导电高分子复合膜材料及其电化学器件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导电高分子复合膜材料一般具有优异的电学、力学以及电化学性能,从而在电化学器件,如:驱动器、超级电容器等方面具有重要应用前景。本论文设计和制备了三种聚吡咯复合膜材料,并利用不同的合成与修饰方法有效改善了聚吡咯膜材料的表面粘附性、导电性以及界面相互作用。研制了基于这三种导电高分子复合膜材料的电化学器件。主要研究内容和结果如下:
     利用电化学沉积技术制备了聚吡咯/金双层复合膜。在该复合膜表面化学修饰了一层聚多巴胺薄膜,从而有效地提高了其表面生物粘附性。利用聚多巴胺修饰的聚吡咯/金复合膜研制了电化学驱动器。该器件在生理环境中具有良好的驱动性能。同时,通过电化学驱动成功地从大肠杆菌培养液中抓取了大量的大肠杆菌,为在生理环境中富集细菌提供了一种简便的方法。
     以石墨烯自支撑膜为工作电极直接电化学沉积聚吡咯,制备了聚吡咯/磺化石墨烯/还原石墨烯的三层复合膜材料。该材料具有类三明治结构,各层之间紧密结合。改善了材料的导电性、力学强度与界面性能。基于该复合膜材料的电化学驱动器,比传统的弯曲型驱动器具有更好的驱动性能。该驱动器在1V电压的驱动下,驱动速率高达158度/秒,循环寿命长达5000次。由于石墨烯的高电导率和低质量密度,从而大幅降低了驱动该器件所需能量。
     通过电化学共沉积一步法制备了聚吡咯/磺化石墨烯复合膜材料,为制备石墨烯/导电高分子复合材料提供一种新方法。磺化石墨烯作为导电掺杂剂,均匀分散在聚吡咯体相之中。在气泡模板的控制下,当电沉积电量大于2库伦/平方厘米时,复合膜具有连续多孔结构。利用沉积电量为2库伦/平方厘米复合膜所制备的超级电容器具有高的比电容量(285±8法拉/克),该数值比纯吡咯膜高接近1倍。同时,该超级电容器具有良好的快速充放电性能和循环稳定性。
Composite films of conducting polymers (CP) usually have excellentproperties and multiple functions. Thus, they have potential applications infabricating various electrochemical devices. In this dissertation, three types ofpolypyrrole (PPy) composite films were synthesized through differentstrategies. The conductivity, surface adhesive or mechanical property ofpolypyrrole film has been greatly improved. The electrochemical actuators orsupercapacitors based on these composite films exhibit improved propertiesand functions. The main contents and results are summarized as follows.
     A PPy/Au bi-layer composite film was fabricated by electrochemicaldeposition and its surface was modified with a bio-adhesive polymer,polydopamine. The actuator based on the composite film exhibited highperformances of actuation in physiological media. Furthermore, the surface ofthe actuator is sticky in water, and thus can seize bacteria from their aqueoussolutions. Actuation greatly increased the efficiency of adhering bacteria onthe actuator surface, and this technique provides a cheap and convenientapproach for accumulating bacteria from physiological media.
     A tri-layer composite film was fabricated by the electrodeposition of PPyonto a sulfonated graphene (SG)/reduced graphene oxide (RGO) bi-layer filmwith sandwich structure. During electrical actuation, PPy and RGO were actedas actuation and conductive inert layers, respectively. The SG layer was usedto enhance the interfacial interactions. The tri-layer actuator exhibited highand stable actuating performance for over1,000actuation cycles, and thelifetime of the actuator was tested to be about5,000cycles. The bending angleof the actuator is larger than360oand its movement rate was higher than150os1under a driving potential of1.0V versus saturated calomel electrode(SCE). Furthermore, the low weight density of graphene based supportinglayer greatly lowered the energy or charge consuming of the actuator duringelectrochemical actuation.
     Composite films of sulfonated graphene (SG) and polypyrrole (PPy) wereelectrochemically deposited from the aqueous solutions containing pyrrolemonomer, SG sheets and dodecylbenzene sulfonic acid (DBSA). During theprocess of electrochemical polymerization, negatively charged SG sheetsacted as a dopant of PPy. Thus, they were uniformly dispersed in the PPymatrices of resulting composites. The introduction of SG sheets improved theconductivity and electrochemical properties of PPy films. The supercapacitorbased on the composite films containing about46%(by weight) SG showed ahigh specific capacitance of285F g1at a discharge rate of0.5A g1. Theyalso exhibited greatly improved electrochemical stability and rateperformances.
引文
[1] Kumar D, Sharma R C. Advances in conductive polymers. Eur Polym J,1998,34(8):1053-1060.
    [2] Shirakawa H, Louis E J, Macdiarmid A G, et al. Synthesis of electricallyconducting organic polymers-halogen derivatives of polyacetylene,(CH)X. JChem Soc-Chem Commun,1977,(16):578-580.
    [3] MacDiarmid A G."Synthetic metals": A novel role for organic polymers (Nobellecture). Angew Chem Int Edit,2001,40(14):2581-2590.
    [4] Wang L X, Li X G, Yang Y L. Preparation, properties and applications ofpolypyrroles. React Funct Polym,2001,47(2):125-139.
    [5] Kang E T, Neoh K G, Tan K L. Polyaniline: A polymer with many interestingintrinsic redox states. Prog Polym Sci,1998,23(2):277-324.
    [6] Jagur-Grodzinski J. Electronically conductive polymers. Polym Adv Tech,2002,13(9):615-625.
    [7] Pron A, Rannou P. Processible conjugated polymers: from organic semiconductorsto organic metals and superconductors. Prog Polym Sci,2002,27(1):135-190.
    [8] Su W P, Schrieffer J R, Heeger A J. Solitons in polyacetylene. Phys Rev Lett,1979,42(25):1698-1701.
    [9] Su W P, Schrieffer J R, Heeger A J. Soliton excitations in polyacetylene. Phys RevB,1980,22(4):2099-2111.
    [10] Chiang J C, Macdiarmid A G. Polyaniline-protonic acid doping of theemeraldine form to the metallic regime. Synth Met,1986,13(1-3):193-205.
    [11] Epstein A J, Ginder J M, Zuo F, et al. Insulator-to-metal transition in polyaniline.Synth Met,1987,18(1-3):303-309.
