竹/木结构民宅的生命周期评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
《国家中长期科学和技术发展规划纲要(2006—2020年)》把绿色建筑、节能降耗和开发利用农林生物质资源均列为重点领域及优先主题。以竹材或木材替代传统建筑材料符合国家战略需求。
     然而,在实际的应用和推广中,我国民众对于竹/木结构建筑存在诸多质疑:其一,土地资源的约束使得在我国推广竹/木结构没有现实条件。其二,竹、木作为主要森林资源,具有保护环境、调节气候、保持水土等功能,推广利用竹/木结构民宅本身就是损毁环境的行为;其三,作为结构材料的竹材和木材,需要经过一系列的加工、改性处理,这一过程中化工材料的投入也会造成环境污染和能源消耗,使得竹/木结构的环境性能受到冲击;其四,造价超出普通民众预期,成为竹/木结构应用推广的一大阻碍。
     基于以上原因,本研究将竹/木结构应用推广范围界定为乡镇民宅,以生命周期评价方法为基本框架,从资源、能源和环境排放三个维度对竹结构、木结构与当前主流的砖混结构民宅进行全面的比较分析与评价。并以生命周期清单为基础,对三种结构民宅的碳平衡和生态效率进行评估,试图发掘竹、木结构民宅的优势与不足,以期为政府制定相关政策提供决策依据。
     在生命周期评价过程中,本文采取了一系列优化措施。依据国际标准ISO14044:2006,生命周期评价方法分为四个基本步骤:(1)目标与范围界定。研究目标界定为建立三种结构民宅的资源、能源和环境排放清单,完成三者的比较评价。由于竹结构民宅尚未推广使用,其废弃处置阶段无例可寻,因此本研究将评价范围界定为从资源采掘到主体结构建造完成的过程。为了剔除研究对象在功能面积上的差异和提高可比性,本研究的功能单位界定为1平方米民宅。(2)清单分析。清单分析是LCA方法最重要环节,主要在于数据采集和数据质量问题。依据生命周期评价国际惯例,本研究采取现场调研(重组竹、竹材层积材、竹材胶合板、砂石的生命周期清单数据)和文献数据(钢筋、水泥、木材层积材、OSB板、防腐木、混凝土多孔砖、电力、洁净煤、燃油、柴油和天然气的生产与燃烧)相结合的办法,对三种结构民宅的主要投入材料和半成品的生命周期清单进行整合,建立一个完整的生命周期清单数据库。(3)影响评价。该部分关键步骤是环境影响类型的划分、特征化过程的等效物以及归一化过程的权重选择。从清单数据构成来看,所涉及的环境影响类型包括:不可再生资源(ADP)、温室效应(GWP)、光化学影响潜力(POCP)、酸化影响(AP)、富营养化(EP)、水体污染(WTP)和人体毒性(HTP)。为了提高本研究结果的国内外可比性,等效物选择和归一化权重的选择都沿袭《生命周期评价国际标准操作手册》推荐的方法。(4)结果解释。对于三种结构民宅的生命周期评价结果,论文从主要污染物对环境影响类型贡献度大小以及主要污染物产生环节等角度进行论述。
     在生命周期清单分析和评价结果的基础上,对三种结构民宅进行比较,我们得出如下结论:(1)以竹结构为基准,每平米木结构化石资源消耗量是竹结构的48.8%,砖混结构是竹结构的714.6%;(2)每平米木结构能源消耗是竹结构的51.7%,砖混结构是竹结构的322.2%;(3)每平米木结构环境总负荷是竹结构的70.6%,砖混结构是竹结构的696.8%;(4)从环境影响类型来看,三种结构民宅影响都较大的是ADP、GWP和AP,其中木结构是竹结构的49.3%、81.3%和76.7%,而砖混结构是竹结构的712.3%、418.8%和1333.3%倍。(5)从碳平衡角度来看,竹结构民宅以建筑材料形式封存的碳大于其碳排放,具有正的固碳功能,木结构固碳功能为负,而砖混结构不具有固碳功能。(6)从经济成本与生态成本之比来看,木结构民宅的生态效率最高,是竹结构的1.16倍,砖混结构是竹结构的0.15倍。
     经过生命周期评价比较,可以得出,在资源、能源、环境排放和生态效率方面,竹结构民宅都优于砖混结构而劣于木结构民宅。究其原因主要有两点:(1)每平米竹结构民宅的基础混凝土用量是木结构的2.24倍,梁柱连接件用量是木结构的1.34倍。设计的差异导致材料用量悬殊,最终使得基于材料用量的能耗以及环境排放数据计算出现偏差。(2)竹结构现场调研取得的数据中,材料和能源消耗数据偏大,而污染物排放数据偏小。主观因素导致调研数据部分失真。
     本论文获得了如下创新:(1)建立了竹结构、木结构和砖混结构民宅的生命周期清单数据库,其中竹结构清单在国内外尚未见报道,为我国生命周期清单数据库增添新的模块;(2)尝试把碳平衡和生态成本引入建筑生命周期评价,充分展现竹/木结构民宅的生态效率优势,吸引政府加大对竹/木结构民宅的支持力度,促进竹结构的规范化、产业化发展。
In the National Guideline on Medium-and Long-Term Program for Science andTechnology Development(2006-2020), green building,energy saving and consumptionreducing,biomass resources developing and utilizing have been listed as the key areas and theprior development subject. Use bamboo or wood to substitute conventional building materialsaccords with the strategy demands of China.
