精恶唑禾草灵在土壤及甘蓝中残留动态及在土壤中吸附特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精恶唑禾草灵是一种芳氧苯氧丙酸类除草剂,用于防除禾本科杂草。本文对精恶唑禾草灵及其代谢物在土壤及甘蓝中的残留分析方法、残留动态,以及精恶唑禾草灵在土壤中的吸附特性进行了研究。为制定残留标准提供依据。
     土壤样品以乙酸乙酯和碳酸氢钠水溶液提取,将母体与代谢物分离后分别净化。母体过氧化铝柱净化,代谢物则通过调节水相酸碱度用二氯甲烷净化。最后将母体与代谢物同时收集浓缩,选择Zorbax_(18)柱以甲醇水混合液为流动相,进行高效液相色谱(HPLC)分析。甘蓝样品中,母体以丙酮和碳酸氢钠水溶液提取,并用氧化铝柱净化,分析条件同土壤样品。代谢物则用甲醇和0.1mol/1 HC1溶液提取,用二氯甲烷萃取浓缩后,过硅胶柱净化,选择ZorbaxC_(18)柱以甲醇和乙酸酸化的水溶液为流动相进行HPLC分析。方法的回收率为83.28-90.00%,变异系数为0.88-3.88%。母体在土壤和甘蓝中的最小检出浓度为0.01mg/kg,代谢物在土壤和甘蓝中的最小检出浓度为0.02mg/kg。
     通过在吉林省2001年、2002年两年田问试验,对精恶唑禾草灵在以360mL/hm~2用量处理的土壤和甘蓝样品作残留动态分析。降解过程符合一级反应动力学模式C=C_oe~(-kt)。在土壤中两年的动态方程分别是:2001年,C=0.1929e~(-0.0113t),半衰期为44.3小时。2002年,C=0.2003e~(-0.0115t),半衰期为43.2小时。代谢物在施药后5小时开始检出,72小时浓度达到最大后降低。在甘蓝中两年的动态方程是:2001年,C=0.2376e~(-0.1489t),半衰期为6.4小时。2002年,C=0.2596e~(-0.1562t),半衰期为6.0小时。代谢物在3小时后开始检出,8小时达到最大浓度后降低。精恶唑禾草灵在收获期甘蓝和土壤中均未检出。结果表明:精恶唑禾草灵在土壤和甘蓝中易降解,且在甘蓝中降解速度比在土壤中快。
     土壤对精恶唑禾草灵的吸附试验,选取了有机质含量不同的两种类型土壤:草甸黑土和风沙土。采用经典的振荡平衡法进行研究。在5克土壤中加入0.81mg/kg精恶唑禾草灵饱和水溶液。在25℃水浴中振荡,不同时间内取水溶液用正己烷提取后进行气相色谱(GC)法分析。结果表明,两种土壤对精恶唑禾草灵均有极强的吸附性。
Fenoxaprop-p-ethyl (FNE) is a selective post-emergence herbicide controlling annual grass weed in dicotyledonous crops. The determination and degradation of FNE and its metabolite, fenoxaprop-p (FNA), in soil and cabbage were studied. The adsorption of FNE by soil was also studied.
    The soil samples were extracted with ethyl acetate-sodium hydrogen Carbonate solution. After partition of the parent compound and its metabolite, the organic phase containing FNE was cleaned up with dichloromethane. Then combine the FNE and FNA. HPLC analysis was performed with Zorbax C18 column. FNA and FNE were eluted with methanol-water mixtures. The cabbage samples were extracted with acetone-sodium hydrogen carbonate solution mixtures to attain FNE, and then cleaned up with alumna. The HPLC analysis is the same as the soil. In order to attain FNA, the cabbage samples were extracted with hydrochloric acid-methanol mixtures and cleaned up with silica. The HPLC analysis was performed with Zebra C8 column. FNA was eluted with methanol-glacis acetic acid solution. The recovery of the method was 83.28-90.00% and C.V. was 0.88-3.88%. The detect limit of FNE in soil and cabbage was 0.01ug/g, and FNA was 0.02ug/g.