    [12] Pud A, Ogurtsov N, Korzhenko A, et al. Some aspects of preparation methods andproperties of polyaniline blends and composites with organic polymers. ProgPolym Sci,2003,28(12):1701-1753.
    [13] Perepichka I F, Perepichka D F, Meng H, et al. Light-emitting polythiophenes.Adv Mater,2005,17(19):2281-2305.
    [14] Moliton A, Hiorns R C. Review of electronic and optical properties ofsemiconducting pi-conjugated polymers: applications in optoelectronics. PolymInt,2004,53(10):1397-1412.
    [15] Smela E. Conjugated polymer actuators for biomedical applications. Adv Mater,2003,15(6):481-494.
    [16] Shim G H, Han M G, Sharp-Norton J C, et al. Inkjet-printed electrochromicdevices utilizing polyaniline-silica and poly(3,4-ethylenedioxythiophene)-silicacolloidal composite particles. J Mater Chem,2008,18(5):594-601.
    [17] Sapp S A, Sotzing G A, Reynolds J R. High contrast ratio and fast-switching dualpolymer electrochromic devices. Chem Mat,1998,10(8):2101-2108.
    [18] Groenendaal B L, Jonas F, Freitag D, et al. Poly(3,4-ethylenedioxythiophene) andits derivatives: Past, present, and future. Adv Mater,2000,12(7):481-494.
    [19] Argun A A, Cirpan A, Reynolds J R. The first truly all-polymer electrochromicdevices. Adv Mater,2003,15(16):1338-1341.
    [20] Gazotti W A, Casalbore-Miceli G, Geri A, et al. A solid-state electrochromicdevice based on two optically complementary conducting polymers. Adv Mater,1998,10(1):60-64.
    [21] Novak P, Muller K, Santhanam K S V, et al. Electrochemically active polymersfor rechargeable batteries. Chem Rev,1997,97(1):207-281.
    [22] Zhou H H, Chen H, Luo S L, et al. The effect of the polyaniline morphology onthe performance of polyaniline supercapacitors. J Solid State Electr,2005,9(8):574-580.
    [23] Chen S A, Tsai C C. Structure/properties of conjugated conductive polymers.Macromolecules1993,26:2234-2239.
    [24] Beadle P, Armes S P, Gottesfeld S, et al. Electrically conductivepolyaniline-copolymer latex composites. Macromolecules1992,25:2526-2530.
    [25] Roncali J Conjugated poly(thiophenes): synthesis, functionalization, andapplications. Chem Rev1992,92,(4):711-738.
    [26] Lu Y Q, Shi G Q, Li C, Liang Y Q. Thin polypyrrole films prepared by chemicaloxidative polymerization. Journal of Applied Polymer Science1998,70(11):2169-2172.
    [27] Rehahn M S, Arnulf Dieter; Wegner, Gerhard; Feast, W. James. Solublepoly(para-phenylenes).1. Extension of the Yamamoto synthesis todibromobenzenes substituted with flexible side chains. Polymer1989,30,(6):1054-1059
    [28] Rehahn M S, Arnulf Dieter; Wegner, Gerhard; Feast, W. James. Solublepoly(para-phenylenes).2. Improved synthesis ofpoly(para-2,5-di-n-hexylphenylene) via palladium-catalyzed coupling of4-bromo-2,5-di-n-hexylbenzeneboronic acid. Polymer1989,30,(6):1060-1062
    [29] Unders B R, Fleming R J, Murray K S. Recent advances in the physical andspectroscopic properties of polypyrrole films, partially those containingtransition-metal complexes as counter ions. Chem. Mater.1995,7:1082-1094.
    [30] Shi G Q, Jin S, Xue G, Li C. A conducting polymer film stronger than aluinum.Science,1995,267(5200):994-996.
    [31] Kudoh Y. Properties of polypyrrole prepared by chemical polymerization usingaqueous solution containing Fe2(SO4)3and anionic surfactant. Synth. Met.1996,79(1):17-22.
    [32] Martina S, Enkelmann V, Wegner G, et al. N-Protected Pyrrole DerivativesSubstituted for Metal-Catalyzed Cross-Coupling Reactions. Synthesis-Stuttgart1991,(8):613-615.
    [33] Malinauskas A Chemical deposition of conducting polymers. Polymer2001,42,(9):3957-3972.
    [34] Edelstein A S, Cammarata R C, Nanomaterials: synthesis, properties, andapplication. Philadelphia: Institure of Physics,1996.
    [35] Nalwa H S, Handbook of nanostructured materials and Nanotechnology. NewYork: Academic Press,2000.
    [36] Shalaev V M, Moskovits M, Nanostructured materials: Clusters, composites, andthin films. Washington: American Chemical Society,1997.
    [37] Wang J Z, Zheng Z H, Li H W, et al. Dewetting of conducting polymer inkjetdroplets on patterned surfaces. Nat Mater,2004,3:171-176.
    [38] Forzani E S, Zhang H Q, Nagahara L A, et al. A conducting polymernanojunction sensor for glucose detection. Nano Lett,2004,4:1785-1788.
    [39] Martin C R, Kohli P. The emerging field of nanotube biotechnology. Nat RevDrug Discov,2003,2:29-37.
    [40] Werake L K, Story J G, Bertino M F, et al. Photolithographic synthesis ofpolyaniline nanofibres. Nanotechnology,2005,16(12):2833-2837.
    [41] Jing X L, Wang Y Y, Wu D, et al. Polyaniline nanofibers prepared with ultrasonicirradiation. J Polym Sci Pol Chem,2006,44(2):1014-1019.
    [42] Huang J X, Kaner R B. A general chemical route to polyaniline nanofibers. J AmChem Soc,2004,126(3):851-855.
    [43] Huang J X, Kaner R B. Nanofiber formation in the chemical polymerization ofaniline: A mechanistic study. Angew Chem Int Edit,2004,43(43):5817-5821.
    [44] Parthasarathy R V, Martin C R. Synthesis of polymeric microcapsule arrays andtheir use for enzyme immobilization. Nature,1994,369(6478):298-301.
    [45] Il Cho S, Lee S B. Fast electrochemistry of conductive polymer nanotubes:Synthesis, mechanism, and application. Accounts Chem Res,2008,41(6):699-707.
    [46] Martin C R. Template synthesis of electronically conductive polymernanostructures. Accounts Chem Res,1995,28:61–68.
