酸碱可控超分子超支化聚合物的合成、表征及荧光特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学是由小分子构筑基元通过分子识别、自组装、自规范等相互作用连接而形成的。超分子化学目前正在快速地发展,已经发展成为化学领域重要的研究方向。将超分子的基本概念与高分子科学相结合产生了一个新兴的研究领域—超分子聚合物。与常规聚合物通过共价键连接不同,这种超分子聚合物单体之间是通过非共价键的连接形成的。非共价相互作用的动态特性给出了超分子聚合物许多新的特性。超分子聚合物可以作为传统聚合物的有效补充。在过去的十几年里,化学工作者已经成功地制造出种类繁多的超分子聚合物。然而,已经制备的绝大多数超分子聚合物是一维聚合物。由ABm(m≥2)单体聚合的三维超支化聚合物在加工改性、增韧添加剂、药物输送、合成材料、聚电解质、光电材料和高级涂料等领域具有潜在的应用价值。本文设计合成了两种含有一个二苯并24-冠-8(DB24C8)和两个二级胺中心的AB2单体1、C1,单体可以通过主-客体的识别过程生成具有酸碱响应性的超分子超支化聚合物。
     本文包含以下四个部分:
     1.本文综述了超分子聚合物的研究进展。主要包含超分子聚合物的设计原则与反应机理,以及超分子聚合物研究的一些最新实例。
     2.合成了一个含有一个二苯并24-冠-8(DB24C8)和两个二级胺中心的有机π共轭AB2单体1。实验结果表明在二氯甲烷溶液中,加入化学计量的三氟乙酸(TFA)使得胺基进行质子化,所得的二烷基铵离子中心通过与冠醚环形成[N+-H…O]、[C-H…O]氢键相互作用而穿插进入DB24C8环内,同时伴随着共轭核心的强烈的π-π堆积作用,使超分子的超支化聚合物TFA-1定量形成。向生成的超分子超支化聚合物TFA-1中加入略微过量的叔丁基亚氨基-三(二甲氨基)正膦(P1-t-Bu)后,铵基去质子化使得超分子超支化聚合物TFA-1被完全分解。酸碱控制诱导的超分子超支化聚合物TFA-1在可逆变化的同时,伴随着共轭核心π-π堆积相互作用的可逆变化,使得体系荧光强度也随之周期性变化。
     3.超分子超支化聚合物TFA-1可以和四丁基氟化铵或四丁基乙酸铵形成强离子对而完全分解。在分解的同时也伴随着共轭核心π-π堆积相互作用的变化,使体系荧光明显改变。
     4.合成了一个含有二苯并24-冠-8(DB24C8)和两个二级胺中心的金属有机Pt(Ⅱ)配合物AB2单体C1。通过1H NMR光谱,动态光散射,粘度,紫外-可见吸收光谱法,荧光光谱法等分析方法表征了溶液中超分子超支化聚合物的酸碱可逆过程。实验结果表明,有机金属的AB2单体C1,连同它的聚合衍生物,可以在溶液中进行定量,高效的,可逆转换。
Supramolecular chemistry is being widely studied with the aim of developing sophisticated chemical systems from small building blocks by molecular recognition, self-replication, and self-organizatio based on noncovalent interactions. Supramolecular polymer chemistry originated from a close integration of polymer science and supramolecular chemistry, and now stands as a popular and independent research area. In contrast to conventional polymers, the connection between monomers of supramolecular polymers is noncovalent. The dynamic nature of noncovalent interactions gives supramolecular polymers many novel properties, which can be complementary to conventional polymers. In the past decade, chemists elegantly fabricated a large variety of supramolecular polymers. However, almost all of these polymers are one-dimensional. Hyperbranched polymers, three-dimensional polymers prepared from polycondensations of ABm (m≥2) monomers, have potential applications as processing modifiers, toughening additives, drug delivery vehicles, synthesis supporting materials, advanced coatings, polymeric electrolytes, and optical waveguide materials. Here, we report the formation of supramolecular hyperbranched polymers from self-organization of AB2monomers containing complementary recognition sites, a dibenzo[24]crown-8(DB24C8) ring and two secondary amine centers. We have further studied the application of these improved systems in prepairing more complicated superamolecular systems such as supramolecular hyperbranched polymers.