     Howerever, there are still some doubts about bamboo/wood structure house:1, Shortage ofland resources makes the application and extension of bamboo/wood structure house impossible.2, As main forest resources, bamboo and wood itself can protect our environment, regulateclimate, retain soil and water, so built bamboo/wood house would also destroy our environment.3, Bamboo/wood must be produce and modify to become structure members, in these proceses,environment pollution and energy consumption still exist.4, The cost of bamboo/woodstructure house is high than the expection of ordinary people.
     For the above reasons, our research restrict the use bondary of bamboo/wood structurehouse in rural areas, adopts the method of Life Cycle Assessment as the basic framework,analyzes the carbon balance and ecological efficiency of the three types of residentialhouses--the bamboo structure, wooden structure, and brick structure. We attempts to explorethe comparative advantages and shortcomings of the bamboo structure houses, in order toprovide a analytical support for the government to formulate relevant policies and decisionmaking. In the life cycle assessment process, this thesis has taken a series of analyticalmeasures in each of the following standard procedures: ISO14044.
     (1) Goal and scope definition. The research objective is defined to establish an inventoryof the resources, energy and environmental emissions of three types of structures of houses, andconduct a comparative evaluation of the three. As a new phenomenon, the bamboo structurehousing has not been put into official practices,nor "a report as worthless" case of it can befound. In this circumstance, this study defines the scope of the evaluation as such, fromresource extraction to the construction process. In order to present the study differences in thefunctional area and to improve comparability, the functional units of this study is defined as onesquare meters of houses.
     (2) Inventory analysis. The inventory analysis is the most important part of the LCAmethod, mainly due to data acquisition and data quality issues. In accordance with theinternational practice in the field of life cycle assessment, this study has taken the approach offield research (bamboo scrimber, bamboo laminated timber, bamboo plywood, gravel life cycleinventory data) and literature data (steel, cement, wood laminated timber, OSB board, wood preservative, concrete, porous brick, electricity, coal, fuel oil, diesel and natural gas productionand combustion), to integrate into a main input materials and semi-finished products inventoryof the three types of houses, and established a life cycle inventory database.
     (3) Impact assessment. From the list of data, it involves the following types ofenvironmental impact: non-renewable resources (ADP), the greenhouse effect (GWP),photochemical consequences of potential (POCP), acidification (AP), eutrophication (EP),water pollution (WTP) and human toxicity (HTP). In order to improve the comparability of theresults, the equivalent material selection and the normalized weighting, have adopted therecommendation by the "manual of international standard of life cycle assessment".
     (4) Interpretation. For the three types of houses, we interprete the LCA result from theangle of the main pollutants' contribution size in the environmental impact, as well as wherethey are generated.
     Based on the comparative evaluation of life cycle inventory and evaluation of the threetypes of houses, we draw the following conclusions:(1) with bamboo structure as a benchmark,the consumption of fossil resources each square meter of wood structure is48.8%of that of thebamboo structure, while the brick-concrete structure consumes714.6%of that of bamboostructure;(2) the energy consumption per square meter of wooden structure accounts for51.7%of that of the bamboo structure, while the brick-concrete structure accounts for322.2%of that ofthe bamboo structure;(3) the total environmental load per square meter of wood structure is70.6%of that of the bamboo structure, while the brick structure accounts for696.8%of that ofthe bamboo structure;(4) in term of the types of environmental impact, the three structures ofhouses all demonstrate great impact in ADP, GWP and AP. The ratios of the impact of the ADP,GWP and AP of the wooden structure to the bamboo structure are respectively49.3%,81.3%and76.7percent; likewise, the ratios of the brick structure to the bamboo structure arerespectively712.3%.418.8%and1333.3%;(5) from the carbon balance point of view, thebamboo structure house demonstrates positive carbon balance because its carbon sequestrationin the building materials is greater than that of its carbon emissions, while the wood structurehouse shows negative carbon balance, and the brick-concrete structure does not have thefunction of carbon sequestration.(6) Regarding the ratio of economic costs to ecological cost,wooden structure house has the highest eco-efficiency, accounts for1.16times of that of thebamboo structure, and the brick structure accounts for0.15times of that of the bamboostructure.
     After a comparative life cycle assessment, it can be drawn that the bamboo structure housesare better than brick structure in terms of resources, energy, environmental emissions andeco-efficiency, but not as good as the wooden structure houses. The major reasons are two:(1)the amount of foundation concrete usage of bamboo structure houses is2.24times of that of the wooden structures, and the usage of beams and columns that connect the pieces of bamboostructure is1.34times of that of the wooden structure;(2) in the survey data, materials andenergy consumption of the bamboo structure may be higher, and the emission data may be lowerthan reality.
     The nature of the contribution of this thesis lies in twofold:(1) it established a life cycleinventory database for bamboo structure, wood structure and brick-concrete structure houses;especially, this is the first original work of such kind for the bamboo structure houses;(2) itintroduced carbon balance and eco-efficiency into the life cycle assessment of buildingmaterials.
引文
1Shweta Singh, Bhavik R. Bakshi,"Eco-LCA: A tool for quantifying the role of ecological resources in LCA," issst, pp.1,2009IEEE International Symposium on Sustainable Systems and Technology,2009。
    2相关内容可参见网站http://resilience.eng.ohio-state.edu/eco-lca/。
    1Odum, H. T., Environmental Accounting: Emergy and Environmental Decision Making, John Wiley,1996.
