蒙脱土、纤维增强阻燃聚丙烯复合材料的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)作为五大通用塑料之一,具有密度小、易加工、吸湿性低、综合力学性能好、耐化学腐蚀、电绝缘性能好等优点,广泛应用于建筑材料、电工电气、通讯交通、家用电器等领域。然而,因PP的碳氢结构使PP极易燃烧(氧指数仅为17.4%左右),燃烧速率快并伴有熔滴,从而限制了聚丙烯材料的应用范围,因此PP的阻燃研究日益受到工业和学术界的关注。阻燃剂的加入通常会破坏PP材料的整体性和连续性,使PP材料的力学性能恶化,进而影响了PP阻燃材料的应用。因此,在提高PP材料阻燃性能的同时保持或提高阻燃材料的力学性能具有非常重要的意义。本论文选择了三种增强材料(分别为纳米蒙脱土OMMT、芳纶纤维AF和玻璃纤维GF)和两种不同体系的阻燃材料复配应用到PP中,制备了高性能的聚丙烯阻燃复合材料。采用广角X射线衍射仪(WXRD),透射扫描电子显微镜(TEM)对OMMT在PP基体中的分散形态和插层结构进行了表征;采用拉伸、弯曲和缺口冲击试验对PP复合材料的力学性能进行了测试;采用差示扫描量热法(DSC)、偏光显微镜(POM)对复合材料中PP的结晶性能进行了分析;采用热重-差热分析(TG-DTA)、氧指数(LOI)、垂直燃烧测试(UL-94)、锥形量热(CONE)、扫描电子显微镜(SEM)和红外光谱(FTIR)对PP复合材料的热性能、阻燃性能、残炭结构和形态进行了分析和表征,并对其阻燃机理进行了初步研究和推测。
     本论文归纳起来可以分为以下三个部分:
     第一部分以纳米蒙脱土(OMMT)为增强材料,十溴二苯乙烷/三氧化二锑(DBDPE/Sb2O3, D-S)和膨胀型阻燃剂(MPP/PER, IFR)为阻燃体系,分别制备了复合材料PP/OMMT、PP/D-S/OMMT和PP/IFR/OMMT。研究结果表明:相容剂PP-g-MAH的引入和阻燃剂D-S、IFR的添加均可以增大PP复合材料中OMMT的层间距,提高OMMT的分散性,获得了较好的插层型或剥离型结构。OMMT在PP复合材料中起到了异相成核的作用,提高了PP的结晶速率和结晶度,使PP球晶更加细化,排列更加紧密。另外,OMMT的纳米结构和增强作用使复合材料PP/D-S/OMMT和PP/IFR/OMMT的拉伸强度和缺口冲击强度均较纯PP提高了许多,热稳定性和阻燃性能也有明显改善。如其T50%分别较纯PP提高了20-30℃,残炭量最高分别可达13.4%和24.4%,LOI最高分别可达24.2%和28.5%,UL-94等级最高分别可达V-0和V-1。复合材料PP/30phrD-S/5phrOMMT和PP/30phrIFR/5phrOMMT的峰值热释放速率(PHRR)、平均热释放速率(AHRR)、热释放总量(THR)、平均质量损失率(AMLR)较纯PP分别下降了60.2%和58.3%、52.7%和46.0%、34.7%和52.5%、31.2%和63.2%,且燃烧后残炭形态不变,炭层结实。OMMT和D-S、IFR在PP材料中表现出了较好的阻燃协同效应。
     第二部分以芳纶纤维(AF)为增强材料,分别以D-S和IFR为阻燃材料,制备了复合材料PP/AF, PP/AF/D-S和PP/AF/IFR。采用SEM,AFM和FTIR对AF的表面形态和结构分析表明磷酸酯偶联剂成功地接枝到AF表面。偶联剂改性的最佳实验条件为:醇水质量比为9:1,浸渍时间为1h,偶联剂浓度为1%。DSC和POM测试结果表明,AF在PP/AF材料中有异相成核作用,缩短了PP的结晶诱导期,提高了PP的结晶速率和结晶度,降低了PP的球晶尺寸;当AF含量为20phr时,PP/AF复合材料的综合力学性能最佳。PP/AF/D-S和PP/AF/IFR的T50%均较纯PP提高了25-30℃,残炭量最高分别可达17.7%和24.4%,放热晗的最大下降幅度分别为60.0%和59.3%,UL-94等级分别最高可达V-0和V-1。与纯PP相比,复合材料PP/20phrAF/30phrD-S和PP/20phrAF/30phrIFR的PHRR、AHRR、THR、AMLR、AEHR分别下降了78.8%和75.8%、71.2%和50.6%、75.0%和69.7%、36.8%和60.5%、68.5%和23.1%,且其生烟量几乎为零,残炭结实形态无变化。AF的机械强度高、耐热性能好,在PP复合材料中起到了“骨架”作用,可以承担大部分的外界应力和载荷同时将其由局部向整体分散,从而提高了整个复合材料的力学性能。此外,AF燃烧后形态不变成炭量高,提高了PP复合材料的成炭量和热稳定性能,再辅以D-S的气相阻燃作用和IFR的凝聚相膨胀炭层的保护作用,使复合材料PP/AF/D-S和PP/AF/IFR拥有优异的阻燃性能。
     第三部分以玻璃纤维(GF)为增强材料,同样以D-S和IFR为阻燃材料,制备了复合材料PP/GF, PP/GF/D-S和PP/GF/IFR。同样采用磷酸酯偶联剂对GF表面进行改性处理。SEM、AFM和FTIR测试表明磷酸酯偶联剂成功接枝到GF表面,提高了GF和PP之间的界面黏合性,其最佳改性条件为:醇水质量比9:1,浸渍时间为1h,偶联剂浓度为1.5%。GF在PP复合材料中也有异相成核作用,提高了PP的结晶速率和结晶度,减小了PP的球晶尺寸;当GF含量为40phr时,PP/GF复合材料的综合力学性能最佳。GF的加入使PP/GF/D-S和PP/GF/IFR复合材料的力学性能均比PP/D-S和PP/IFR提高了许多,但GF的增强效果不如AF。复合材料PP/GF/D-S和PP/GF/IFR的T50%较纯PP提高了20-40℃,残炭量最高分别可达17.7%和30.7%,放热晗也有所下降。锥形量热测试表明,与纯PP相比,复合材料PP/20phrGF/30phrD-S和PP/20phrGF/30phrIFR的PHRR、AHRR虽然均比纯PP有所下降,但是其AHRR、AMLR分别比PP/D-S和PP/IFR反而上升了24.6%和19.3%、59.4%和105.0%;且其残炭形态变化明显(尤其是PP/GF/IFR已完全熔融),残炭强度较低。此外,复合材料PP/GF/D-S和PP/GF/IFR的LOI均比PP/D-S和PP/IFR低;PP/GF/D-S的UL-94等级最高仅为V-2级,而PP/GF/IFR的则均不合格。GF的加入恶化了复合材料PP/GF/D-S和PP/GF/IFR的阻燃性能。
