轻质磁性微球的制备及应用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的磁性颗粒具有密度大的特点,限制了其在某些特殊领域的应用,如磁性颗粒密度大引起磁流变液沉降及隐身技术中传统吸收剂密度大使飞机增重等问题。若能降低磁性颗粒的密度,就能推广其应用领域。
     在这种背景下,本文选择空心玻璃微球和聚苯乙烯微球两种轻质载体,采用化学镀镍的方法在载体表面沉积一层磁性物质——镍,得到两种轻质磁性微球,并初步探讨其在磁流变液和微波吸收剂中的应用。
     在空心玻璃微球化学镀镍的研究中,我们发现化学镀镍的关键是前处理工艺。我们研究了先偶联、再活化的前处理工艺。通过正交试验确定了最佳偶联条件,并探讨了偶联处理对活化效果的影响。研究发现空心玻璃微球经过偶联处理后对钯的吸附能力提高了很多,使得化学镀镍中微球表面的活性点大大增加。此外,还研究了镀液pH值、装载量等工艺条件的影响,得到了最佳pH值和装载量范围。
     在聚苯乙烯微球化学镀镍的研究中,我们发现活化效果的好坏直接影响到磁性微球产率的高低。化学镀镍得到的磁性微球的表观主要决定于活化微球的表观,只有严格控制活化工艺,引入颗粒细小的活化微球进行化学镀镍,才能得到颗粒细小、均匀的磁性微球。
     通过测试两种轻质磁性微球的密度、镀层形貌、成分及晶体结构,表明:得到的镍包覆空心玻璃微球(平均密度3.0g/cm~3)和镍包覆聚苯乙烯微球(平均密度2.7g/cm~3)的密度远远低于传统磁性颗粒的密度(7~8g/cm~3);产物包覆率较高,包覆完整,镀层均匀、致密;镀层的主要成分为Ni,其晶体结构与单质镍相似,为面心立方结构;对于镍包覆空心玻璃微球,400℃热处理可以使Ni-P合金镀层晶化,并使晶粒长大,有利于提高镀层的磁性能。
     轻质磁性微球在磁流变液和微波吸收剂中的应用表明:作为磁性颗
    
    西北工业大学硕士论文摘要
    粒,可以明显改善磁流变液的沉降稳定性,在磁场下的粘度比初始粘度有
    所提高;作为微波吸收剂,表现出电损耗的吸波性能。
     综上所述,使用化学镀镍法对空心玻璃微球、聚苯乙烯微球进行包覆,
    可以得到包覆率高、包覆完整、镀层均匀、致密的轻质磁性微球,这些轻
    质磁性微球有着广阔的应用前景。
The conventional magnetic particles have a characteristic of heavy density, which limit their applications in some special fields. For example, conventional magnetic particles in magnetorheological fluids (MRF) can easily subside and make MRF unstable. Conventional magnetic particles work as microwave absorber in stealth plane may increase the weight of the plane. If the density of magnetic particles can be reduced, their applications would be widened.
    In this paper, two kinds of low-density magnetic microspheres were prepared by electroless plating Ni on hollow glass microspheres and polystyrene microspheres. In addition, their applications in MRF and microwave absorber were discussed.
    Pretreatment process is very.important in electroless plating nickel
    on hollow glass microspheres. And a new pretreatment process was investigated, which included coupling and activation. The optimum coupling conditions were determined by orthogonal tests. The effection of coupling process on activation effect was analyzed. The research showed that coupled microspheres had an enhanced capacity to absorb Pd, resulting in more active points on the surface of micro-spheres. In addition, influences of other parameters such as PH valve of plating bath and loadage were studied.
    The research of electroless plating nickel on polystyrene microspheres showed that activation process had an effect on the yield of magnetic microspheres. The apparent of the product was influenced by the activated microspheres that were introduced into the reaction system.
    The properties of the products, such as density, morphology and crystal texture of the coating, were analyzed. Based on the results, the conclusions could be drew as follows:
    