    2Emergy或可利用能源的单位是Emjoule,使用“可利用能源”概念,太阳光、燃料、电力和人力服务都可置于相同的单位,用产生相似水平的太阳能来表达,缩写为seJ.
    3边际预防成本是指使环境负荷回到可持续水平时的
    1数据来源:2010和2011年《中国统计年鉴》,农村人口依据第五次(2000年)和第六次(2010年)普查人口数,80739万人和67415万人,2009年农村人口采取匀速递减法计算结果,定为68642万人。
    1先进制造与自动化科学数据共享网:http://www.amadata.net.cn/sjgx_data/ysj_list.aspx?bsf=10502060000。
    1中国电力年鉴编辑委员会,中国电力年鉴2010[M].北京:中国电力出版社,2010。
    2资料来源于http://www.amadata.net.cn/sjgx_data/ysj_list.aspx?bsf=10502060000。
    1先进制造与自动化科学数据共享网:http://www.amadata.net.cn/sjgx_data/ysj_list.aspx?bsf=10502060000。
    1先进制造与自动化科学数据共享网:http://www.amadata.net.cn/sjgx_data/ysj_list.aspx?bsf=10502060000。
    1参考宋景智等的《建筑工程概预算定额与工程量清单计价实例应用手册》,中国建筑工业出版社,2006.
    1参考宋景智等的《建筑工程概预算定额与工程量清单计价实例应用手册》,中国建筑工业出版社,2006.
    [1]王庆一.中国能源效率评估[J].节能与环保.2011(1):38.42.
    [2]林宪德.绿色建筑[M].中国建筑工业出版社.2007.
    [3] Chang Y, Ries R. J, Wang Y. W.2010. The Embodied Energy and Environmental Emissions ofConstruction Projects in China: An Economic Input–Output LCA Model [J]. Energy Policy.38,6597-6603.
    [4]崔京浩.伟大的土木工程[M].北京:中国水利水电出版社.2006,186-187。
    [5]吴树栋.木材在建筑节能和优化社会材料结构中的作用[J].木材工业.2008(3):1-4.
    [6]沙晓东.木结构建筑的生态思考[J].四川建筑.2004(3):28.
    [7]黄东梅,张齐生,周培国.基于投入产出的区域主导产业污染负荷核算[J].南京林业大学学报·自然科学版.2011(5):107-111.
    [8]赵成,阿肯江·托呼提.生土建筑研究综述[J].四川建筑.2010(2):31-33.
    [9]吕清芳,魏洋,张齐生等.新型抗震竹质工程材料安居示范房及关键技术[J].特种结构.2008(4):6-10.
    [10]张齐生.竹类资源加工的特点及其利用途径的展望[J].中国林业产业.2004(1),9-11.
    [11] Van der Lugt P., Van der Dobbelsteen A.A.J.F., Janssen J.J.A.,2006. An Environmental, Economic andPractical Assessment of Bamboo as a Building Material for Supporting Structures[J]. Construction andBuilding Materials,20.
    [12]肖书博,李念平,李靖,佘立永.现代竹结构建筑室内空气质量的实测与分析研究[C].全国暖通空调制冷2008年学术年会资料集.2008。
    [13] Nilsson, M., Eckerberg, K.(Eds.),2007. Environmental Policy Integration in Practise [J]. ShapingInstitutions for Learning. Earthscan.
    [14] Finnveden, G., Moberg, A.2005. Environmental systems analysis tools–an overview [J]. CleanerProd.13,1165–1173.
    [15] Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, A.,Pennington, D. and Suh, S.2009. Recent Developments in Life Cycle Assessment [J]. Journal ofenvironmental management.10,1–21.
    [16] Udo de Haes, H.A.,1993. Applications of Life Cycle Assessment: Expectations, Drawbacks andPerspectives[J]. Journal of Cleaner Production.1,131–137.
    [17] Ayres, R.U.,1995. Life Cycle Analysis: a critique[J]. Resource, Conservation, Recycling.14,199–223.
    [18] Ehrenfeld, J.R.1998. The Importance of LCA–Warts and All[J]. Journal. Industry Ecology.1(2),41–49.
    [19] Krozer, J., Viz, J.C.1998. How to Get LCA in the Right Direction[J]. Journal of Cleaner Production.6,53–61.
    [20] Finnveden, G.2000. On the Limitations of Life Cycle Assessment and Environmental Systems AnalysisTools in General[J]. International Journal of LCA.5,229–238.
    [21] ISO.2006. ISO14040International Standard. Environmental Management–Life Cycle Assessment–Principles and Framework. International Organisation for Standardization. Geneva, Switzerland.
    [22] ISO.2006. ISO14044International Standard. Environmental Management–Life Cycle Assessment–Requirements and Guidelines. International Organisation for Standardisation. Geneva, Switzerland.
    [23]刘江龙.材料的环境影响评价[M].科学出版社.2002.
    [24] Weidema, B.P., Ekvall, T., Pesonen, H.-L., Rebitzer, G., Sonneman, G.W., Spielmann, M.,2004.Scenarios in LCA[J]. SETAC, Brussels.
    [25] Borjeson, L., Hojer, M., Dreborg, K.-H., Ekvall, T., Finnveden, G.,2006. Scenario Types and Techniques–towards a User’s Guide[J]. Futures34,723–739.