     The content of this dissertation includes the following four parts:
     1. The recent advances of the studies in the supramolecular polymers have been reviewed. The design principle and mechanism of supramoleclar chemistry and a few examples for supramolecular polymers were introduced.
     2. A π-conjugated AB2monomer1with a dibenzo[24]crown-8(DB24C8) ring and two secondary amine centers has been synthesized. Upon treating its dichloromethane solution with trifluoroacetic acid (TFA) for protonation of the amine groups, the resulting dialkylammonium ion centers are encircled by the DB24C8groups, leading to the formation of a supramolecular hyperbranched polymer, TFA-1with rather strong π-π stacking interactions between the conjugated cores. The SHP can be completely depolymerized by adding slightly excessive N-tert-butyl-N',N',N'",N",N'",N'"-hexamethylphosphorimidic triamide. The acid-base controlled process induces a reversible change for the fluorescence intensities of the solutions due to the controllable presence of the π-π stacking interactions between the conjugated cores. This dynamic behavior is significant with respect to "smart" supramolecular polymer materials.
     3. The SHP TFA-1also can be completely depolymerized by adding slightly excessive tetrabutylammonium fluoride, or tetrabutylammonium acetate. The ion-pair controlled process induces a reversible change for the fluorescence intensities of the solutions due to the controllable presence of the π-π stacking interactions between the conjugated cores.
     4. A luminescence supramolecular hyperbranched polymer is reversibly fabricated by successively adding acid and base to a solution of an AB2platinum(Ⅱ) monomer C1in dichloromethane on the basis of acid-base controllable host-guest recognition of dibenzo[24]crown-8moieties with dialkylammonium ion centers. The acid-base switching by properties of both the monomer and polymer have been studied in solution, using1H NMR spectra, UV/vis absorption spectra, luminescence spectra and dynamic light-scattering analysis. The experimental results demonstrate that the functionalized organometallic Pt-AB2monomer Cl, along with their polymeric derivatives, undergo quantitative, efficient, and reversible switching processes in solution.
引文
[1]徐光宪.21世纪的化学是研究泛分子的科学[J].中国科学基金,2002,2.70-76.
    [2]J.-M. Lehn, Angew. Chem. Int. Ed.1988,27,89-112.
    [3]R. F. Service, Science.2005,309,95.
    [4]刘育,尤长城,张衡益,超分子化学合成受体的分子次别与组装[M].天津:南开大学出版社,2003.
    [5]V. Balzani, A. Credi, M. Venturi, Proc. Natl. Acad Sci. U.S.A.2002,99,4814-4817.
    [6]J. W. Seed, J. L. Atwood, Superamolecular Chemistry[M]. Chichester:John Wiley & Son, 2000.
    [7]W. Bu, S. Uchida, N. Mizuno, Angew. Chem. Int. Ed. 2009,48,8281-8284.
    [8]P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glinke, M. Stephan, D. Philp, N. Spencer, J. F. Stoddart, P. A.Tasker, D. J. Williams, Angew. Chem. Int. Ed.1995,34,1865-1869.
    [9]P. R. Ashton, R. Ballardini, V. Balzani, I. Baxter, A. Credi, M. C. T. Fyfe, M. T. Gandolfi, M. Gomez-Lopez, M.-V. Martinez-Diaz, A. Piersanti, N. Spencer, J. F. Stoddart, M. Venturi, A. J. P. White, D. J. Williams, J. Am. Chem. Soc.1998,120,11932-11942.
    [10]J. D. Badjic, C. M. Ronconi, J. F. Stoddart, V. Balzani, S. Silvi, A. Credi, J. Am. Chem. Soc., 2006,128,1498-1499.