    
    
    The average density of Ni-coated hollow glass microspheres and Ni-coated polystyrene microspheres are 3.0 g/cm3 and 2.7g/cm3, respectively, which are lower than the density of conventional magnetic particles (7~8 g/cm3).
    The SEM photography shows that the coating is complete, uniform, and fine.
    The EDS and XRD analysis prove that the main component of the coating is Ni, which crystal texture is similar to pure nickel.
    Heat treatment on Ni-coated hollow glass microspheres can crystallize the Ni-coating, which is beneficial for improving the magnetism of the products.
    The two kinds of low-density magnetic microspheres were applied in MRF and microwave absorber. The results were obtained as follows:
    The sediment stability is evidently improved and the apparent viscosity of MRF under magnetic field is larger than the initial viscosity.
    The microwave absorber has a property of absorption by the electrical loss mechanism.
    In a word, complete, uniform and fine-coated low-density magnetic microspheres can be prepared by electroless plating Ni on hollow glass microspheres and polystyrene microspheres. As one of the promising materials, low-density magnetic microspheres will be wildly used in the future.
引文
1.陈克明,陈玉秋,乔学亮等.低温化学镀镍工艺,电镀与环保,1996,16(3):15~18
    2.奚正平,周廉,李建等.金属纤维的发展现状和应用前景.稀有金属材料与工程.1998,27(6):317~321
    3. Rajam K. S., Rajagopal I., Rajagopalan S. R. Electroless nickel deposition from triethanolaminebaths partⅠ-Bathcharacteristics.Matal Finishing. 1990,10:41~45
    4.稽天浩,赵见高,沈保根等.离子交换法制各金属有机铁磁体.第十届全国金属有机化学讨论会.
    5.林展如,干久治,林云等.有机磁性材料的磁损耗与微波电子器件的开发.微波学报,2000,16(1):78~84
    6.何德坪,陈锋,张勇.发展中的新型多孔泡沫金属.材料导报,1993,(4):11~15
    7.黄福祥,金吉琰,范嗣元等.发泡金属的电磁屏蔽性能研究.功能材料,1996,27(2):147~149
    8.王延梅,封麟先.磁性高分子微球的研究进展.高分子材料科学与工程,1996,14(9):6~8
    9.邓建国,彭宇行,丁小斌等.磁性聚苯胺纳米微球的合成与表征.化学物理学报,2002,15(2):149~152
    10. Jianguo Deng, Xiaobin Ding, Wenchuan Zhang et al. Magnetic and conducting Fe3O4-cross-linked polyaniline nanoparticles with core-shell structure. Polymer,43:2179~2184
    11.康继超,魏树礼.清除骨髓中癌细胞的磁性微球研究Ⅱ.聚苯乙烯磁性微球的研究.药学学报,1997,32(7):536~541
    12.尹周澜,郭淑玲,郭华军.镀镍石墨粉的电化学性质.中国有色金属学报,2000,10(3):433~436
    13.李锐星,梁焕珍,喻克宁等.制备细镍包石墨粉末的动力学.有色金属(冶炼部
    