    [26] Audsley, E., Alber, S., Clift, R., Cowell, S., Crettaz, P., Gaillard, G., Hausheer, J., Jolliet, O., Kleijn, R.,Mortensen, B., Pearce, D., Roger, E., Teulon, H., Weidema, B., van Zeijts, H.,1994. Harmonisation ofEnvironmental Life Cycle Assessment for Agriculture[R]. Final Report of EU Concerted ActionAIR3-CT94-2028. Brussels.
    [27] Wegener Sleeswijk, A., Kleijn, R., Meeusen-van Onna, M.J.G., Leneman, H., Sengers, H.H.W.J.M., vanZeijts, H., Reus, J.A.W.A.,1996. Application of LCA to Agricultural Products[M]. Leiden University,Leiden.
    [28] Guinee, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L., WegenerSleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, J.A., van Duin, R., Huijbregts, M.A.J.,2002.Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards[M]. Series:Eco-efficiency in Industry and Science. Kluwer Academic Publishers, Dordrecht.
    [29]莫华,张天柱.生命周期清单分析的数据质量评价.环境科学研究.2003(5):55-58.
    [30] CPM,2007. SPINE database. Competence Center in Environmental Assessment of Product and MaterialSystems (CPM). Chalmers University of Technology. Goteborg.
    [31] UBA.2007. PROBAS Database. German Environmental Protection Agency.http://www.probas.umweltbundesamt.de/php/index.php.
    [32] JEMAI.2007. JEMAI database. Japan Environmental Management Association for Industry.http://www.jemai.or.jp/english/index.cfm.
    [33] NREL.2004. US Life Cycle Inventory Database. National Renewable Energy Laboratory, Golden, CO.http://www.nrel.gov/lci/.
    [34] RMIT.2007. Australian LCI Database. Centre for Design. RMIT University. http://www.auslci.com/.
    [35] Ecoinvent.2007. Ecoinvent Database. Ecoinvent Centre. Du bendorf,2004and2007. Swiss Centre forLife Cycle Inventories. http://www. ecoinvent.org.
    [36] European Commission.2007. European Reference Life Cycle Database. European Commission.Directorate General Joint Research Centre (JRC). http://lca.jrc.ec.europa.eu/lcainfohub/.
    [37] EAA.2007. Environmental Profile Report and LCA Data. European Aluminium Association.http://www.eaa.net/eaa/index.jsp.
    [38] Bruch, K.H., Gohlke, D., Ko¨ gler, C., Kru¨ ger, J., Reuter, M., Ro¨ penack, I.v., Rombach, E., Rombach,G., Winkler, P.,1995. Sachbilanz Einer Okobilanz der Kupfer-erzeugung und-verarbeitung, Part1.[J].Metall49(4),252–257.
    [39] IISI.2007. LCI Data on Steel Production. International Iron and Steel Institute (IISI).http://www.worldstainless.org/About t stainless/Ss t and t he/LCI/.
    [40] APME.2007. Plastics Europe. Association of Plastics Manufacturers. Life Cycle and Eco-profiles.http://www.plasticseurope.org/Content/Default. asp?PageID=392#.
    [41] FEFCO.2006. Framework for Life Cycle Impact Assessment[R]. SETAC Press. European Federationof Corrugated Board Manufacturers.
    [42]北京工业大学环境协调性评价技术中心.材料环境协调性评价中心数据库.http://www.cnmlca.com/production/Database.htm
    [43] Ciroth, A.2007. ICT for Environment in Life Cycle Applications: Open LCA a New Open SourceSoftware for Life Cycle Assessment [J]. International Journal of LCA.12(4),209–210.
    [44] Nielsen, P.H., Hauschild, M.1998. Product specific emissions from municipal solid waste landfills, PartI: Landfill model [J]. International Journal of LCA.3,158–168.
    [45] Doka, G.2003. Life Cycle Inventories of Waste Treatment Services [R]. Ecoinvent ReportNo.13(Parts I–IV). Swiss Centre for Life Cycle Inventories. Du bendorf.
    [46] McDougall, F., White, P., Franke, M., Hindle, P.,2001. Integrated Solid WasteManagement: A Life Cycle Inventory [M]. Second Ed. Blackwell Science. Oxford, UK.
    [47] Christensen, T.H., Bhander, G., Lindvall, H., Larsen, A.W., Fruergaard, T., Damgaard, A., Manfredi, S.,Baldrin, A., Riber, C., Hauschild, M.,2007. Experience with the Use of LCA-Modelling(EASEWASTE) in Waste Management [J]. Waste Manage. Res.25,257–262.
    [48] Consoli, F., Allen, D., Boustead, I., Fava, J., Franklin, W., Jensen, A.A., de Oude, N., Parrish, R.,Perriman, R., Postlethwaite, D., Quay, B., Sieguin, J., Vigon, B.(Eds.).1993. Guidelines for Life CycleAssessment: A Code of Practice [M]. SETAC Press. Pensacola, FL.
    [49] Udo de Haes, H.A., Jolliet, O., Finnveden, G., Hauschild M.Z., Krewitt, W., Mueller-Wenk R.1999.Best Available Practice Regarding Impact Categories and Category Indicators in Life Cycle ImpactAssessment/Background Document for the Second Working Group on Life Cycle Impact Assessment ofSETAC Europe [J]. International Journal of LCA.4,66–74.