    [47] Wan M X. A template-free method towards conducting polymer nanostructures.Adv Mater,2008,20(15):2926-2932.
    [48] Zhang L J, Wan M X. Synthesis and characterization of self-assembledpolyaniline nanotubes doped with D-10-camphorsulfonic acid. Nanotechnology,2002,13(6):750-755.
    [49] Liu J, Wan M X. Studies on formation mechanism of polypyrrole microtubulesynthesized by template-free method. J Polym Sci Pol Chem,2001,39(7):997-1004.
    [50] Zhang Z M, Wei Z X, Wan M X. Nanostructures of polyaniline doped withinorganic acids. Macromolecules,2002,35(15):5937-5942.
    [51] Qu L T, Shi G Q. Electrochemical synthesis of novel polypyrrole microstructures.Chem. Commun.2003,2:206-207.
    [52] Qu L T, Shi G Q, Chen F. Electrochemical growth of polypyrrole microcontainers.Macromolecules2003,36(4):1063-1067.
    [53]朱宏伟.石墨烯:单原子层二维碳晶体—2010年诺贝尔物理学奖简介.自然杂志,2010,32(6):326-331.
    [54] Curl R F, Smalley R E. Probing C-60. Science,1988,242(4881):1017-1022.
    [55] Kroto H. Space, Stars, C-60, and Soot. Science,1988,242(4882):1139-1145.
    [56] Guldi D M, Asmus K D. Photophysical properties of mono and multiplyfunctionalized fullerene derivatives. J Phys Chem A,1997,101(8):1472-1481.
    [57] Diederich F, Thilgen C. Covalent fullerene chemistry. Science,1996,271(5247):317-323.
    [58] Prato M, Maggini M. Fulleropyrrolidines: A family of full-fledged fullerenederivatives. Accounts Chem Res,1998,31(9):519-526.
    [59] Sariciftci N S, Heeger A J. Photoinduced electron transfer from conductingpolymer to buckminsterfullerene. Science,1992,258(5087):1474-1476.
    [60] Hoppe H, Sariciftci N S. Morphology of polymer/fullerene bulk heterojunctionsolar cells. J Mater Chem,2006,16(1):45-61.
    [61] Iijima S. Helical microtubules of graphitic carbon. Nature,1991;354:56–8.
    [62] Andrews R, Jacques D, Qian DL, Rantell T. Multiwall carbon nanotubes: synthesisand application. Accounts Chem Res2002;35:1008–17.
    [63] Ajayan PM. Nanotubes from carbon. Chem Rev1999;99:1787–99.
    [64] Dai H. Carbon nanotubes: synthesis, integration, and properties. Accounts ChemRes,2002;35:1035–44.
    [65] Fischer JE. Chemical doping of single-wall carbon nanotubes. Accounts Chem Res,2002;35:1079–86.
    [66] Sun Y, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties andapplications. Accounts Chem Res,2002;35:1096–104.
    [67] Niyogi S,HamonMA,HuH, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC.Chemistry of single-walled carbon nanotubes. Accounts Chem Res,2002;35:1105–13.
    [68] Lu X, Chen Z. Curved-conjugation, aromaticity, and the related chemistry ofsmall fullerenes (    [69] Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes.Chem Rev,2006;106:1105–36.
    [70] Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC. Solutionproperties of single-walled carbon nanotubes. Science,1998;282:95–8.
    [71] Qin S, Qin D, Ford WT, Resasco DE, Herrera JE. Polymer brushes on single-walledcarbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate.J Am Chem Soc,2004;126:170–6.
    [72] Kong H, Gao C, Yan DY. Controlled functionalization of multiwalled carbonnanotubes by in situ atom transfer radical polymerization. J Am ChemSoc,2004;126:412–3.
    [73] Kong H, Gao C, Yan DY. Functionalization of multiwalled carbon nanotubes byatom transfer radical polymerization and defunctionalization of the products.Macromolecules2004;37:4022–30.
    [74] Cui J, Wang W, You Y, Liu C, Wang P. Functionalization of multiwalled carbonnanotubes by reversible addition fragmentation chain-transfer polymerization.Polymer2004;45:8717–21.
    [75] Gómez FJ, Chen RJ, Wang D, Waymouth RM, Dai H. Ring opening metathesispolymerization on non-covalently functionalized single-walled carbon nanotubes.Chem Commun2003:190–1.
    [76] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomicallythin carbon films. Science,2004,306(5696):666-669.
    [77] Geim A K, Novoselov K S The rise of graphene. Nature Mater,2007,6(3):183-191.
    [78] Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties andintrinsic strength of monolayer graphene. Science,2008,321:385-388.
    [79] Chen J H, Jang C, Xiao S D, et al. Intrinsic and extrinsic performance limits ofgraphene devices on SiO2. Nat Nanotechnol,2008,3:206-209.
    [80] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity ofsingle-layer graphene. Nano Lett,2008,8:902-907.
    [81] Park S, Ruoff R S. Chemical methods for the production of graphenes. NatNanotechnol,2009,4:217-224.
    [82] Novoselov K.S., Jiang Z., Zhang Y., et al. Room-temperature quantum hall effectin graphene. Science2007,5817:1379-1379.
    [83] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visualtransparency of graphene. Science,2008,320:1308-1308.
    [84] Berger C, Song Z M, Li X B, et al. Electronic confinement and coherence inpatterned epitaxial graphene. Science,2006,312:1191-1196.
    [85] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films forstretchable transparent electrodes. Nature,2009,457:706-710.
    [86] Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrarysubstrates by chemical vapor deposition. Nano Lett,2009,9:30-35.
    [87] Hummers W S, Offeman R E Preparation of graphitic oxide. J Am Chem Soc,1958,80(6):1339-1339.
    [88] Lerf A, He H Y, Forster M, et al. Structure of graphite oxide revisited. J PhysChem B,1998,102(23):4477-4482.
    [89] Staudenmaier L. Ber Dtsch Chem Ges,1898,31:1481-1487.
    [90] Brodie B C. Philos Trans R Soc London,1859,149:249-259.
    [91] Cai W W, Piner R D, Stadermann F J, et al. Synthesis and solid-state NMRstructural characterization of C13-labeled graphite oxide. Science,2008,321:1815-1817.
    [92] Compton O C, Nguyen S T. Graphene oxide, highly reduced graphene oxide, andgraphene: Versatile building blocks for carbon-based materials. Small,2010,6:711-723.