    [11]X.-Z.Zhu, C.-F. Chen, J. Am. Chem. Soc.2005,127,13158-13159.
    [12]M. R. Sambrook, P. D. Beer, J. A. Wisner, R. L. Paul, A. R. Cowley, J. Am. Chem. Soc.2004, 126,15364-15365.
    [13]R. Ballardini, V. Balzani, A.Credi, M. T. Gandolfi, S. J. Langford, S. Menzer, L. Prodi, J. F. Stoddart, M. Venturi, D. J. Williams, Angew. Chem. Int. Ed.1996,35,978-981.
    [14]M. Asakawa, S. Iqbal, J. F. Stoddart, N. D. Tinker, Angew. Chem. Int. Ed.1996,35,976-978.
    [15]C. Dietrich-Buchecker, J.-P. Sauvage, J.-P. Kintzinger, Tetrahedron Lett.1983,24,5095-5098.
    [16]T. Han, C.-F. Chen, J. Org. Chem.2007,72,7287-7293.
    [17]V. Balzani, M. Clemente-Leon, A. Credi, B. Ferrer, M. Venturi, A. H. Flood, J. F. Stoddart, Proc. Natl. Acad. Sci. U.S.A.2006,103,1178-1183.
    [18]J.-P. Collin, P. Gaviηa, J.-P. Sauvage, New J. Chem.1997,21,525-528.
    [19](a) D. Chen, M. Jiang, Acc. Chem. Res.2005,38,494-502. (b) M, Guo. M, Jiang. Soft Matter.,2009,5,495-500. (c) Y. Zhou, D. Yan, Science.2004,303,65-67. (d) Y. Zhou, D. Yan, Chem. Commun.2009,1172-1188.
    [20]W. Huang, C. D. Han, Macromolecules 2006,39,4735-4745.
    [21]Q. Zhang, L. He, H. Wang, C. Zhang, W. Liu, W. Bu, Chem. Commun.2012,48,7067-7069.
    [22]J. D. Waston, F. H. C. Crick. Nature 1953,171,737-738.
    [23]S. Sivakova, D. A. Bohnsack, M. E. Mackay, P. Suwanmala, S. J. Rowan, J. Am. Chem. Soc. 2005,127,18202-18211.
    [24]R. J. Thibault, P.J. Hotchkiss, M. Gray, V. M. Rotello, J. Am. Chem. Soc.2003,125, 11249-11252.
    [25]M. N. Higley, J. M. Pollino, E. Hollembeak, M. Week, Chem. Eur. J.2005,11,2946-2953.
    [26]S. Schmatloch, A. M. J. van den Berg, A. S. Alexeev, H. Hofineier, U. S. Schubert, Macromolecules 2003,36,9943-9949.
    [27]H. W. Gibson, N. Yamaguchi, L. Hamilton, J. W. Jones, J. Am. Chem. Soc.2002,124, 4653-4665.
    [28]J. W. Jones, W. S. Bryant, A. W. Bosman, R. A. J. Janssen, E. W. Meijer, H. W. Gibson, J. Org. Chem.2003,68,2385-2389.
    [29]Z. Niu, H. W. Gibson, Chem. Rev.2009,109,6024-6046.
    [30]Z. Ge, J. Hu, F. Huang, S. Liu, Angew. Chem. Int. Ed.2009,48,1798-1802.
    [31]X. Ji, Y. Yao, J. Li, X. Yan, F. Huang, J. Am. Chem. Soc.2013,135,74-77.
    [32]T. Oku, Y. Furusho, T. Takata, Angew. Chem. Int. Ed.2004,43,966-969.
    [33](a) L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Chem. Rev.2001,101, 4071-4098. (b) U. S. Schubert, C. Eschbaumer, Angew. Chem. Int. Ed.2002,42,5734-5736. (c) L. Wang, M. O. Vysotsky, A. Bogdan, M. Bolte, V. Bohmer, Science.2004,304,1312-1315. (d) D. Chen, M. Jiang, Acc. Chem. Res.2005,38,494-502. (f) D. Xie, M. Jiang, G Zhang, D. Chen, Chem. Eur. J.2007,13,3346-3353.