    [50] Udo de Haes H.A., Finnveden G., Goedkoop M., Hauschild M., Hertwich E.G., Hofstetter P., Jolliet O.,Klopffer W., Krewitt W., Lindeijer E.W., Mu ller-Wenk R., Olsen S.I., Pennington D.W., Potting J.,Steen B.(Eds.),2002. Life-Cycle Impact Assessment: Striving Towards Best Practise. SETAC Press.Pensacola, FL.
    [51] Hauschild, M.Z., Potting, J.2005. Spatial Differentiation in Life Cycle Impact Assessment–theEDIP2003Methodology [N]. Environmental News No.80. The Danish Ministry of the Environment.Environmental Protection Agency. Copenhagen. http://www.mst.dk.
    [52] Heijungs, R., Guine′e, J., Huppes, G., Lankreijer, R.M., Udo de Haes, H.A., Wegener Sleeswijk, A.,Ansems, A.M.M., Eggels, P.G., van Duin, R., de Goede H.P.,1992. Environmental Life CycleAssessment of Products. Guide [R]. Report No.9266, CML. Leiden University.
    [53] Wenzel, H., Hauschild, M.Z., Alting, L.1997. Environmental Assessment of Products. Methodology,Tools [M]. Techniques and Case Studies, vol.1. Chapman&Hall. United Kingdom. Kluwer AcademicPublishers. Hingham, MA, USA.
    [54] Hauschild, M.Z., Wenzel, H.1998. Environmental Assessment of Products [M]. In: Scientificbackground, vol.2. Chapman&Hall, Kluwer Academic Publishers. United Kingdom, Hingham, MA,USA.
    [55] Steen, B.1999. A Systematic Approach to Environmental Priority Strategies in Product Development(EPS). Version2000–General System Characteristics/Models and Data of the Default Method. CPMReport1999and CPM Report1999[R]. Chalmers University of Technology,Gothenburg, Sweden. p.4and5.
    [56] Goedkoop, M., Spriensma, R.2000. The Eco-indicator99–A Damage-oriented Method for Life CycleImpact Assessment. Methodology Report, second ed.[R[,17-4-2000. Pre’Consultants, B.V. Amersfoort,The Netherlands.
    [57] Guinee, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., de Koning, A., van Oers, L.,Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., de Bruijn, J.A., van Duin, R., Huijbregts, M.A.J.2002. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards [R]. Series:Eco-efficiency in Industry and Science. Kluwer Academic Publishers, Dordrecht.
    [58] Bare, J.C., Norris, G.A., Pennington, D.W., McKone, T.E.,2003. TRACI, the Tool for the Reduction andAssessment of Chemical and other Environmental Impacts [J]. Journal Industry Ecology.6(3–4),49–78.
    [59] Itsubo, N., Inaba, A.2003. A New LCIA Method: LIME has been Completed [J]. International Journalof LCA.8,305.
    [60] Jolliet, O., Brent, A., Heijungs, R., Itsubu, N., Mila I Canals, L., Mueller-Wenk, R., Pena, C., Pennington,D., Schenk, R., Stewart, M., Udo de Haes, H., Weidema, B.2003. Analysis of Midpoint Categories [C].In: Life Cycle Impact Assessment Definition Study: Background Document II. UNEP-SETAC LifeCycle Initiative, UNEP, Paris.
    [61] Finnveden, G.,1997. Valuation Methods within LCA–Where are the Values? International Journal ofLCA.2,163–169.
    [62] Hansen, O.J.,1999. Status of Life Cycle Assessment (LCA) Activities in the Nordic Region.International Journal of LCA.44,315–320.
    [63] Finnveden, G., Hofstetter, P., Bare, J., Basson, L., Ciroth, A., Mettier, T., Seppa¨la¨, J., Johansson, J.,Norris, G., Volkwein, S.,2002. Normalization, Grouping and Weighting in Life CycleImpact Assessment [J]. In: Udo de Haes, et al.(Eds.), Life-Cycle Impact Assessment:Striving Towards Best Practise [M]. SETAC Press, Pensacola, FL, pp.177–208.
    [64]邓南圣,王小兵.生命周期评价[M].化学工业出版社,2003.
    [65]周石泉.绿色GDP-对环境与经济综合核算体系的认识[J].中国环境管理.2003(4):23-24;
    [66]张键.生命周期评价(LCA)──环境管理和监察的新概念[J].环境保护.1995(10):8-11.
    [67]徐鹤.生命周期评价概述[J].上海环境科学,1997(6):6-8.
    [68]王寿兵、胡聃、吴千红.生命周期评价及其在环境管理中的应用[J].中国环境科学,1999,19(1).77-80.
    [69]杨建新,徐成.生命周期环境影响类型分类体系研究[J].上海环境科学,1999(6):246-248,257.
    [70]李军,陈庄.产品生命周期评价体系探讨[J].重庆环境科学,1999(6):10-12.
    [71]徐杰峰,王小文,林积泉.生命周期评价应用与研究进展[J].未来与发展.2009(10):31-35,39.
    [72]杨建新,王如松,刘晶茹.中国产品生命周期影响评价方法研究[J].环境科学学报,2001(2):234-237.
    [73]黄莉,周美华.生命周期评价研究[J].云南环境科学,2003(3):39-42.