Polypropylene (PP) has been widely used in various fields, such as construction, electronic and electric, communication and household appliance, due to its overwhelming advantages such as low density, ease of processing, low hygroscopic, nice overall mechanical properties, resistance to chemical erosion and excellent electric insulation. However, PP is rather flammable with a limited oxygen index (LOI) value of 17.4% because of its wholly carbon-hydrogen structure. Moreover, PP burns rapidly and releases plenty of heat accompanying melt-dripping, which cannot meet the requirements in many cases, and therefore it has attracted more and more attention to reduce its flammability. The addition of flame retardants can usually cause negative effects to the mechanical properties of PP composites. Therefore, it is of great significance to improve the flame retardancy and mechanical properties simultaneously. Three kinds of reinforcing materials including nano-montmorillonite, aramid fibers and glass fibers and two types of flame retardants were introduced to PP composites. The intercalative effect of OMMT in PP composites was analyzed by wide X-ray diffraction (WXRD) and transition electron microscopy (TEM). The mechanical properties of PP composites were conducted by tensile, flexural and notched impact tests. The crystallinity of PP was characterized by differential scanning calorimetry (DSC) and polarizing optical microscope (POM). The thermal behavior, flammable property, char morphology and structure were investigated by thermogravimetric (TG), differential thermal analyzer (DTA), limited oxygen index (LOI), vertical burning test (UL-94), cone calorimetry (CONE), scanning electron microscope (SEM) and Fourier transition infrared spectroscopy (FTIR). The flame retardant mechanism was also proposed and discussed.
     This paper can be divided into three parts:the mechanical, thermal, crystalline property and flame retardancy of PP/OMMT composites, PP/AF composites and PP/GF composites containing different flame retardant systems respectively.