    [34]M. Lehn, Comprehensive superamoclecular chemistry [M]. New York:Pergamon,1996.
    [35]C. Fouquey, J. M. Lehn, A. M. Levelut, Adv. Mater.1990,5,254-257.
    [36]U. Velten, M. Rrhahn, Chem, Commun.1996,2639-2640.
    [37](a) J. B. Beck, S. J. Rowan, J. Am. Chem. Soc.2003,125,13922-13923. (b) Y. Zhao, J. B. Beck, S. J. Rowan, A. M. Jamieson, Macromolecules 2004,37,3529-3531. (c) W. Weng, J. B. Beck, A. M. Jamiesom, S. J. Rowan, J. Am. Chem. Soc.2006,128,11663-11672.
    [38]L. He, S. Bi, H. Wang, B. Ma, W. Liu, W. Bu. Langmuir.2012,28,14164-14171.
    [39]D. Adam, P. Schuhmacher, J. Simmerer, L. Haussling, K. Siemensmeyer, K. H. Etzbachi, H. Ringsdorf, D. Haarer, Nature.1994,371,141-143.
    [40]E. J. Osburn, A. Schmidt, L.-K. Chaul, S.-Y. Chen, P. Smolenyak, N. R. Armstrong, D. F. O'Brien, Adv. Master.1996,8,926-928.
    [41]J. H. Wendorff, T. Christ, B. Gliisen, A. Greiner, A. Kettner, R. Sander, V. Stumpflen, V. Tsukruk, Adv. Master.1997,9,48-52.
    [42]L. Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R. H. Friend, J. D. MacKenzie, Science.2001,293,1119-1122.
    [43]J. Billard, J. C. Dubois, N. Huutunh, A. Zann, Now. J. Chim.1978,2,535-540.
    [44]E. Y. Sheu, K. S. Liang, L. Y. Chiang, J. Phys.1989,50,1279-1295.
    [45]J. P. Gallivan, G B. Schuster. J. Org. Chem.1995,60,2423-2429.
    [46](a) P. R. Ashton, I. Baxter, S. J. Cantrilll, M. C. T. Fyfe, P. T. Glink, J. F. Stoddart, A. J. P. White, D. J. Williams, Angew. Chem. Int. Ed.1998,37,1294-1297. (b) P. R. Ashton, I. W. Parsons, F. M. Raymo, J. F. Stoddart, A. J. P. White, D. J. Williams, R. Wolf, Angew. Chem. Int. Ed.1998, 37,1913-1916. (c) S. J. Cantrill, G J. Youn, J. F. Stoddart, J. Org. Chem.,2001,66,6857-6872.
    [47](a) N. Yamaguchi, D. S. Nagvekar, H. W. Gibson, Angew. Chem. Int. Ed.1998,37, 2361-2364. (b) H. W. Gibson, N. Yamaguchi, J. W. Jones, J. Am. Chem. Soc.2003,125, 3522-3533. (c) F. Huang, H. W. Gibson, Chem. Commun.2005,1696-1698.
    [48]F. Wang, C. Han, C. He, Q. Zhou, J. Zhang, C. Wang, N. Li, F. Huang, J. Am. Chem. Soc. 2008,130,11254-11255.
    [49]F. Huang, H. W. Gibson, J. Am. Chem. Soc.2004,126,14738-14739.
    [50]T. Haino, Y. Matsumoto, Y. Fukazawa, J. Am. Chem. Soc.2005,127,8936-8937.
    [51]G.Fernandez, E. M. Perez, L. Sanchez, N. Martin, J. Am. Chem. Soc.2008,130,2410-2411.
    [52]P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature.2008,451,977-980.
