 郭为民 崔昭霞 温青,非金属化学镀的活化工艺,材料开发与应用,2000,15(2):30~34.
    25.刘燕萍 刘珍,胶体钯量对非金属材料的金属覆层性能的影晌,电镀与精饰,1997,19(3):29~31.
    26. Hilmar Earom, Robert Seebock, Marlene Charbommier, Surface activation of polyimide with dielectric barrier discharge for electroless metal deposition[j].Surface and Coatings Technology,2000,125:19~24.
    27. Fahler S, Kahl S, Weisheit M, The interface of laser deposition Cu/Ag multilayers: evidence of the 'subsurface growth mode 'during pulsed laser deposition[J].Applied Surface Science,2000,154~155:419~423
    28. Zaporojtchenko V, Behnke K,Thran A, Condensation coefficient and initial stages of frowth for noble metals deposited onto chemically different polymer serface[J].Applied Surface Science, 1999,144~145:355~359.
    29. Park B S, Malshe A P, Muyshondt A, The effect of substrate properties on metal coatings
    
    from liquid medium by reactive laser deposition[J].Surface and Coatings Technology, 1999,115:201~207.
    30.吴隽贤,激光镀技术[J],表面技术,2000,29(5):19~20.
    31.陈曙光 刘君武 丁厚福,化学镀的研究现状、应用及展望,热加工工艺,2000(2),43~45.
    32.郭海洋,化学镀镍磷镀液组份及其作用[J].铸锻热,1993,(3):12~15.
    33.竹下淳一,无电解微粒子表面处理,表面技术,Vol.47,1996(11)p.896-899
    34. C.D. Lacovangelo, Continuous In-Situ Regeneration of Electroless Nickel Baths During Powder Plating, Plating and Surface Finishing, 1995(9), p.77-81
    35.艾仕云 李慧琪,超声波在表面工程和电化学中的应用,表面工程,1996,(2);
    36.冯若 李化茂,声化学及其应用,安徽科学技术出版社,1984.
    37. F. Touyeras; J.-Y. Hihn; M.L.Doche, X.Roizard, Electroless copper coating of epoxide plates in an ultrasonic field,Ultrasonics Sonochemistry, 2001,8 (3): p 285-290
    38.李慧琪 刘俊波,低温超声波化学镀镍工艺研究,电镀与涂饰,1998,9.
    39. Yiyun Zhao,Ciguang Bao,Ruo Feng,Zhaohua Chen, Electroless coating of copper on ceramic in an ultrasonic field, Ultrasonics Sonochemistry, 1995,2(2):S99~S103.
    40. H.Matsuda, l.Takasu,D.Kim,O.Takano, P.J.Grundy, Magnetic recording properties of electrolessly deposited NiXP/CoReNiMnP double layer media,Journal of Magnetism and Magnetic Materials, 1996,155(1-3): 250-252
    41. Kobayashi Katsuyoshi, , Atsushi Chiba, Naoki Minami, Effect of ultrasound on both electrolytic and electroless nickel deposition,Ultrasonics, 2000,38(1): p676-681
    42. Y.S.Park,TH.Kim,M.H.Lee,S.C.Kwon,Study on the effect of ultrasonic waves on the characteristics of electroless nickel deposits from an acid bath,Surface and Coating Technology, 2002,153(2-3):245~251.
    43. Heegn-H Trinkler-M Langbein-H Crystal, Research and Technology 2000, Vol 35, Iss 3, pp 255-264
    44. Ultrasonics may make an impact in nano powders,Metal Powder report,2002,57(11):26~29
    45.宣天鹏 郑晓桦 邓宗钢,化学镀钴磷合金工艺的研究,电镀与精饰,1997,19(1):6~8.
    46.洛温海姆编,北航103教研室译,现代电镀,北京机械工业出版社,1982
    