    [93] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheetsvia chemical reduction of exfoliated graphite oxide. Carbon,2007,45:1558-1565.
    [94] Shin H J, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide bysodium borohydrilde and its effect on electrical conductance. Adv Funct Mater,2009,19:1987-1992.
    [95] Tung V C, Allen M J, Yang Y, et al. High-throughput solution processing oflarge-scale graphene. Nat Nanotechnol,2009,4:25-29.
    [96] Pei S F, Zhao J P, Du J H, et al. Direct reduction of graphene oxide films intohighly conductive and flexible graphene films by hydrohalic acids. Carbon,2010,48:4466-4474.
    [97] Ramesha G K, Sampath S. Electrochemical reduction of oriented graphene oxidefilms: An in situ raman spectroelectrochemical study. J Phys Chem C,2009,113:7985-7989.
    [98] Wang Z J, Zhou X Z, Zhang J, et al. Direct electrochemical reduction ofsingle-layer graphene oxide and subsequent functionalization with glucose oxidase.J Phys Chem C,2009,113:14071-14075.
    [99] Becerril H A, Mao J, Liu Z, et al. Evaluation of solution-processed reducedgraphene oxide films as transparent conductors. ACS Nano,2008,2:463-470.
    [100]Li D, Muller M B, Gilje S, et al. Processable aqueous dispersions of graphenenanosheets. Nat Nanotechnol,2008,3:101-105.
    [101]Loh K P, Bao Q L, Ang P K, et al. The chemistry of graphene. J Mater Chem,2010,20:2277-2289.
    [102]Xu Y F, Liu Z B, Zhang X L, et al. A graphene hybrid material covalentlyfunctionalized with porphyrin: Synthesis and optical limiting property. Adv Mater,2009,21:1275-1279.
    [103]Liu Z, Robinson J T, Sun X M, et al. Pegylated nanographene oxide for delivery ofwater-insoluble cancer drugs. J Am Chem Soc,2008,130:10876-10877.
    [104] Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice andDNA transistor: Interfacing graphene derivatives with nanoscale and microscalebiocomponents. Nano Lett,2008,8:4469-4476.
    [105]Zhang X Y, Huang Y, Wang Y, et al. Synthesis and characterization of agraphene-C60hybrid material. Carbon,2009,47:334-337.
    [106]Si Y, Samulski E T. Synthesis of water soluble graphene. Nano Lett,2008,8:1679-1682.
    [107]Wang S, Chia P J, Chua L L, et al. Band-like transport in surface-functionalizedhighly solution-processable graphene nanosheets. Adv Mater,2008,20:3440-3446.
    [108]Yang H F, Li F H, Shan C S, et al. Covalent functionalization of chemicallyconverted graphene sheets via silane and its reinforcement. J Mater Chem,2009,19:4632-4638.
    [109]Yang H F, Shan C S, Li F H, et al. Covalent functionalization of polydisperschemically-converted graphene sheets with amine-terminated ionic liquid. ChemCommun,2009,3880-3882.
    [110]Park S, Dikin D A, Nguyen S T, et al. Graphene oxide sheets chemicallycross-linked by polyallylamine. J Phys Chem C,2009,113:15801-15804.
    [111]Salvio R, Krabbenborg S, Naber W J M, et al. The formation of large-areaconducting graphene-like platelets. Chem Eur J,2009,15:8235-8240.
    [112]Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation ofisocyanate-treated graphene oxide nanoplatelets. Carbon,2006,44:3342-3347.
    [113]Liu Z F, Liu Q, Huang Y, et al. Organic photovoltaic devices based on a novelacceptor material: Graphene. Adv Mater,2008,20:3924-3930.
    [114]Wang Y B, Kurunthu D, Scott G W, Bardeen C J. Fluorescence Quenching inConjugated Polymers Blended with Reduced Graphitic Oxide.J Phys Chem C2010,114:4153-4159.
    [115]Liu Q, Liu Z, Zhang X, Yang L, Zhang N, et al. Polymer Photovoltaic Cells Basedon Solution-Processable Graphene and P3HT.Adv Funct Mater2009,19:894-904.
    [116]Yang H F, Zhang Q X, Shan C S, et al. Stable, Conductive SupramolecularComposite of Graphene Sheets with Conjugated Polyelectrolyte. Langmuir2010,26:6708-6712.
    [117] Yan X b, Han Z j, Yang Y, et al. Fabrication of carbon nanotube polyanilinecomposites via electrostatic adsorption in aqueous colloids. J Phys Chem C,2007,111(11):4125-4131.
    [118] Wu Q, Xu Y X, Yao Z Y, et al. Supercapacitors based on flexiblegraphene/polyaniline nanofiber composite films. ACS Nano,2010,4(4):1963–1970.
    [119]Cochet M, Maser WK, Benito AM, Callejas MA,Martínez MT, Benoit JM,Schreiber J, Chauvet O. Synthesis of a new polyaniline/nanotube composite:“in-situ” polymerisation and charge transfer through site-selective interaction.Chem Commun2001:1450–1451.
    [120]Wu T M, Lin Y W, Liao C S. Preparation and characterization ofpolyaniline/multi-walled carbon nanotube composites. Carbon2005;43:734–740.
    [121]Fan J, Wan M, Zhu D, Chang B, Pan Z, Xie S. Synthesis and properties of carbonnanotube-polypyrrole composites. Synth Met1999;102:1266–1267.
    [122]Zengin H, Zhou W, Jin J, Czerw R, Smith D W, Echegoyen L, Carroll D L, FoulgerSH, Ballato J. Carbon nanotube doped polyaniline. Adv Mater,2002,14:1480–1483.
    [123]Sainz R, Benito AM, Martínez MT, Galindo JF, Sotres J, Baró AM, Corraze B,Chauvet O, Maser WK. Soluble self-allinged carbon nanotube/polyanilinecomposites. Adv Mater,2005;17:278–281.
    [124]Karim MR, Lee CJ, Park YT, Lee MS. SWNTs coated by conducting polyaniline:synthesis and modified properties. Synth Met,2005;151:131–135.
    [125]Tang B, Xu H. Preparation, alignment, and optical properties of solublepoly(phenylacetylene)-wrapped carbon nanotubes, Macromolecules,1999,32:2569–2576.
    [126]Philip B, Xie J, Abraham JK, Varada VK. Polyaniline/carbon nanotube composites:starting with phenylamino functionalized carbon nanotubes. Polym Bull,2005,53:127–138.