    [1](a) C. Gao, D. Yan, Prog. Polym. Sci. 2004,29,183-275; (b) B. I. Voit, A. Lederer, Chem. Rev. 2009,109,5924-5973; (c) D. Wilms, Stiriba, S. E. Stiriba, H. Frey, Acc. Chem. Res.2010,43, 129-141; (d) Y. Zhou, D. Yan, Chem. Commun.2009,1172-1188. (e) C. J. Hawker, R. Lee, J. M. J. Frechet, J. Am. Chem. Soc.1991,113,4583-4588.
    [2](a) F. Huang, H. W. Gibson, J. Am. Chem. Soc.2004,126,14738-14739; (b) G. Fernandez, Perez, E. M. Perez, L Sanchez, N. Martin, J. Am. Chem. Soc.2008,130,2410-2411; (c) R. Dong, Y. Liu, Y. Zhou, D. Yan, X. Zhu, Polym. Chem.2011,2,2771-2774; (d) S. Yu, W. Zhang, J. Zhu, Y. Yin, H. Jin, L, Zhou, Q. Luo, J. Xu, J. Liu, Macromol. Biosci.2011,11,821-827; (e) Z. Ge, H. Liu, Y. Zhang, S. Liu, Macromol. Rapid Commun.2011,32,68-73.
    [3](a) P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink, S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker, D. J. Williams, Angew. Chem., Int. Ed. Engl.1995,34,1865-1869; (b) A. G. Kolchinski, D. H. Busch, N. W. Alcock, J. Chem. Soc. Chem. Commun.1995,1289-1291; (c) P. R. Ashton, R. Ballardini, V. Balzani, M. Gomez-L6pez, S. E. Lawrence, M. V. Martinez-Diaz, M. Montalti, A. Piersanti, L. Prodi, J. F. Stoddart, D. J. Williams, J. Am. Chem. Soc.1997,119, 10641-10651; (d) S. J. Cantrill, G. J. Youn, J. F. Stoddart, J. Org. Chem.2001,66,6857-6872; (e) K. C.-F. Leung, P. Mendes, M. S. N. Magonov, B. H. Northrop, S. Kim, K. Patel, A. H. Flood, H.-R. Tseng, J. F. Stoddart,J. Am. Chem. Soc.2006,128,10707-10715; (f) J. D. Badjic, C. M. Ronconi, J. F. Stoddart, V. Balzani, S. Silvi, A. Credi, J. Am. Chem. Soc.2006,128,1489-1499; (g) J. Wu, K. C.-F. Leung, D. Beitez, J.-Y. Han, S. J. Cantrill, L. Fang, J. F. Stoddart, Angew. Chem. Int. Ed 2008, 47,7470-7474; (h) L. Fang, M. Hmadeh, J. Wu, M. A. Olson, J. M. Spruell, A. Trabolsi, Y.-W. Yang, M. Elhabiri, A.-M. Albrecht-Gary, J. F. Stoddart, J. Am. Chem. Soc.2009,131,7126-7134.
    [4](a) H. W. Gibson, N. Yamaguchi, J. W. Jones, J. Am. Chem. Soc.2003,125,3522-3533; (b) T. Oku, Y. Furusho, T. Takata, Angew. Chem. Int. Ed.2004,43,966-966; (c) Z. Ge, J. Hu, F. Huang, S. Liu, Angew. Chem. Int. Ed.2009,48,1798-1802; (d) F. Wang, C. Han, C. He, Q. Zhou, J. Zhang, C. Wang, N. Li, F. Huang, J. Am. Chem. Soc.2008,130,11254-11255; (e) Y.-S. Su, J.-W. Liu, Y. Jiang, C.-F. Chen, Chem. Eur. J.2011,17,2435-2441; (f) X.-Z. Zhu, C.-F. Chen, J. Am. Chem. Soc.2005, 127,13158-13159; (g) V. Blanco, A. Carlone, K. D. Hanni, D. A. Leigh, B. Lewandowski, Angew. Chem. Int. Ed.2012,51,5166-5169; (h) J. W. Jones, H. W. Gibson, J. Am. Chem. Soc.2003,125, 7001-7004; (i) H. W. Gibson, J. W. Jones, L. N. Zakharov, A. L. Rheingold, C. Slebodnick, Chem. Eur. J.2011,17,3192-3206; (j) Y Tachibana, N. Kihara, T. Takata, J. Am. Chem. Soc.2004,126, 3438-3439.