    分),2002(5):37~40
    14.褚道葆,顾家山,陈发华等.微细石墨粉表面镀覆Cu的研究.安徽师大学报(自然科学版),1998,21(2):149~151
    15.沈曾民,赵东林.镀镍碳纳米管的微波吸收性能研究.新型炭材料,2001,16(1):1~4
    16.陈小华,王健雄,邓福铭.碳纳米管的化学镀镍研究.新型炭材料,2000,15(4):39~43
    17.陈小华,颜永红,张高明.Ni-Co合金包覆碳纳米管的研究.微细加工技术,1999,(2):17~22
    18. Qunqing Li, Shoushan Fan, Weiqiang Han et ai. Coating of carbon nanotube with nickel by electroless plating method. Journal of Applied Physics, 1997, 36:501~503
    19.黄小忠,冯春祥,李效东等.一种新型的Ba-M型铁氧体磁性涂层吸波炭纤维研制.新型炭材料,1999,14(4):72~74
    20.杨丽,张玉梅.无机粉末的化学镀Fe—Ni合金.新技术新工艺,1997,(1):37~39
    21. Hagiwara K., Watanabe J., Honma H. Preparation of anisotropic conductive particles by electroless plating. Plating&Surface finishing,1997,4:74~76
    22.高俊丽,王为,王慧等.化学沉积法制各高分子复合导电微球.电镀与精饰,1998,20(4):1~3
    23.王为,郭鹤铜,高建平等.PS微球表面化学沉积金属铜.化工进展,1998,(4):38~40
    24.姜晓霞,沈伟.化学镀理论及实践.北京:国防工业出版社,2000:13
    25.李卫东,李良超,尹业高等.中温化学镀镍工艺研究.电镀与涂饰,1999,18(1):21~65
    26.肖鑫,龙有前,谭正德等.光亮碱性化学镀镍工艺研究.电镀与涂饰,2000,19(3):5~8
    27.方刚.化学镀镍工艺的应用.电镀与精饰,2000,22(5):24~26
    28.王宏英.次磷酸钠作为还原剂化学镀镍各成分的研究.表面技术,1993,22(5):6~8
    29.夏承钰.酸性化学镀镍沉积速度的研究.材料保护,1996,29(1):4~7
    30.韩克平,方景礼.丁二酸对化学镀镍的加速和稳定作用.电镀与涂饰,1996,15(1):37~39
    31.王孝容,顾慰中.化学镀镍磷合金工艺研究.电镀与涂饰,1999,18(2):43~46
    32.潘卫东,洪鹤,陈立佳.次磷酸钠作为还原剂的化学镀镍.沈阳工业大学学报,1997,19(6):81~85
    
    
    33.闫洪.现代化学镀镍和复合镀新技术.北京:国防工业出版社,1999:6
    34.郝小军,李异.化学镀镍工艺及应用.电镀与涂饰,1997,16(4):48~51
    35.胡信国.化学镀镍新技术及其在工业中的应用.电镀与精饰,1998,20(2):30~32
    36.傅圣利,李义和,王本根等.玻璃表面无钯活化化学镀镍的研究.电镀与精饰,2000,22(5):10~12
    37.郭忠诚,杨显万编.化学镀镍原理及应用.云南科技出版社.1998年出版
    38.周琦.陶瓷仿古铜色电镀工艺.电镀与精饰,2000,22(1):25~27
    39.来六鸣.胶体钯活化新工艺在塑料电镀中的应用.新技术新工艺,1984,(3):35
    40.陈春成.我国电子电镀技术现状及发展动态.电镀与环保,1989,9(3):12
    41.张永锋,马玲俊,郭为民等.非金属化学镀的活化工艺.材料开发与应用,2000,15(2):30~34
    42.邝少林,刘伏保,洪春.化学镀第三代活化工艺的研究—离子型钯活化液.材料保护,1986,19(3):13~16
    43.董根岭,周完贞.TY-1型无锡(Ⅱ)胶体钯活化液的研制和应用.电镀与精饰,1993,15(3):25~26
    44.桂鹤.电子陶瓷局部化学镀新工艺.电镀与环保,1994,14(4):29~30
    45.高德淑,苏光耀.非金属电镀胶体活化液的研究.表面技术,1993,22(2):63~65
    46.尹周澜,郭淑玲,周建.石墨粉末上化学镀镍研究.新型炭材料,1998,13(4):46~49
    47.王玲.用化学镀实现陶瓷微粒表面金属化.材料保护,1998,31(7):16~18
    48.邵忠财,田彦文,翟玉春.化学镀法制备Ni包覆ZrO_2粉末镀液的研究.材料科学与工艺,1999,7(4):78~81
    49.蔡克峰,李成红,袁润章.在陶瓷粉末表面化学镀包复金属.电镀与环保,1994,14(2):11~12
    50. Chung W. S., Chang S. Y., Lin S. J., Electroless nickle plating on SiC powder with hypophosphite as a reducing agent. Plating and Surface Finishing, 1996,83(3):68~71
    51.熊小东,翟玉春,田彦文等.铝粉化学镀纯镍的机理.东北大学学报(自然科学版),1996,17(5):512~515
    52.熊小东,田彦文,翟秀静等.化学镀法制备镍包覆微球.中国有色金属学
    