    [127]Xu J, Yao P, Li X, He F. Synthesis and characterization of water-soluble andconducting sulfonated polyaniline/paraphenylenediamine-functionalizedmulti-walled carbon nanotubes nano-composite. Mater Sci Eng B2008;151:210–219.
    [128]Zhao B, Hu H, Haddon RC. Synthesis and properties of a watersolublesingle-walled carbon nanotube-poly(m-aminobenzene) sulfonic acid graftcopolymer. Adv Funct Mater,2004,14:71–76.
    [129]Philip B, Xie J, Chandrasekhar A, Abraham J, Varadan VK. A novelnanocomposite from multiwalled carbon nanotubes functionalized with aconducting polymer. Smart Mater Struct,2004,13:295–298.
    [130]Zhang X, Lü Z, Wen M, Liang H, Zhang J, Liu Z. Single-walled carbonnanotube-based coaxial nanowires: synthesis, characterization, and electricalproperties. J Phys Chem B,2005,109:1101–1107.
    [131]Park JE, Saikawa M, Atobe M, Fuchigami T. Highly-regulated nanocoatings ofpolymer films on carbon nanofibers using ultrasonic irradiation. Chem Commun,2006,2708–2710.
    [132]Zhang L L, Zhao S, Tian X N, et al. Layered graphene oxide nanostructures withsandwiched conducting polymers as supercapacitor electrodes. Lagmuir,2010,26(22):17624-17628
    [133]Xu J J, Wang K, Zu S Z, et al. Hierarchical nanocomposites of polyanilinenanowire arrays on graphene oxide sheets with symergistic effect for energystorage. ACS Nano,2010,4(9):5019-5026.
    [134]Zhang K, Zhang L L, Zhao X S, Wu S. Graphene/Polyaniline NanoriberComposites as Supercapacitor Electrodes. Chem Mater,2010,22:1392-1401.
    [135]Wang H, Hao Q, Yang X, et al. A nanostructured graphene/polyaniline hybridmaterial for supercapacitors. Nanoscale,2010,2(10):2164-2170.
    [136]Downs C, Nugent J, Ajayan PM, Duquette DJ, Santhanam KSV. Efficientpolymerization of aniline at carbon nanotube electrodes. Adv Mater,1999,11:1028–1031.
    [137]Chen GZ, Shaffer MSP, Coleby D, Dixon G, Zhou W, Fray DJ, Windle AH.Carbon nanotube and polypyrrole composites: coating and doping. Adv Mater,2000,12:522–526.
    [138]Gao M, Huang S, Dai L, Wallace G, Gao R, Wang Z. Aligned coaxial nanowires ofcarbon nanotubes sheathed with conducting polymers. Angew Chem Int Ed,2000,39:3664–3667.
    [139]WangJ, Dai J, Yarlagadda T. Carbon nanotubes-conducting-polymer compositenanowires. Langmuir,2005;21:9–12.
    [140]Huang J, Li X, Xu J, Li H. Well-dispersed single-walled carbon nanotube/polyaniline composite films. Carbon2003;41:2731–2736.
    [141]Han G, Yuan J, Shi G, Wei F. Electrodeposition of polypyrrole/multiwalled carbonnanotube composite films. Thin Solid Films,2005;474:64–69.
    [142]Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH. Controlling thenanostructure of electrochemically grown nanoporous composites of carbonnanotubes and conducting polymers. Composites Sci Technol,2004,64:2325–2331.
    [143]Bhandari S, Deepa M, Srivastava AK, Lal C, Kant R. Poly(3,4-ethylenedioxythiophene)(PEDOT)-coated MWCNTs tethered to conductingsubstrates: facile electrochemistry and enhanced coloring efficiency. MacromolRapid Commun,2008,29:1959–1964.
    [144]Bhandari S, Deepa M, Srivastava A K, et al. Poly(3,4-ethylenedioxythiophene)-Multiwalled Carbon Nanotube Composite Films: Structure-Directed AmplifiedElectrochromic Response and Improved Redox Activity。 J Phys Chem B,2009,113(28):9416-9428.
    [145] Gangopadhyay R and. De A. Conducting polymer nanocomposites: A briefoverview. Chem Mater,2000,12:608–622.
    [146] Yoneyama H, Shoji Y and Kawai K. Electrochemical synthesis of polyyyrrolefilms containing metal-oxide particles. Chem Lett,1989,6:1067–1070.
    [147] Roux S, Soler-Illia G, Demoustier-Champagne S, et al. Titania/polypyrrole hybridnanocomposites built from in-situ generated organically functionalizednanoanatase building blocks. Adv Mater,2003,15:217–221.
    [148] Yan H L, Shi G Q, Incorporation of gold nanocrystals into poly(3-alkylthiophene)nanowires and fabrication of gold nanowires. Nanotechnology,2006,17:13–18.
    [149] Mao H, Lu X, Chao D, Cui L, Li Y, Zhang W. Preparation and characterization ofPEDOT/β-Fe3+O(OH,Cl) nanospindles with controllable sizes in aqueous solution.J Phys Chem C,2008,112:20469–20480.
    [150] Li G, Zhang C, Peng H, Chen K. One-dimensional V2O5@polyaniline core/shellnanobelts synthesized by an in situ polymerization method. Macromol RapidCommun,2009,30:1841–1845.
    [151] Zhang Z, Wan M. Nanostructures of polyaniline composites containingnano-magnet. Synth Met,2003,132:205–212.
    [152] Zhang Z,WanM,Wei Y. Electromagnetic functionalized polyaniline nanostructures.Nanotechnology,2005,16:2827–2832.
    [153] Zhang L, Wan M. Polyaniline/TiO2composite nanotubes. J Phys Chem B,2003,107:6748–6753.
    [154] Lu X, Zhao Q, Liu X, Wang D, Zhang W, Wang C, Wei Y. Preparation andcharacterization of polypyrrole/TiO2coaxial nanocables. Macromol RapidCommun,2006,27:430–434.
    [155] Xu J, Li X, Liu J, Wang X, Peng Q, Li Y. Solution route to inorganicnanobelt-conducting organic polymer core-shell nanocomposites. J Polym Sci PartA Polym Chem,2005,43:2892–2900.
    [156] Cao H, Xu Z, Sheng D, Hong J, Sang H, Du Y. An array of iron nanowiresencapsulated in polyaniline nanotubules and its magnetic behavior. J Mater Chem,2001,11:958–960.