    [5](a) S. Sirilaksanapong, M. Sukwattanasinitt, P. Rashatasakhon, Chem. Commun.2012,48, 293-295; (b) J. Pang, E. J.-P. Marcotte, C. Seward, R. S. Brown, S. Wang, Angew. Chem. Int. Ed. 2001,40,4042-4045.
    [6]S. Kotha, D. Kashinath, K. Lahiri, R. B. Sunoj, Eur. J. Org. Chem.2004,19,4003-4013.
    [7]X. Wang, V. Ervithayasuporn, Y. Zhang, Y. Kawakami, Chem. Commun.2011,47,1282-1284.
    [8]B. M. Rosen, D. A. Wilson, C. J. Wilson, M. Peterca, B. C. Won, C. Huang, L. R. Lipski, X. Zeng, G Ungar, P. A. Heiney, V. Percec, J. Am. Chem. Soc.2009,131,17500-17521.
    [9]U. E. Hille, Q. Hu, C. Vock, M. Negri, M. Bartels, U. Muller-Vieira, T. Lauterbach, R. W. Hartmann, Eur. J. Med. Chem.2009,44,2765-2775.
    [10]X. Wang, V. Ervithayasuporn, Y. Zhang, Y. Kawakami, Chem. Commun.2011,47,1282-1284.
    [11]S. Dixon, R. C. D. Brown, P. A. Gale, Chem. Commun.2007,3565-3567.
    [12]Y.-G. Lee, Y. Koyama, M. Yonekawa, T. Takata, Macromolecules 2010,43,4070-4080.
    [13](a) T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, E. W. Meijer, Chem. Rev.2009,109,5687-5754; (b) B. Zheng, F. Wang, S. Dong, F. Huang, Chem. Soc. Rev.2012,41,1621-1636; (c) Y. Liu, Z. Wang, X. Zhang, Chem. Soc. Rev.2012,41,5922-5932.
    [14](a) I. Kaljurand, A. Kutt, L. Soovali, T. Rodima, V. Maemets, I. Leito, I. A. Koppel, J. Org. Chem.2005,70,1019-1028; (b) N. K. Pahadi, H. Ube, M. Terada, Tetrahedron. Lett.2007,48, 8700-8703.
    [1]D. F. Shriver, M. J. Biallas, J. Am. Chem. Soc.1967,89,1078-1081.
    [2]C. H. Park, H. E. Simmons, J. Am. Chem. Soc.1968,90,2431-2432.
    [3](a) E. Graf, J.-M. Lehn, J. Am. Chem. Soc.1975,97,5022-5024; (b) E. Graf, J.-M. Lehn, J. Am. Chem. Soc.1976,98,6403-6405.
    [4](a) F. P. Schmidtchen, Angew. Chem. Int. Ed. Engl.1977,16,720; (b) F. P. Schmidtchen, Chem. Ber.1980,113,864; (c) F. P. Schmidtchen, Chem. Ber.1981,114,597; (d) F. P. Schmidtchen, G Muller.J. Chem. Soc., Chem. Commun.1984,1115.
    [5](a) J. L. Sessler, P. A. Gale, W.-S. Cho, Anion Receptor Chemistry, ed. J. F. Stoddart, RSC, Cambridge,2006; (b) P. A. Gale, Chem. Soc. Rev.2010,3746-3771.
    [6]P. A. Gale, Chem. Commun.2011,47,82-86.