     In the first part, PP/OMMT, PP/D-S/OMMT and PP/IFR/OMMT composites were prepared by using organic-montmorillonite (OMMT) as reinforcing material, decabromodiphenyl ethane/antimony trioxide (DBDPE/Sb2O3, D-S), intumescent flame retardant (melamine polyphosphate and pentaerythritol, MPP/PER, IFR) as flame retardants. The results show that the addition of PP-g-MAH, D-S and IFR can increase the interlayer spacing and improve the dispersion condition of OMMT. It has been demonstrated that intercalated or even exfloliated structure has been formed in PP/OMMT composites. OMMT can act as heterogeneous nucleation which increases the crystallization speed and degree of PP, and thus make PP spherulites grow smaller and align more regular. Moreover, the nanosize effect and reinforcement of OMMT can not only improve the tensile and notched impact properties of PP/D-S/OMMT and PP/IFR/OMMT composites, but also can enhance their thermal property and flame retardancy. The T50% of PP/D-S/OMMT and PP/IFR/OMMT composites are 20~30℃higher than that of pure PP, while the maximal char yield of the two composites can reach up to 13.4% and 24.4% respectively. The LOI value has been increased up to 24.2% and 28.5% and the UL-94 test can reach V-0 and V-1 respectively after the addition of D-S and IFR. Moreover, comparing with pure PP, the peak heat release rate (PHRR), average heat release rate (AHRR), total heat release (THR), average mass loss rate (AMLR) of PP/30phrD-S/5phrOMMT and PP/30phrIFR/5phrOMMT composites are reduced by 60.2% and 58.3%、52.7% and 46.0%、34.7% and 52.5%、31.2% and 63.2% respectively. The char residue of above two composites can remain its original morphology with firm structure. Hence, there is a nice synergistic effect on flame retardancy between OMMT and D-S or IFR in PP composites.
     The second part of this paper studies the properties of PP/AF, PP/AF/D-S and PP/AF/IFR composites composed of AF and D-S, IFR. AF was modified by phosphate coupling agent and the best modification condition is as follows:the mass ratio of ethanol and water is 9:1, the immersion time is 1h and the concentration of coupling agent is 1%. DSC and POM results show that AF can improve the crystallization speed and degree of PP but decrease the size of PP spherulites by acting as a heterogeneous nucleating agent. The PP/AF composite with 20phr AF has optimal mechanical properties. The T50% of PP/AF/D-S and PP/AF/IFR composites are 25~30℃higher than that of pure PP, while the maximum char yield is raised up to 17.7% and 24.4% respectively, the maximum exothermal fusion is reduced by 60% and 59.3% respectively, the maximum rate in UL-94 is V-0 and V-1 respectively. The PHRR、AHRR、THR、AMLR、AEHC of PP/20phrAF/30phrD-S and PP/20phrAF/30phrIFR composites are decreased by 78.8% and 75.8%、71.2% and 50.6%、75.0% and 69.7%、36.8% and 60.5%、68.5% and 23.1% respectively, and there was almost no smoke released in above two composites, when comparing with that of pure PP. Moreover, the morphology of above two samples before or after being heating is almost the same and the residue char is strong. AF with superior mechanical and thermal properties can act as "skeleton" materials and hinder the move of PP chains and thus improve the thermal stability and char yield of PP composites. The protective effect of D-S in gas phase together with the improved char protective effect in solid phase by IFR and AF make the flame retardancy of PP/AF/D-S and PP/AF/IFR improved greatly.
     The third part is about the properties of PP/GF, PP/GF/D-S and PP/GF/IFR composites when GF was used as reinforcing material while D-S and IFR were added as flame retardants. The surface of GF was also modified by phosphate coupling agent showing a better interface cohesion between GF and PP proved by SEM and FTIR tests. The optimal modification condition is listed below:the mass ratio of ethanol and water is 9:1, the immersion time is 1h and the concentration of phosphate coupling agent is 1.5%. The crystallization speed and degree of PP are improved while the size of PP spherulite decreases in the presence of GF in PP/GF composites. The mechanical properties of PP/GF/D-S and PP/GF/IFR composites are higher than that of PP/D-S and PP/IFR, but the reinforcing effect on mechanical properties of GF is lower than that of AF. The T50% of PP/GF/D-S and PP/GF/IFR composites are about 20~40℃higher than that of pure PP, while the maximum char yield is improved to 17.7% and 30.7% respectively, the exothermal fusion is also decreased a lot. The results from cone calorimetry tests show that:the PHRR and AHRR of PP/20phrGF/30phrD-S and PP/20phrGF/30phrIFR composites are decreased slightly compared with that of pure PP; however, the AHRR and AMLR are increased by 24.6% and 19.3%、59.4% and 105.0% respectively when compared with that of PP/D-S and PP/IFR composites. Moreover, the char morphology of above two composites changes greatly, especially for the latter one which has been melted completely during combustion. The LOI values of PP/GF/D-S and PP/GF/IFR composites are both lower than that of PP/D-S and PP/IFR, and the UL-94 rate of the former is V-2 but the latter is failed. Therefore, it is concluded that GF can cause negative effect on flame retardancy of PP composites.