    [157] Huang J, Virji S, Weiller B H, Kaner R B. Nanostructured polyaniline sensors.Chem A Eur J,2004,10:1314–1319.
    [158] Tseng R J, Huang J, Ouyang J, Kaner R B, Yang Y. Polyaniline nanofiber/goldnanoparticle nonvolatile memory. NanoLett,2005,5:1077–1080.
    [159] Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL. Palladium nanoparticlessupported on polyaniline nanofibers as a semiheterogeneous catalyst in water.Angew Chem Int Ed,2007,46:7251–7254.
    [160] Zhang X, Manohar S K. Narrow pore-diameter polypyrrole nanotubes. J Am ChemSoc,2005,127:14156–14157.
    [161] Chen Z, Xu L, Li W, Waje M, Yan Y. Polyaniline nanofibre supported platinumnanoelectrocatalysts for direct methanol fuel cells. Nanotechnology2006;17:5254–9.
    [162] Ma Y, Jiang S, Jian G, Tao H, Yu L, Wang X, Wang X, Zhu J, Hu Z, Chen Y. CNxnanofibers converted from polypyrrole nanowires as platinum support formethanol oxidation. Energy Environ Sci,2009,2:224–9.
    [163] Lu G W, Li C, Shen J Y, et al. Preparation of highly conductivegold–poly(3,4-ethylenedioxythiophene) nanocables and their conversion topoly(3,4-ethylenedioxythiophene) nanotubes. J Phys Chem C,2007,111:5926-5931.
    [164] Drury A, Chaure S, Kroell M, et al. Fabrication and characterization ofsilver/polyaniline composite nanowires in porous anodic alumina. Chem Mater,2007,19:4252–4258.
    [165] Tsakova V, How to affect number, size, and location of metal particles depositedin conducting polymer layers. J Solid State Electrochem,2008,12:1421–1434.
    [166] Hu CC,. Chen E, Lin J Y. Capacitive and textural characteristics ofpolyaniline-platinum composite films. Electrochim Acta,2002,47:2741–2749.
    [167] Pud A, Ogurtsov N, Korzhenko A, Shapoval G. Some aspects of preparationmethods and properties of polyaniline blends and composites with organicpolymers. Prog Polym Sci,2003,28:1701–1753.
    [168] Luo X L, Killard A J, Smyth M R. Nanocomposite and nanoporous polyanilineconducting polymers exhibit enhanced catalysis of nitrite reduction. Chem Eur J,2007,13:2138–2143.
    [169] Shustak G, Gadzinowski M, Slomkowski S, et al. A novel electrochemicallysynthesized biodegradable thin film of polypyrrole-polyethyleneglycol-polylacticacid nanoparticles New J Chem,2007,31:163–168.
    [170] Norris ID, Shaker MM, Ko FK, MacDiarmid AG. Electrostatic fabrication ofultrafine conducting fibers: polyanilinerpolyethylene oxide blends. Synth Met,2000,114:109–114.
    [171] Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L. Stable, superhydrophobic,and conductive polyaniline/polystyrene films for corrosive environments. AdvFunct Mater,2006,16:568–574.
    [172] Hong KH, Kang TJ. Polyaniline-nylon6composite nanowires prepared byemulsion polymerization and electrospinning process. J Appl Polym Sci,2006,99:1277–1286.
    [173] Nair S, Natarajan S, Kim SH. Fabrication of electrically conductingpolypyrrole-poly(ethylene oxide) composite nanofibers. Macromol RapidCommun2005,26:1599–1603.
    [174] Granato F, Bianco A, Bertarelli C, Zerbi G. Composite polyamide6/polypyrroleconductive nanofibers. Macromol Rapid Commun,2009,30:453–458.
    [175] Bai H, Zhao L, Lu C, Li C, Shi G. Composite nanofibers of conducting polymersand hydrophobic insulating polymers: preparation and sensing applications.Polymer,2009,50:3292–3301.
    [176] Ma Y, Zhang J, Zhang G, He H. Polyaniline nanowires on Si surfaces fabricatedwith DNA templates. J Am Chem Soc,2004,126:7097–7101.
    [177] Nickels P, Dittmer WU, Beyer S, Kottthaus JP. Polyaniline nanowire synthesistemplated by DNA. Nanotechnology,2004,15:1524–1529.
    [178] Hatano T, Takeuchi M, Ikeda A, Shinkai S. Nano-rod structure ofpoly(ethylenedioxythiophene) and poly(pyrrole) as created by electrochemicalpolymerization using anionic porphyrin aggregates as template. Org Lett,2003,5:1395–8.
    [179] Li H H, Shi G Q, Ye W, Li C, Liang Y Q. Polypyrrole carbon fiber composite filmprepared by chemical oxidative polymerization of pyrrole. Journal of AppliedPolymer Science,1997,64(11):2149-2154.
    [180] McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemicalsensors. Chem Rev,2000,100(7):2537-2574.
    [181] Wei Z G, Sandstrom R, Miyazaki S. Shape memory materials and hybridcomposites for smart systems-Part II Shape-memory hybrid composites. J MaterSci,1998,33(15):3763-3783.
    [182] Wei Z G, Sandstrom R, Miyazaki S. Shape-memory materials and hybridcomposites for smart systems-Part I Shape-memory materials. J Mater Sci,1998,33(15):3743-3762.
    [183] Benard W L, Kahn H, Heuer A H, et al. Thin-film shape-memory alloy actuatedmicropumps. J Microelectromech Syst,1998,7(2):245-251.
    [184] Lendlein A, Jiang H Y, Junger O, et al. Light-induced shape-memory polymers.Nature,2005,434(7035):879-882.
    [185] van Oosten C L, Corbett D, Davies D, et al. Bending Dynamics and DirectionalityReversal in Liquid Crystal Network Photoactuators. Macromolecules,2008,41(22):8592-8596.
    [186] Shahinpoor M, Bar-Cohen Y, Simpson J O, et al. Ionic polymer-metal composites(IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. SmartMater Struct,1998,7(6):15-30.
    [187] Shahinpoor M, Kim K J. Ionic polymer-metal composites: I. Fundamentals. SmartMater Struct,2001,10(4):819-833.
    [188]Baughman R H, Cui C X, Zakhidov A A, et al. Carbon nanotube actuators. Science,1999,284(5418):1340-1344.