    [74] Jonsson A., Tillman A-M., Svensson T.,1997. Life Cycle Assessment of Flooring Materials: CaseStudy[J]. Building and Environment,32(3),245-255.
    [75]孙万佛,庄宇.基于LCA的环境成本评价模型[J].环境科学与技术,2006(7):62-63.
    [76]聂祚仁,高峰,陈文娟,龚先政,王志宏,左铁镛.材料生命周期的评价研究[J].材料导报,2009(13):1-6.
    [77] Curran, M.A., Mann, M., Norris, G.,2005. The International Workshop on Electricity Data for LifeCycle Inventories [J]. Journal of Cleaner Production.13(8),853–862.
    [78] Lundie, S., Ciroth, A., Huppes, G.,2007. Inventory Methods in LCA: towards Consistency andImprovement–Final Report [R]. UNEP-SETAC Life Cycle Initiative.http://lcinitiative.unep.fr/includes/file.asp?site lcinit&file1DBE10DB-888A-4891–9C52-102966464F8D.
    [79] Weidema, B.P.,2003. Market Information in Life Cycle Assessment [R]. In: Environmental ProjectNo.863. Danish Environmental Protection Agency, Copenhagen.
    [80] Ekvall, T., Tillman, A.-M., Molander, S.,2005. Normative Ethics and Methodology for Life CycleAssessment [J]. Journal of Cleaner Production.13(13–14),1225–1234.
    [81] Sanden, B., Karlstrom, M.,2007. Positive and Negative Feedback in Consequential Life-CycleAssessment[J]. Journal of Cleaner Production.15,1469–1481.
    [82] Lave, L.B., Cobras-Flores, E., Hendrickson, C., McMichael, F.,1995. Using Input–Output Analysis toEstimate Economy Wide Discharges [J]. Environmental Science Technology.29,420–426.
    [83] Lenzen, M.,2000. Errors in Conventional and Input–Output-based Llife-Cycle Inventories[J]. JournalIndustry Ecology.4,127–148.
    [84] Moriguchi, Y., Kondo, Y., Shimizu, H.,1993. Analyzing the Life Cycle Impact of Cars: the Case of CO2[J]. Industry Environment.16(1–2),42–45.
    [85] Treloar, G.J., Love, P.E.D., Faniran, O.O., Iyer-Raniga, U.,2000. A Hybrid Life Ccycle AssessmentMethod for Construction [J]. Construction Manage. Economics18,5–9.
    [86] Suh, S., Huppes, G.,2002. Missing Inventory Estimation Tool Using Extended Input–Output Analysis [J].International Journal of Life Cycle Assessment.7,134–140.
    [87] Suh, S., Huppes, G.,2005. Methods for Life Cycle Inventory of a Product [J]. Journal of CleanerProduction.13,687–697.
    [88] Yellishetty M., Mudd G. M., Ranjith P.G.,2011. The Steel Industry, Abiotic Resource Depletion and LifeCycle Assessment: a Real or Perceived Issue?
    [89] Pennington, D.W., Potting, J., Finnveden, G., Lindeijer, E.W., Jolliet, O., Rydberg, T., Rebitzer, G.,2004.Life Cycle Assessment (Part2): Current Impact Assessment Practise [J]. Environmental Internet.30,721–739.
    [90] Finnveden, G., Ostlund, P.,1997. Exergies of Natural Resources in Life Cycle Assessment and otherApplications [J]. Energy.22,923–931.
    [91] Meester B. De, Dewulf J., Verbeke S., Janssens A., Van Langenhove H.,2009. Exergetic Life-CycleAssessment (ELCA) for Resource Consumption Evaluation in the BuiltEnvironment [J]. Building andEnvironment.44,11–17.
    [92] Koellner, T., Scholz, R.,2008. Assessment of the Land Use Impacts on the Natural Environment. Part2.Generic characterization factors for local species diversity in central Europe [J]. International Journal ofLife Cycle Assessment.13,32–48.
    [93] Michelsen, O.,2008. Assessment of Land Use Impact on Biodiversity [J]. Proposal of a NewMethodology Exemplified with Forestry Operations in Norway. International Journal of Life CycleAssessment.13,22–31.
    [94] Jolliet, O.,2003. Overview of the LCIA Work Meeting Results in Vienna, Tsukuba and Barcelona [J].Life Cycle Impact Assessment Definition Study: Background Document II [C]. UNEP-SETAC LifeCycle Initiative.
    [95] Vogtl nder J., van der Lugt P., Brezet H.,2010. The Sustainability of Bamboo Products for Local andWestern European Applications. LCAs and Land-Use [J], Journal of Cleaner Production,18(13),1260-1269.
    [96] Pehnt, M.2006, Dynamic Life Cycle Assessment (LCA) of Renewable Energy Technologies[J].Renewable Energy,31(1):55-71;
    [97] Finnveden, G., Eldh, P., Johansson, J.,2006. Weighting in LCA Based on Ecotaxes–Development of aMid-Point Method and Experiences from Case Studies [J]. International Journal of Life CycleAssessment.11(1),81–88.
    [98] Prek M.,2004. Environmental Impact and Life Cycle Assessment of Heating and Air ConditioningSystems, a Simplified Case Study [J]. Energy and Buildings.36,1021–1027
    [99] Mithraratne N., Vale B.,2004. Life Cycle Analysis Model for New Zealand Houses [J]. Building andEnvironment.39,483–492.