    The degradation of FNE and FNA in soil and cabbage was studied by HPLC method and a 2-yr field experiment in Jilin province. The soil and cabbage were treated with FNE at 360mL/hm2. Sample the soil and cabbage at different time to do degradation dynamics analysis. The degradation procedure of FNE was correspond to the mathematic pattern, C=C0e-kt. In soil, the dynamic equation in 2001 was c=0.1929e-0.0113t and the half-life was 44.3h, and the dynamic equation in 2002 was c=0.2003e-0.0115t and half-life was 43.2h. FNA was detected in soil after 5h and the highest amount was at 72h. In cabbage, the dynamic equation in 2001 was c=0.2376e-0.1489t and the half-life was 6.4h, and the dynamic equation in 2002 was c=0.2596e-0.1562t and half-life was 6.0h. FNA was detected in cabbage after 3h and the highest amount was at 8h. FNE and FNA were not detected in soil and cabbage at harvest. The result showed that FNE was dissipated in soil and cabbage rapidly and the degradation of FNE in cabbage was more quickly than in
     soil.
    The adsorption of FNE by soil was studied by the equilibrium method. Two different soil types were used in the study.0.81ug/g FNE solutions (25mL) was added to soil (5g) and was shaken on a shaker at 25C. Sample the FNE solutions at different time. A GC method was
    
    
    carried out to detect the FNE amount in water. The result showed that FNE could be adsorbed by the two soils strongly.
引文
[1] 苏少泉 除草剂作用靶标与新品种创制 北京化学工业出版社 2001.7
    [2] 陈万义 新农药研究与开发 北京化学工业出版社 1995.9
    [3] 中国农垦进出口公司编著 农田杂草化学防除大全 上海科学技术文献出版社 1991-3
    [4] 刘长令 世界农药大全-除草剂卷 北京化学工业出版社 2002.8
    [5] 农业部农药检定所 新编农药手册 中国农业出版社 1998.1
    [6] http://www.horiaononline.com MSDS-Sheets/121.txt
    [7] Bilalis.D.;Efthimiadis.P. The phytoxixity of various graminicides in durum wheat in Greece J. of Agronomy and Crop Science 2001.187(2) 121-126
    [8] Koecher.H.;Baetner.B. Influence of HOE70542 on behavior of fenoxaprop-ethyl in wheat Brighton Crop prot.conf-weeds. 1989(2) 495-500
    [9] Mayland.P.;Drexler,D.M. Field performance of Fenoxaprop-ethyl in wheat in North America Brighton Crop prot.conf-weeds. 1989(1) 393-398
    [10] Xie H.S.,Hsiao A.I. Inflence of temperature and light intensity on adsorption,translation and phototoxicity of fenoxaprop-ethyl and imazamethaberoz-methyl in Avena fatua J. Plant Growth Regul. 1996 15(2) 57-62
    [11] Ozair.chaudhry A;Moshier.Loren.J. Effect of soil incorporate trifluralin and selectedpostegmerget herbicide on growth nodulation and nitrogen fixation of soybean Pak.J.Agric.Res 1998.9(3) 316- 320
    [12] Walis,U.S.;Kaur,Ramanjit; Kler,D.S.al. Determing residual effects of new herbicides applied to control phalaris minor from wheat on the succeeding crops through vioassay Environ.Ecol.2000 18(1) 130-133
    [13] 朱国念 恶唑禾草灵在小麦及土壤中的残留与降解研究农药 2000 39 (5) 19-22
    [14] Smith,Allan E. Persistence and transformation of the herbicide 14C fenoxaprop-ethyl and 14C fenthiaprop-ethyl in two prairie soil under laboratory and field condition J.Agric. Food Chem. 1985 133(3) 483-488
    [15] Mara, Gennari; Marco, Vincenti. Microbial Metabolism of Fenoxaprop-ethyl Pestic.Sci. 1995(44) 299-303
    [16] Smith,A.E.; Aubin,A.J. Degradation studies with 14C-fenoxaprop in prairie soils Can.J.Soil Sci. 1990(8) 343-350
    
    
    [17] Hill,B.D.;Niller,J.J.;Harker,K.N. al. Estimating the relative leaching potential of herbicides in Alberta Soil Water Pual. Res.J.Can 2000,35(4) 693-710