引文
[1]吴培熙,张留成.聚合物共混改性[M].北京:中国轻工业出版社,1996.320-323
    [2]洪定一.塑料工业手册一聚烯烃[M].北京:化学工业出版社,1999.399-402
    [3]蒋翔宇.2008-2010年聚丙烯产业及新建项目的对策分析[J].西北煤炭,2008,6(2):6-9
    [4]福建省石油化工科技情报、规划、咨询中心.聚丙烯产业分析报告[R].PP产业专辑,2010,2-8
    [5]何叶尔·李力.聚丙烯树脂的加工与应用[M].北京:中国石化出版社,1997.5-7
    [6]程曾越.通用树脂实用技术手册[M].北京:中国石化出版社,1998.3-8
    [7]张超灿,徐光,吴力立,张藕生.β成核剂对抗冲聚丙烯共聚物的结晶和力学性能研究[J].塑料助剂,2008,3:31-35
    [8]Smauels RJ, Yee RY. Characterization of the structure and organization of β propylene spherulites[J]. Journal of Polymer Science,1972, A-2,10:385-432
    [9]Turner-Jones A, Aizlewood JM, Beekett D. Crystalline forms of isotactic polypropylene[J]. Makromol Chemistry,1964,75:134-158
    [10]钱欣,程蓉,范文春,等.α和β成核剂对聚丙烯力学性能影响[J].塑料工业,2003,31(2):25-27
    [11]徐家壮,钟淦基,李忠明.纤维增强聚丙烯复合材料界面结晶研究进展[J].中国塑料,2008,22(10):7-12
    [12]刘晓霞,张普玉.β晶型成核剂对聚丙烯力学及结晶性能的影响[J].应用化学,2006,23(11):1270-1273
    [13]Zhao SC, Cai Z, Xin Z. A highly active novel β-nucleating agent for isotactic polypropylene[J]. Polymer,2008,49:2745-2754 Wang SW, Yang W, Xu YJ, et al. Crystalline morphology of β-nucleated
    controlled-rheology polypropylene[J]. Peng Polymer Testing,2008,27:638-644 Wang C, Liu CR. Transcrystallization of polypropylene composites:nucleating ability of
    fibres[J]. Polymer,1999,40:289-298
    [16]Saujanya C, Radhakrishnan S. Structure development and crystallization behaviour of PP/nanoparticulate composite[J]. Polymer,2001,42:6723-6731
    [17]Tjong SC, Shen JS, Li RKY. Morphological behaviour and instrumented dart impact properties of β-crystalline-phase[J]. Polymer,1996,37:2309-2316
    [18]Romankiewicz A, Sterzynski T, Brostow W. Structural characterization of α-and β-nucleated isotactic polypropylene[J]. Polymer Interface.,2004,53:2086-2091
    [19]Menyhard A, Varga J, Molnar GJ. Comparison of different β-nucleators for isotactic polypropylene, characterization by DSC and temperature-modulated DSC (TMDSC) measurements[J]. Therm. Anal. Calor.,2006,83:625-630
    [20]林启昭.高分子复合材料及其应用[M].北京:中国铁道出版社,1988.19-22
    [21]赵春兰.高分子材料[M].哈尔滨:哈尔滨船舶工程学院出版杜,1994.3344
    [22]张勇,郭虹革,陈孝生.聚丙烯改性的研究概述[J].化学推进剂与高分子材料,2001,1:8-10
    [23]殷锦捷,屈晓莉,王之涛,等.聚丙烯改性的研究进展[J].上海塑料,2006,12:9-13
    [24]李张焰.聚丙烯改性技术及其最新进展[J].江西石油化工,2004,16(4):6-10
    [25]方治齐,唐龙祥,严满清,等.聚丙烯改性新进展[J].现代塑料加工应用,2002,14(6):36-39
    [26]亢小丽.浅谈聚丙烯改性方法[J].高分子材料研究,2007,11:33-34
    [27]Kaxger-Kocsis J. Polypropylene structure, blends and composites, copolymer and blends[M]. London:Cha Pman Hall,1995.195-224
    [28]黄葆同,陈伟.茂金属催化剂及其烯烃聚合物[M].北京:化学工业出版社,2000.280-324
    [29]王鉴,赵洪坤,杨鹤红,等.聚丙烯接枝改性技术研究进展[J].炼油与化工,2010,5:1-5