    报,1996,6(4):39~42
    53. Hanyaloglu.S.C., Aksakal.B. Mccolm.I.J., Reactive sintering of electroless nickel-plated aluminum powders. Materials Characterization, 2001, 47(1):9~16
    54.仝奎,徐恩霞,辛荣生等.金刚石表面化学镀镍工艺.材料保护,2000,33(2):19~21
    55.余家国,程蓓,叶小川等.金刚石颗粒表面化学镀镍及其在树脂磨具中的应用.机械工程材料,1997,21(1):27~29
    56.王艳辉,王明智,关长斌.金刚石表面镀镍工艺研究.表面技术,1993,22(1):12~14
    57.王为,郭鹤铜,王慧.高分子复合导电微球的制备及其应用探讨.材料保护,1999,32(5):6~7
    58.欧进萍,关新春.磁流变耗能器及其性能.地震工程与工程振动.1998,18(3)74~81
    59. Podszun Wolf gang, Halle Olaf, Kijlstra Johan, et al.Magnetorheological liquids, a proces for producing them and their use, and a process for producing magnetizable particles coated with an organic polymer. U.S.Patent 5989447
    60.刘丁雷,李德才,袁祖贻.磁流变液的发展及应用.新技术新工艺,1999(6):14~15
    61. Carlson J David, Weiss Keith D. Magnetorheological materials based on alloy particles. U.S.Patent 5382373
    62. Bednarek S. Magnetic suspensions based on composite particles. Journal of Magnetic Materials, 1998,183:195~200
    63.杨仕清,彭斌,蒋洪川等.复合智能磁流变液的制备及流变性质研究.材料工程,2000,9:21~24
    64.J.戴维.卡尔松.日益引人注目的磁流变液.机床与液压,1996,(1):52~53
    65.张立平,余卓平,靳晓雄.汽车工业用磁流变液器件应用前景分析.汽车技术,2002(5):32~35
    66.胡林,张元应,汤嘉伟等.表面活性剂对此悬浮液体稳定性的影响.贵州大学学报(自然科学版),1999,16(4):270~274
    67. Osama Ashour, Dawn Kinder, Victor Giurglutiu, et al. Manufacturing and characterization of magnetorheological fluids. SPIE 1997 Vol.3040:174~184
    68.隋莉莉,郑文辉.磁流变液及其减振驱动装置的原理和工程应用.吉林建筑工程学
    