    [100] Odum, H.T.1996, Environmental Accounting: Emergy and Environmental Decision Making [M],Wiley Press (New York);
    [101] Zhang, Y., Singh, S., Bakshi, B. R.,2010, Accounting for Ecosystem Services in Life Cycle Assessment,Part I: A Critical Review, Environmental Science and Technology,44,7,2232-2242;
    [102] Zhang, Y., Baral, A., Bakshi, B. R.,2010, Accounting for Ecosystem Services in Life Cycle Assessment,Part II: Toward an Ecologically-Based LCA, Environmental Science and Technology,44,7,2624-2631。
    [103] Magid J., Eilersen A.M., Wrisberg S., Henze M.,2006. Possibilities and Barriers for Recirculation ofNutrients and Organic Matter fromUrban to Rural Areas: A Technical Theoretical Framework Applied tothe Medium-Sized Town Hiller d, Denmark[J]. Ecological Engineering,28(1),44-54.
    [104] Reich M. C.,2005. Economic Assessment of Municipal Waste Management Systems: Case StudiesUsing a Combination of Life Cycle Assessment (LCA) and Life Cycle Costing (LCC)[J]. Journal ofCleaner Production.13,253–263
    [105] Vogtlaender, J.G. Bijma, A. Brezet, H.C.,2002, Communicating the eco-efficiency of products andservices by means of the eco-costs/value model[J], Journal of Cleaner Production,10(1):57-67;
    [106] Vogtlaender, J.G. Brezet, H.C. Hendriks, C.F.,2001, Allocation in Recycling Systems. An IntegratedModel for the Analyses of Environmental Impact and Market Value[J], International Journal of LifeCycle Assessment.6(6):344-355;
    [107] Muneer Ta., Asif M., Munawwar S.,2005. Sustainable Production of Solar Electricity with ParticularReference to the Indian Economy Review Article [J]. Renewable and Sustainable Energy Reviews,9(5),444-473.
    [108] Gustavsson L., Sathre R.,2006. Variability in Energy and Carbon Dioxide Balances of Wood andConcrete Building Materials[J]. Building and Environment,41(7),940-951.
    [109] Asif M., Muneer T., Kelley R.,2007. Life Cycle Assessment: A Case Study of a Dwelling Home inScotland [J]. Building and Environment.42,1391–1394
    [110] Peuportier B. L. P.,2001. Life Cycle Assessment Applied to the Comparative Evaluation of SingleFamily Houses in the French Context [J]. Energy and Buildings,33(5),443-450.
    [111] Chavan A.,2005. Self-cleaning Concrete to Fight Pollution.http://www.planetizen.com/node/16887.
    [112] Ortiz O., Castells F., Sonnemann G.,2009, Sustainability in the construction industry: A review ofrecent developments based on LCA[J], Construction and Building Materials,23:28–39.
    [113]顾道金,朱颖心,谷立静.中国建筑环境影响的生命周期评价[J],清华大学学报(自然科学版),2006(12):1953-1956.
    [114]苏醒,张旭,黄志甲.基于生命周期评价的钢结构与混凝土结构建筑环境性能比较[J].环境工程,2008(S1):290-294.
    [115]崔素萍,罗楠,王志宏.建筑材料生命周期评价中不可再生资源耗竭性当量的研究[J].中国建筑科技,2009(4):1-5.
    [116]汤亮,戴胜利,杨明忠.生命周期评价在建筑陶瓷节能评估中的应用[J].武汉理工大学学报,2010(2):149-152.
    [117] Glover J., White D.O., Langrish T.A.G.,2002, Wood versus Concrete and Steel in House Construction:A Life Cycle Assessment[J]. Journal of Forestry.
    [118] Lippke B., Wilson J., Perez-Garcia J., Bowyer J., Meil J.,2004, Life-Cycle Environmental Performanceof Renewable Building Materials[J], CORRIM.
    [119] Marceau M.L., VanGeem M.G.,2002, Life Cycle Assessment of an Insulating Concrete Form HouseCompared to a Wood Frame House[J], PCA R&D Serial No.2571.
    [120] Gerilla G.P., Teknomo K., Hokao K.,2007, An Environmental Assessment of Wood and SteelReinforced Concrete Housing Construction[J], Building and Environment,42:2778–2784.
    [121] Puettmann M.E., Associate R., Wilson J.B.,2005, Life-Cycle Analysis of Wood Products:Cradle-to-Gate LCI of Residential Wood Building Materials[J], Wood and Fiber Science,37:18-29.
    [122]燕鹏飞,杨军.木结构产品物化环境影响的定量评价[J].清华大学学报·自然科学版,2008(9):139-142.
    [123]单波,周泉,肖岩.现代竹结构技术在人行天桥中的研究与应用[J].湖南大学学报(自然科学版),2009(10):29-34.
    [124]王爱华.竹/木质产品生命周期评价及其应用研究[D].中国林业科学研究院国际竹藤网络中心,2007.
    [125]吕雁,程赫明,俞斌.竹胶合板矩形梁力学性能的研究.四川建筑科学研究,2006(12):177-179,182.