    [7](a) P. A. Gale, S. E. Garcia-Garrido,; J. Garric, Chem. Soc. Rev.2008,37,151-190. (b) P. A. Gale, R. Quesada, Coord. Chem. Rev.2006,250,3219-3244. (c) P. D. Beer, P. A. Gale, Angew. Chem., Int. Ed.2001,40,486-516. (d) C. Caltagirone, P. A. Gale, Chem. Soc. Rev.2009,38, 520-563. (e) R. Martinez-Manez, F. Sancenan, Chem. Rev.2003,103,4419-4476.
    [8](a) K. Bowman-James, Acc. Chem. Res.2005,38,671-678. (b) S. O. Kang, R. A. Begum, K. Bowman-James, Angew. Chem. Int. Ed. 2006,45,7882-7894.
    [9](a) M. Montalti, L. Prodi, Chem. Commun.1998,1461-1462. (b) X. Ji, Y. Yao, J. Li, X. Yan, F. Huang, J. Am. Chem. Soc.2013,135,14-11.
    [10](a) M. Haupller, B. Z. Tang, Adv. Polym. Sci.2007,209,1-58; (b) J. Wang, J. Mei, E. Zhao, Z. Song, A. Qin, J. Z. Sun, B. Z. Tang, Macromolecules 2012,45,7692-7703; (c) P. Taranekar, Q. Qiao, H. Jiang, I. Ghiviriga, K. Schanze, J. R. Reynolds, J. Am. Chem. Soc.2008,129,8958-5859; (d), H. S. Mangold, T V. Richter, S. Link, U. Wurfel, S. Ludwigs, J. Phys. Chem. B 2012,116,154-159; (e) Z. Xue, A. D. Finke, J. S. Moore, Macromolecules 2010,43,9277-9282.
    [1](a) J. A. GWilliams, Top. Curr. Chem.2007,281,205-268; (b) J. A. Weinstein, D. C. Grills, M. Towrie, P. Matousek, A. W. Parker and M. W. George, Chem. Commun.2002,382-383; (c) H.-S. Lo, S.-K. Yip, K. M.-C. Wong, N. Zhu and V. W.-W. Yam, Organometallics,2006,25,3537-3540; (d) C. Yu, K. H.-Y. Chan, K. M.-C. Wong and V. W.-W. Yam, Proc. Natl. Acad. Sci. U.S.A.2006,103, 19652-19657; (e) C. R. Brodie, J. G Collins and J. R. Aldrich-Wright, Dalton Trans.2004, 1145-1152; (f) S.-Y. Chang, J. Kavitha, J.-Y. Hung, Y. Chi, Y.-M. Cheng, E. Y. Li, P.-T. Chou, G-H. Lee, and A. J. Carty, Inorg. Chem.2007,46,7064-7074; (g) T. J. Wadas, S. Chakraborty, R. J. Lachicotte, Q-M. Wang, R. Schmehl, and R. Eisenberg, Inorg. Chem.2005,44,2628-2638; (h) S. Chakraborty, T. J. Wadas, H. Hester, R. Schmehl, R. Eisenberg, Inorg. Chem.2005,44,6865-6878; (i) T. J. Wadas, S. Chakraborty, R. J. Lachicotte, Q.-M. Wang, R. Eisenberg, Inorg. Chem.2003,42, 3772-3778.
    [2](a) M. Hauβller, B. Z. Tang, Adv. Polym. Sci.2007,209,1-58; (b) Z. Li, J. W. Y. Lam, Y. Dong, Y. Dong, H. H. Y. Sung, I. D. Williams, B. Z. Tang, Macromolecules,2006,39,6458-6466; (c) S.-E. Stiriba, M. Q. Slagt, H. Kautz, R. J. M. Klein Gebbink, R. Thomann, H. Frey, G van Koten, Chem. Eur. J.2004,10,1267-1273. (d) M. Q. Slagt, S.-E. Stiriba, H. Kautz, R. J. M. Klein Gebbink, H. Frey and G. van Koten, Organometallics,2004,23,1525-1532. (e) D. Konkolewicz, S. Gaillard, A. G West, Y. Y. Cheng, A. Gray-Weale, T. W. Schmidt, S. P. Nolan and S. Perrier, Organometallics. 2011,30,1315-1318.