    院学报,2001(2):5~9
    69.汪建晓,孟光.磁流变液研究进展.航空学报,2002,23(1):6~12
    70. Kordonski W. I., Golini D., Hogan S., et al. System for abrasive jet shaping and polishing of a surface using magnetorheological fluid. U.S.Patent 5971835, 1999.
    71.汪建晓,孟光.磁流变液装置及其在机械工程中的应用.机械强度,2001,23(1):50~56
    72. Jacobs S. D., Kordonski W. I., Prokhorov I. V., et al. Apparatus deterministic magnetorheological finishing of workpieces. U.S.Patent 5839944, 1998.
    73.仇中军,张飞虎,董申.光学研抛用磁流变液的研究.光学技术,2002,28(6):497~499
    74. Carlson J. D., Catanzarite D. M. Magnetorheological fluid devices and process of controlling force in exercise equipment utilizing same. U.S.Patent 5816372, 1998.
    75.王琪民,徐国梁,金建峰.磁流变液的流变性能及其工程应用.中国机械工程,2002,13(3):267~272
    76. Lee W., Hur N., Jeon D. Design analysis and experimental evaluation of a MR fluid clutch. In: TaoR, Proc. of the 7th Int. Conf. on ERF and MRS. Singapore: World Scientific, 2000:686~693
    77.朱孝平,汪久根.磁性流体密封技术.新技术新工艺,1996,(6):32~33
    78. Fujita T., Jeyadevan B., Yoshimura K., et al. Characterization of MRF for seal. In: TaoR, Proc. of the 7th Int. Conf. on ERF and MRS. Singapore: World Scientific, 2000:721~727
    79. McManus S. J., StClair K. A., Boileau P. E., BoutinJ, et al. Evaluation of vibration and shock attenuation performance of a suspension seat with a semi-active magnetorheological fluid damper. Journal of sound and Vibration, 2002,253(1):313~327
    80. Sheng R., Flores G. A., liu J., In vitro investigation of a novel cancer therapeutic method using embolizing properties of magnetorheological fluids. Journal of Magnetism and Magnetic Materials, 1999,194:167~175
    81.张卫东,冯晓云,孟秀兰.国外隐身材料研究进展.宇航材料工艺,2000,(3):1~4
    82.王为,程杰.雷达吸波材料的研究现状.雷达与对抗.1999,(1):30~33
    
    
    83.曾祥云,马铁军,李家俊.吸波材料(RAM)用损耗介质及RAM技术发展趋势.材料导报.1997,11(3):57~60
    84.赵九蓬,李垚,吴佩莲.新型吸波材料研究动态.材料科学与工艺,2002,10(2):219~224
    85.娄明连,阚涛.用铁砂研制的铁氧体电波吸收材料.磁性材料及器件.1997,28(2):7~11
    86.邓惠勇,官建国,高国华.雷达用隐身吸波材料研究进展.化工新型材料,2003,31(3):4~6
    87.吴明忠,赵振声,何华辉.层状多晶铁纤维吸波材料的等效电磁参数.磁性材料及器件.1998,29(1):31~35
    88.王寿太,黄斌,傅玲玲等.P_4VP系列高分子微波吸收材料的研究.宇航材料工艺.1998,104~105(4~5):19~24
    89.万梅香,李素珍,李军朝.新型导电聚合物微波吸收剂的研究.宇航材料工艺.1998,104~105(4~5):28~32
    90.穆中国,朱金华,王源升.雷达吸波材料的研究现状及发展前景.胶体与聚合物,2002,20(4):40~43
    91.孙晶晶,李建保,张波等.陶瓷吸波材料的研究现状.材料工程,2003,(2):43~47
    92.沈曾民,赵东林.镀镍碳纳米管的微波吸收性能研究.新型炭材料.2001,16(1):1~4
    93.王为,程杰,刘俊丽等.雷达吸波材料的研究现状.雷达与对抗,1999(1):30~33
    94.赵东林,周万城.涂敷型吸波材料及其涂层结构设计.兵器材料科学与工程.1998,21(4):58~62
    95.罗正平.磁性聚合物微球的研究.西北工业大学硕士论文.西安:西北工业大学,2002.
    96.李瑞琦.氨基硅烷偶联剂.辽宁化工,2002,31(4):157~160
    97.廖俊,陈圣云,康宇峰等.硅烷偶联剂及其在复合材料中的应用.化工新型材料,2001,29(9):26~28
    98.庞金兴,黄可知,毛予兰等.空心玻璃微球表面改性研究.武汉工业大学学报,1998,20(2):36~37
    
    
    99.臧瑾光,骆文仪.空心玻璃微珠的表面改性研究.齐齐哈尔轻工学院学报,1992,8(4):15~21
    100.E.P.普鲁特曼.硅烷和钛酸酯偶联剂.上海科学技术文献出版社.1987年出版
    101.徐丽娜,徐鸿飞,周凯常等.自组装吸附钯的化学镀前活化研究.物理化学学报,2002,18(3):284~288
    102.庄达人.锡钯胶体(Ⅱ).电路板资讯.1992,57:4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700