    [18] Ottmar, Wink Metabolism of the herbicide Hoe33171 in soybean J.Agric Food Chem 1984(32) 187-192
    [19] Tool,Anny.P.;Grosby,Donald, G. Environmental persistence and fake of fenoxaprop-ethyl Environ. Toxicol. Chem. 1989 8(12) 187-192
    [20] Ottmar, Wink Enantioselective transformation of the herbicides Diclofop-methyl and fenoxaprop- ethyl in soil Pestic. Sci. 1988(22)31-40
    [21] Yoshichika Determination of fenoxaprop-ethyl in polished rice and bown rice by HPLC Shokuhin Eiseigaku Zassi 1995 36(2) 287-292
    [22] Gelsomino Mutiresidue analysis of pesticides in fruits and vegetables by gel permeation chromatography followed by GC-ECD/MS J.Chromatogr A1997 782(1)105-122
    [23] 侯宇凯 国际公认权威的农药原药和制剂分析方法-介绍CIPAC手册J卷兼谈ICPAC方法农药品200041(5)43-45
    [24] 杨曼君 农药残留分析中的提取新技术 农药科学与管理 2000 21(1)13-15
    [25] Marchese,stefane. Development of a method based on accelerated soluent eatraction and LC/MS for determination of arylphenoxy-propionic gerbicedes in soil Rapid Commum Mass Spectrom 2001 15(6) 393-400
    [26] Butz, S., Stan, H.J. Xcreening of 265 pesticides in water by TLC with Automated Multiple Development Anal Chem 1995 67(3) 620-630
    [27] Pichon, B., Guenu, S., Dupas, S. etc. Muti-residue pesticide analysis in waters by liquide-solid extraction and liquide chromatography Spectra. Anal. 1995 24(185) 25-31
    [28] Dupas,S., Guenu, S. Long-term monitoring of pesticides and polar transformation products in ground water using automated online trace-enrichment and LC with DAD Int.J. Environ.and Chem. 1996 65(1-4)
    [29] Curini,R.; Gentili,A. SPEkfolloxed by HPLC-ISI-MS for monitoring of herbicides in enviromented water J.Chromatogr. A 2000 874(2) 187-198
    [30] Lagana,Aldo. Determination of aryloxyphenoxy propionic acid herbicides in water using different SPE procedures and HPLC-diode array detection J.Chromatogr. A 1998 796(2) 309-318
    [31] Neu, H.J., Ziemer, W., Merz, W. etc. Anovel derivatization procedure for the determination of trace of polar organic compounds in water using static headspace gas chromatography J. Anal. Chem 1991,340(2) 65-70
    
    
    [32] Wilkes J.G., Gente E.R., Kim Y. etc. Samole preparation for the analysis of flavors and off-flavors in food J.Chromatogr. A,2000,880(1+2) 3-33
    [33] EPA编 中国环境监测站 北京环境监测中心 中科院生态环境研究中心译 固体废弃物试验分析评价手册中国环境科学出版社1991
    [34] Anna.M al. Analysis of fenoxaprop-ethyl and fenoxaprop in drinking water usingSPE and ION-pair HPLC Pesti.Sci. 1996 48(3) 219-223
    [35] Luisella Celi; Michele Negre; Nara Gennari al. HPLC determination of fenoxaprop and fenoxaprop-ethyl in different soil Pesti. Sci. 1993(38)43-47
    [36] 山西省农科院植保研究所 威霸6.9%水乳剂在棉花上的残留试验总结报告 2002.4
    [37] 北京化工研究院环保所 威霸8.05%乳油在花生上的残留试验总结报告 2002.4
    [38] 李康 李振 精恶唑禾草灵在油菜中残留分析方法研究 农药科学与管理 2003 24(1)17-19
    [39] 陈耀祖 有机分析 高等教育出版社
    [40] L.R.森德尔著 张玉奎 王杰 张维冰译 实用高效液相色谱法的建立 华文出版社 2001.7
    [41] http://dicc.kais.kyoto-u.acjp/KGRAP/pd/data/Fenoxaprop-ethyl
    [42] 农业部农药检定所编 农药残留量实用检测方法手册 中国农业科技出版社 1995.3
    [43] Alba Pusino; Salvatore Petretto; Adsorption and Desorption of Imazapyr by soil J.Agric.Food Chem. 1997 45 1012-1016
    [44] 蔡道基 农药环境毒理学研究 中国环境科学出版社 1998
    [45] 国家环境保护局 化学品测试准则 化学工业出版社 1990
    [46] 方晓航 仇荣亮 农药在土壤环境中的行为研究 土壤与环境 2002,11(1)94-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700