    [126]郭苏夷.轻型木结构:以柔抗震保护生命[J].城市住宅,2008(12):104-105;
    [127]肖岩,陈国,单波,杨瑞珍,佘立永.竹结构轻型框架房屋的研究与应用[J].建筑结构学报,2010(6):195-203;
    [128]魏洋,吕清芳,张齐生,禹永哲,吕志涛.现代竹结构抗震安居房的设计与施工[J].施工技术,2009(11):52-54;
    [129] Adalberth K, Almgren A, Petersen EH,2001. Life Cycle Assessment of Four Multi-familyBuildings[J]. International Journal of Low Energy and Sustainable Buildings,2;
    [130]马盼虎,栾忠权.模块化思想的产品生命周期评价研究与应用.北京机械工业学院学报,2007(12):23-27.
    [131]杨建新,刘炳江.中国钢材生命周期清单分析.环境科学学报,2002(7):519-522.
    [132]姜睿,王洪涛.中国水泥工业的生命周期评价.化学工程与装备,2010(4):183-187.
    [133]宋景智.建筑工程概预算定额与工程量清单计价实例应用手册[M].中国建筑工业出版社,2006.
    [134]李志刚.浙江省安吉县竹产业集群升级路径研究[J].世界竹藤通讯,2010(3):41-45;
    [135]赵仁杰,喻云水.竹材人造板工艺学[M].中国林业出版社,2002;
    [136]狄向华,聂祚仁,左铁镛.中国火力发电燃料消耗的生命周期排放清单[J].中国环境科学2005(5):632~635;
    [137]储险峰,李娜,刘艳.橡胶阻尼材料的生命周期清单分析.江西科学,2010(6):359-364.
    [138]袁宝荣,聂祚仁,狄向华,左铁镛.中国化石能源生产的生命周期清单(Ⅱ):生命周期清单的编制结果[J].现代化工,2006(9):59-61;
    [139] Guinée J.B. et al,2004, Handbook on Life Cycle Assessment: Operational Guide to the ISOStandards[J], Kluwer Academic Publishers.
    [140] Finnveden, G. Ostlund, P.,1997, Exergies of Natural Resources in Life-cycle Assessment and otherApplications[J].Energy-The International Journal.22(9):923-31;
    [141]袁宝荣,聂祚仁,狄向华,左铁镛.乙烯生产的生命周期评价(Ⅱ):影响评价与结果解释[J].化工进展,2006(4):432-435;
    [142] Wilson J.B., Dancer E.R.,2005, Gate-to-gate Life-cycle Inventory of Laminated Veneer LumberProduction[J]. Wood and Fiber Science,37Corrim Special Issue:74-84;
    [143] Kline D. E.,2005. Gate-to-gate Life-cycle Inventory of Oriented Strandboard Production[J], Wood andFiber Science,37Corrim Special Issue:114-127;
    [144] Christopher A. B., Smith S.T.,2011, Life Cycle Assessment of Borate-treated Lumber with Comparisonto Galvanized Steel framing, Journal of Cleaner Production,19:630-639;
    [145] Magelii F., Boucher K., Hsiaotao T.B., Melin S., Alessandra B.,2009, An Environmental ImpactAssessment of Exported Wood Pellets from Canada to Europe[J], Biomass and Bioenergy,22:434-441;
    [146]蒋明春.国内外木材防腐新技术的开发与应用.木材工业,2006(3):23-25;
    [147] Wei H.L., Ni J.R., Xu N.,2008, Energy, Material and Pollution Intensity Analysis in the Life Cycle ofWalling Materials[J], Energy Sources,30:1367-1381;
    [148]编辑部.竹子与固碳能力[J],世界竹藤通讯,2011(1);
    [149]尤文忠,魏文俊,邢兆凯,颜廷武,张慧东,霍常富,赵刚,郭锦山.辽东山区落叶松人工林和蒙古栎天然次生林的固碳功能[J].东北林业大学学报,2011(10):21-24;
    [150] White M.K., Gower S.T., Ahl D. E.,2005, Life Cycle Inventories of Roundwood Production inNorthern Wisconsin: Inputs into an Industrial Forest Carbon Budget[J], Forest Ecology andManagement,219(1):13-28;
    [151]方楷,杨清培,赵广东,杨光耀,施建敏,郭起荣.江西主要竹类植物碳密度的时空差异分析[J],江西科学,2010(4):449-452;
    [152]黄东升,周爱萍,张齐生,苏毅,陈忠范.装配式木框架结构消能节点拟静力试验研究,建筑结构学报,2011(7):87-92.
    [153] Wakeman MD, M nson J-AE.2004. Cost analysis. In: Long AC, editor. Design and manufacture oftextile composites. Cambridge: Woodhead Publishing.
    [154]王寿兵,林宗虎,张旭,竞锋.上海市柴油和CNG公交车生命周期成本比较[J],复旦学报(自然科学版),2007(2):123-128,134。
    [155] Vogtl nder J.G., A. Bijma.(2000). The 'Virtual Pollution Costs ‘99', a Single LCA-based Indicator forEmissions, International Journal of Life Cycle Assessment,5(2), pp.113–124.
    [156] WBCSD.(2000). Eco-Efficiency: Creating more value with less impact. World Business Council forSustainable Development. ISBN2-94-024017-5.
    [157] WBCSD.(2000). Measuring Eco-Efficiency: A guide to reporting company performance. WorldBusiness Council for Sustainable Development. ISBN2-94-024014-0.
    [158]高凌.我国低碳节能型木结构建筑的发展之路[J],建筑理论,2011(5):49-52.
    [159]陈妍,岳欣.美国绿色建筑政策体系对我国绿色建筑的启示[J].环境与可持续发展,2010(4):43-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700