    [3](a) F. Huang and H. W. Gibson, J. Am. Chem. Soc.,2004,126,14738-14739; (b) G Fernandez, Perez, E. M. Perez, L Sanchez, N. Martin, J. Am. Chem. Soc.2008,130,2410-2411; (c) S. Yu, W. Zhang, J. Zhu, Y. Yin, H. Jin, L, Zhou, Q. Luo, J. Xu, J. Liu, Macromol. Biosci.2011,11,821-827; (d) Z. Ge, H. Liu, Y. Zhang, S. Liu, Macromol. Rapid Commun.2011,32,68-72. (e)R. Dong, Y. Liu, Y. Zhou, D. Yan, X. Zhu, Polym. Chem.2011,2,2771-2774; (f) B. Yu, B. Wang, S. Guo, Q. Zhang, X. Zheng, H. Lei, W. Liu, W. Bu, Y. Zhang, X. Chen, Chem. Eur. J.2013, DOI: 10.1002/chem.201204315.
    [4]V. Y. Kukushkin, A. J. L. Pombeiro, C. M. P. Ferreira, L. I. Elding and R. J. Puddephatt Inorg. Synth.,2002,33,189.
    [5]W. Paw, R. Eisenberg, Inorg. Chem.1997,36,2287-2293.
    [6]J.-Z. Wu, H. Li, J.-G Zhang, J.-H. Xu, Inorg. Chem. Comm.2002,5,71-75.
    [7]P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink, S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker, D. J. Williams, Angew. Chem. Int. Ed. Engl.1995,34,1865-1869.
    [8]m. J. Hickman, J. M. Villalobos, M. S. Sanford, Organometallics.2009,28,5316-5322.
    [9]S.-C. Chan, M. C. W. Chan, Y. Wang, C.-M. Che, K.-K. Cheung, N. Zhu, Chem. Eur. J.2001, 7,4181-4190
    [10](a) P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink, S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker and D. J. Williams, Angew. Chem., Int. Ed. Engl.1995,34,1865-1869; (b) A. G Kolchinski, D. H. Busch and N. W. Alcock, J. Chem. Soc. Chem. Commun.1995,1289-1291; (c) H. W. Gibson, N. Yamaguchi and J. W. Jones, J. Am. Chem. Soc.2003,125,3522-3533; (d) T. Oku, Y. Furusho and T. Takata, Angew. Chem. Int. Ed 2004,43,96-98; (e) Z. Ge, J. Hu, F. Huang and S. Liu, Angew. Chem. Int. Ed. 2009,48,1798-1802; (f) F. Wang, C. Han, C. He, Q. Zhou, J. Zhang, C. Wang, N. Li, F. Huang, J. Am. Chem. Soc.2008,130,11254-11255; (g) Y.-S. Su, J.-W. Liu, Y. Jiang, C.-F. Chen, Chem. Eur. J.,2011,17,2435-2441.
    [11](a) T. F. A. De Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma, E. W. Meijer, Chem. Rev.2009,109,5687-5754; (b) B. Zheng, F. Wang, S. Dong, F. Huang, Chem. Soc. Rev.2012,41,1621-1636; (c) Y. Liu, Z. Wang, X. Zhang, Chem. Soc. Rev.2012,41,5922-5932.
    [12](a) A. Bondi, J. Phys. Chem.,1964,68,441-451; (b) T. Takagi, A. Tanaka, S. Matsuo, H. Maezaki, M. Tani, H. Fujiwara and Y. Sasaki, J. Chem. Soc. Perkin Trans.2,1987,1015-1018; (c) W. Lu, M. C. W. Chan, N. Zhu, C.-M. Che, Z. He and K.-Y. Wong, Chem. Eur. J.2003,9, 6155-6166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700