    [189] West B J, Otero T F, Shapiro B, et al. Chronoamperometric Study ofConformational Relaxation in PPy(DBS). J Phys Chem B,2009,113(5):1277-1293.
    [190] He X M,Shi G Q.Electrochemical actuator based on monolithic polypyrrole–TiO2nanoparticle composite film.Sensor Actuat B-Chem,2006,115:488–493.
    [191] Kotz R, Carlen M Principles and applications of electrochemical capacitors.Electrochim Acta,2000,45(15-16):2483-2498.
    [192] Conway B E, Birss V, Wojtowicz J The role and utilization of pseudocapacitancefor energy storage by supercapacitors. J Power Sources,1997,66(1-2):1-14.
    [193] Conway BE. Electrochemical supercapacitors: scientific fundamentals andtechnological applications. New York: Kluwer Academic/Plenum Publishers;1999.
    [194] Bockris JO’M, Kita H. Analysis of galvanostatic transients and application to theiron electrode reaction. J Electrochem Soc,1961,108(7):676–85.
    [195] Engelsman K, Lorenz WJ, Schmidt E. Underpotential deposition of lead onpolycrystalline and single-crystal gold surfaces: Part I. Thermodynamics. JElectroanal Chem,1980,114(1):1–10.
    [196] Rudge A, Raistrick I, Gottesfeld S, et al. A study of the electrochemical propertiesof conducting polymers for application in electrochemical capacitors. ElectrochimActa,1994,39(2):273–87.
    [197] Trasatti S, Buzzanca G. Ruthenium dioxide: a new interesting electrode material.Solid state structure and electrochemical behaviour. J Electroanal Chem,1971,29(2):A1–5.
    [198] Srinivasan V, Weidner JW. Capacitance studies of cobalt oxide films formed viaelectrochemical precipitation. J Power Sources,2002,108(1–2):15–20.
    [199] Ganesh V, Pitchumani S, Lakshminarayanan V. New symmetric and asymmetricsupercapacitors based on high surface area porous nickel and activated carbon. JPower Sources,2006,158(2):1523–32.
    [200] Hu C C, Tsou T W. Ideal capacitive behaviour of hydrous manganese oxideprepared by anodic deposition. Electrochem Commun,2002,4(2):105–9.
    [201] Peng C, Zhang S W, Jewell D, Chen G Z. Carbon nanotube and conductingpolymer composites for supercapacitors. Prog Nat Sci,2008,18:777-788.
    [202] Gupta V, Miura N. High performance electrochemical supercapacitor fromelectrochemically synthesized nanostructured polyaniline. Mater Lett,2006,60(12):1466–9.
    [203] Fan LZ, Maier J. High-performance polypyrrole electrode materials for redoxsupercapacitors. Electrochem Commun,2006,8(6):937–40.
    [204] Wang J, Xu Y L, Chen X, Sun X F. Capacitance properties of single wall carbonnanotube/polypyrrole composite films. Compos Sci Technol,2007,67:2981-2985.
    [205] Khomenko V, Frackowiak E, Beguin F. Determination of the specific capacitanceof conducting polymer/nanotubes composite electrodes using different cellconfigurations. Electrochim Acta,2005,50:2499-2506.
    [206] Tripathi S K, Kumar A, Hashmi S A. Electrochemical redox supercapacitors usingPVdF-HFP based gel electrolytes and polypyrrole as conducting polymer electrode.Solid State Ionics,2006,177:2979-2985.
    [207] Murugan A V. Novel organic-inorganic poly (3,4-ethylenedioxythiophene) basednanohybrid materials for rechargeable lithium batteries and supercapacitors. JPower Sources,2006,159:312-318.
    [208] Xu Y X, Bai H, Lu G W, Li C, Shi G Q. Flexible graphene films via the filtrationof water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc,2008,130:5856–5857.
    [209] Gandhi M R, Murray P, Spinks G M, et al. Mechanism of electromechanicalactuation in polypyrrole. Synthetic Met,1995,73(3):247-256.
    [210] Otero T F, Sansinena J M In Bilayer dimensions and movement in artificialmuscles,13th International Symposium on Bioelectrochemistry and Bioenergetics,Ein Gedi, Israel, Jan07-12; Elsevier Science Sa Lausanne: Ein Gedi, Israel,1996,pp117-122.
    [211] Yun G Y, Kim H S, Kim J. Blocked force measurement of an electro-active paperactuator using a cantilevered force transducer. Smart Mater Struct,2008,17(2).
    [212] Han G Y, Shi G Q. High-response tri-layer electrochemical actuators based onconducting polymer films. J Electroanal Chem,2004,569(2):169-174.
    [213] Otero T F, Cortes M T. Artificial muscle: movement and position control. ChemCommun,2004,(3):284-285.
    [214] Hara S, Zama T, Ametani A, et al. Enhancement in electrochemical strain of apolypyrrole-metal composite film actuator. J Mater Chem,2004,14(18):2724-2725.
    [215] Hara S, Zama T, Takashima W, et al. TFSI-doped polypyrrole actuator with26%strain. J Mater Chem,2004,14(10):1516-1517.
    [216] He X M, Li C, Chen F G, et al. Polypyrrole microtubule actuators for seizing andtransferring microparticles. Adv Funct Mater,2007,17(15):2911-2917.
    [217] Zhao L, Tong L, Li C, Gu Z Z, Shi G Q. Polypyrrole actuators with inverse opalstructures. J Mater Chem,2009,19(11):1653-1658.
    [218] Lee H,Dellatore S M,Miller W M. Mussel-inspired surface chemistry formultifunctional coatings.Science,318:426-430.
    [219] Dalsin J L, Hu B H, Lee B P, Messersmith PB. Mussel adhesive protein mimeticpolymers for the preparation of nonfouling surfaces. J Am Chem Soc,2003,125:4253-4258.
    [220]Yu M, Deming T J. Synthetic polypeptide mimics of marine adhesives.Macromolecules,1998,31:4739-4745.
    [221]Dalsin J L, Hu B H, Lee B P, Messersmith PB. Mussel adhesive protein mimeticpolymers for the preparation of nonfouling surfaces. J Am Chem Soc,2003,125:4253-4258.
    [222] Otero T F, Sansinena J M. Artificial muscles based on conducting polymers.Bioelectrochemistry and Bioenergetics,1995,38(2):411-414.