    
    47.费锡明 李苏 黄正喜,化学镀钴沉积规律的研究,黄石高等专科学校学报,2001,17(4):11~13.
    48. Oni, A., Weisheit M, Mechanism of electroless cobalt plating under controlled mass transport conditions, Modelling, Measurement & Control , 54 (2), 1996. p23-33
    49.伍学高,化学镀技术,四川科学技术出版社,1985.
    50.朱绍峰 邓宗刚,化学镀钴—磷合金,材料保护,1990,23(9):17~19.
    51.孙中子 杨贤金 高迎,PET自催化Co—P合金的研究,电镀与涂饰,1993,11(2)35~40.
    52.姚素薇 郑科 张国庆 郭永,Co—P非晶态合金的电沉积及结构分析,表面技术,1996,25(4):6~8.
    53.王德安 程海峰 李永清 陈朝辉 车仁超 杨孚标 胡伟成 刘哲红,化学镀Co—P合金动力学的研究,电镀与精饰,1998,20(6):27—29
    54.曾鹏 郑国桢 王德芳 黄拿灿 胡社军 王桂堂,化学镀Co—P合金镀层的非晶结构条件及其性能的研究,材料保护,1999,32(12):4~5.
    55.刘珍,溶液PH值对化学镀Ni—Co—P合金的影响,电镀与精饰,1999,21(1)17~18
    56.赵文轸,金属材料表面新技术,西安:西安交通大学出版社,1995,p.95
    57.张邦维 陈冰 王玲玲,化学镀Co—P合金工艺的研究,电镀与环保,1997,17(6):19~21.
    58.曹华梁.电镀工艺手册(第二版),北京:机械工业出版社,1997.8,第二版
    59.尤显卿 朱绍峰,热作模具钢表面化学沉积钴磷合金的热疲劳性,机械工程材料,1993,17(1):29—32
    60.朱绍峰 张冰 王元曦 邓宗刚,化学镀钴磷合金的高温耐磨性,材料保护,1998,31(10),p.21—22
    61. Armstrong R D, Charles E A, Some effects of cobalt hydroxide upon the electrochemical behavior of nickel hydroxide electrodes[J], J Power Sources, 1989,25:89
    62. Armstrong R D, Briggs W D,Charles E A, Some effects of the addition of cobalt to the nickel hydroxide electrodes[J], J Apply Electrochem, 1988,18:215
    63. Zhaorong Chang, Hongwei Tang, Jian Guo Chen,Surface modification of spherical nickel hydroxide for nickel electrodes, Electrochemistry Communications, 1999, 1(11)513-516
    
    
    64. X.-Y. Wang, J.Yan, H.-T. Yuan, Y.-S. Zhang,D.-Y.Song, Impedance studies of nickel hydroxide microencapsulated by cobalt, International Journal of Hydrogen Energy, 1999(24): 973-980
    65. Liang Hong ,WeiShing Chua, Fabrication of a dense La_0.2Sr_0.8CoO_(3-δ)/CoO composite membrane by utilizing the electroless cobalt plating technique, Journal of Membrane Science, 198 (2002) 95-108
    66.张立德,纳米材料,化学工业出版社,2000年第一版.
    67. C.Y. Wang, Y. Zhou, Y.R. Zhu, Y. Hu, Z.Y. Chen, Synthesis and characterization of NiP-TiO_2 ultrafine composite particles,Materials Science and Engineering; B77(2000): 135-137
    68.陈小华 颜永红 张高明 欧阳兰娟 陈宗璋 彭景翠,Ni—Co合金包覆碳纳米管的研究,微细加工技术,1999(2)18~20.
    69.王浪云 涂江平 杨友志 张孝彬 陈卫祥 卢焕明,多壁纳米碳管/Cu基复合材料的摩擦磨损特性,中国有色金属学报,2001,11(3):368~371.
    70. L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, J.L.S. Wang, Decoration of activated carbon nanotubes with copper and nickel,Carbon ,2000, Vo138, Iss3, pp 363-372
    71.马智勇,化学镀法制备纳米Co—Al_2O_3复合粉末的研究,浙江大学硕士生论文,浙江大学,2002.
    72.颜鲁婷 司文捷 苗赫濯 齐龙浩,氮化硅粉体表面化学分析及表面改性.硅酸盐通报,2001,6:25~29.
    73.徐红娣 李光萃,常用电镀溶液的分析(第三版),机械工业出版社,1993.7:135~139.
    74. G. Wen, Z.X. Guo, C.K.L. Davies, Microstructural Characterisation Of Electroless-Nickel Coatings On Zirconia Powder, Scripta Materialia,2000,43 (4): 307~311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700