    [223] Otero T F, Sansinena J M. Bilayer dimensions and movement in artificial muscles.Bioelectrochemistry and Bioenergetics,1997,42(2):117-122.
    [224]Ibekwe A M, Watt P M, Grieve CM Multiplex fluorogenic real-time PCR fordetection and quantification of Escherichia coli O157: H7in dairy wastewaterwetlands.Appl nviron Microbiol,2002,68:4853-4862.
    [225]Lee H, Scherer N F, Messersmith P B. Single-molecule mechanics of musseladhesion. Proc Natl Acad Sci USA,2006,103:12999-13003.
    [226] Pytel R, Thomas E, Hunter I. Anisotropy of electroactive strain in highly stretchedpolypyrrole actuators. Chem Mater,2006,18(4):861-863.
    [227] Kaneto K, Fujisue H, Kunifusa M, et al. Conducting polymer soft actuators basedon polypyrrole films-energy conversion efficiency. Smart Mater Struct,2007,16(2):250-255.
    [228] Cortes M T, Moreno J C. Artificial muscles based on conducting polymers.E-Polymers,2003no.041..
    [229] Christophersen M, Shapiro B, Smela E. Characterization and modeling of PPybilayer microactuators-Part1. Curvature. Sensor Actuat B-chem,2006,115(2):596-609.
    [230] Shimoda S, Smela E. The effect of pH on polymerization and volume change inPPy(DBS). Electrochim Acta,1998,44(2-3):219-238.
    [231] Kaneko M, Kaneto K. Electrochemomechanical deformation of polyaniline filmsdoped with self-existent and giant anions. React Funct Polym,1998,37(1-3):155-161.
    [232] Radhakrishnan S, Kar S B. Response characteristics of conducting polypyrrolebi-layer actuators: Role of backing layer polymer. Sensor Actuat B-chem,2006,119(1):94-98.
    [233] Han G Y, Shi G Q. Conducting polymer electrochemical actuator made ofhigh-strength three-layered composite films of polythiophene and polypyrrole.Sensor Actuat B-chem,2004,99(2-3):525-531.
    [234]Takashima W, Pandey S S, Kaneto K. Bi-ionic actuator by polypyrrole films.Synthetic Met,2003,135(1-3):61-62.
    [235]Xie X J, Qu L T, et al. An Asymmetrically surface-modifed graphene Filmelectrochemical actuator. ACS Nano2010,4:6050-6054.
    [236] Su W, Iroh J O. Effects of electrochemical process parameters on the synthesis andproperties of polypyrrole coatings on steel. Synth Met,1998,9:159–167.
    [237] Davecy J M, Ralph S F, Too C O, Wallace G G. Synthesis, characterisation andion transport studies on polypyrrole/polyvinylphosphate conducting polymermaterials. Synth Met,1999,99:191–199.
    [238] Bay L, Mogensen N, Skaarup S, Sommer-Larsen P, Jorgensen M, West K.Polypyrrole doped with alkyl benzenesulfonates. Macromolecules,2002,35:9345–9351.
    [239] Otero T F, Sansinena J M In Bilayer dimensions and movement in artificialmuscles,13th International Symposium on Bioelectrochemistry and Bioenergetics,Ein Gedi, Israel, Jan07-12; Elsevier Science Sa Lausanne: Ein Gedi, Israel,1996;pp117-122.
    [240] Liu Y K, Gan Q, Baig S, Smela E. Improving PPy adhesion by surface roughening.J Phys Chem C,2007,111:11329–11338.
    [241]Sun Y, Wu Q, Shi G Graphene based new energy materials. Energy&Environmental Science,2011,4(4):1113-1132.
    [242] Stoller M D, Park S, Zhu Y, et al. Graphene-Based Ultracapacitors. Nano Lett,2008,8(10),3498-3502.
    [243] Wang Y, Shi Z, Huang Y, et al. Supercapacitor Devices Based on GrapheneMaterials. J Phys Chem C2009,113(30),13103-13107.
    [244] Zhu Y, Murali S, Stoller M D, et al. Microwave assisted exfoliation and reductionof graphite oxide for ultracapacitors. Carbon,2010,48(7),2118-2122.
    [245] Randriamahazaka H, Noel V, Chevrot C. Nucleation and growth of poly(3,4-ethylenedioxythiophene) in acetonitrile on platinum under potentiostaticconditions. J Electroanal Chem,1999,472,103-111.
    [246] Deepa M, Bhandari S, Kant R. A comparison of charge transport behavior infunctionalized and non-functionalized poly3,4-(ethylenedioxythiophene) films.Electrochim Acta,2009,54:1292-1303.
    [247] Wang H L, Robinson J T, Li X L, et al. Solvothermal reduction of chemicallyexfoliated graphene sheets. J Am Chem Soc,2009,131:9910-9911.
    [248] Fu M X, Chen F E, Zhang J X, Shi G Q., Electrochemical fabrication of alignedmicrotubular heterojunctions of poly(p-phenylene) and polythiophene, J MaterChem,2002,12:2331–2333.
    [249] Shi G Q, Xu J K, Fu M X, Raman spectroscopic and electrochemical studies ondoping level changes of polythiophenes during electrochemical polymerizationprocess. J PhysChemB,2002,106:288–292.
    [250]Duchet J, Legras R, Demoustier-Champagne S. Chemical synthesis of polypyrrole:structure-properties relationship. Synth Met,1998,98:113-122.
    [251] Barroso-Bujans F, Alegria A, Colmenero J. Kinetic study of the graphite oxidereduction: Combined structural and gravimetric experiments under isothermal andnonisothermal conditions. J Phys Chem C,2010,114:21645-21651.
    [252]Liu Y C, Chuang T C. Synthesis and characterization of Gold/Polypyrrolecore-shell nanocomposites and elemental gold nanoparticles based on thegold-containing nanocomplexes prepared by electrochemical methods in aqueoussolutions. J Phys Chem B,2003,107:12383-12386.
    [253]Chen F, Shi G Q, Fu M X, Qu L T, Hong X Y. Raman spectroscopic evidence ofthickness dependence of the doping level of electrochemically depositedpolypyrrole film. Synth Met,2003,132:125-132.
    [254]Chen G Z, Shaffer M S P, Coleby D, Dixon G, Zhou W Z, Fray D J, Windle A H.Carbon nanotube and polypyrrole composites: Coating and doping. Adv Mater,2000,12:522-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700