    [30]Mai KC, Li z J, Zeng HM. Physical properties of PP-g-AA prepared by Melt Extrusion and its effects on mechanical properties of PP[J]. Journal of Applied Polymer Science, 2001,80(13):2609-2616
    [31]Cha J, Jaehyug W. Methyl methacrylate modification of polyolefin in a batch mixer and a twin-screw extruder experiment and kinetic model[J]. Polymer Engineering Science, 2003,43(12):1830-1840
    [32]Guldogan Y, Egri S, Rzaev ZM, et al. Comparison of malefic anhydride grafting onto powder and granular polypropylene in the melt by reactive extrusion[J]. Journal of Applied Polymer Science,2004,92(6):3675-3684
    [33]王艳忠,黄素萍,龚静华,等.荧光防伪聚丙烯纤维的制备及其特性研究[J].合成纤维,2001,30(5):28-30
    [34]冯丽.采用DSC方法研究添加陶瓷粉对聚丙烯结晶的影响[J].纺织科学研究,2000,(4):12-14
    [35]Alishvcal. Melt rheological property of polypropylene maleated[J]. Journal of Applied Polymer Science,1999,71:158-164
    [36]Georgea S, Varughese KT, Thomas S. Thermal and crystallization behaviour of isotactic polypropylene/nitride rubber blends[J]. Polymer,2000, (41):5485-5503
    [37]田洪池,伍社毛,韩吉彬,等.动态硫化EPDM/PP共混型热塑性弹性体的老化效应[J].合成橡胶工业,2004,27(1):34-38
    [38]张双寅,刘济庆,于晓霞,等.复合材料结构的力学性能[M].北京:北京理工大学出版社,1992.77-93
    [39]张志民.复合材料结构力学[M].北京:北京航空航天大学出版社,1993.253-282
    [40]Zhandarov S, Pisanpva VE. Theory bond strength and its determination by fragmentation and pull-out tests[J]. Composites Science and Technology,1997,57:957-964
    [41]Hui Y, Phoenix L, Shia D. The single-filament-composite test:a new statistical theory of estimating the interfacial shear strength and pull parameters of fiber strength[J]. Composites Science and Technology,1997,57:1707-1725
    [42]安军,刘佑习.玻璃纤维增强PET工程塑料性能及界面研究[J].高分子材料科学与工程,1996,12(5):81-86
    [43]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社,2006.52-68
    [44]陈平,陆春,于琪,等.连续纤维增强ESK树脂基复合材料的界面性能[J].材料研究学报,2005,19(2):159-164
    [45]胡福增,郑安呐,张群安.聚合物及其复合材料的表面界面[M].北京:中国轻工业出 版社,2001.103-115
    [46]幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社,2000.272-301
    [47]张耀明,李巨白,姜肇中.玻璃纤维与矿物棉全书[M].北京:化工工业出版社,2001.6-9
    [48]张向南.玻纤增强塑料中玻纤含量的控制[J].现代塑料加工应用,2000,9(5):36-39
    [49]陶国良.碳纤维/聚丙烯复合材料的研究[J].中国塑料,2001,14(2):9-12
    [50]李能文,黄虹,李道喜.碳纤维增强聚酰胺(PA/CF)复合材料的研究进展[J].精密成形工程,2010,6:47-50
    [51]乐剑辉,汤育娟,徐泽辉.聚丙烯腈基碳纤维的研究进展[J].上海化工,2010,(6):5-8
    [52]王赫,刘亚青,张斌.碳纤维表面处理技术的研究进展[J].合成纤维,2007,36(1):29-32,39
    [53]贺泓,朱鹤孙,孙慕瑾.芳纶纤维的表面改性[J].复合材料学报,1990,7(3):17-25
    [54]董卫国.高性能纤维表面处理技术[J].山东纺织科技,2001,11(6):44-46
    [55]严志云,刘安华,贾德民.芳纶纤维的表面处理及其在橡胶工业中的应用[J].橡胶工业,2004,51(1):56-60
    [56]于涛,顾伯勤,陈晔.芳纶表面处理对纤维增强橡胶基复合密封材料性能的影响[J]润滑与密封,2005,(1):70-74
    [57]陈晔,顾伯勤,于涛.纤维表面处理对芳纶预氧化丝混杂纤维增强材料耐温性能的影响[J].润滑与密封,2006,(6):8-12
    [58]Sunan S, Taweechai A. Kevlar reinforcement of polyolefin based thermoplastic elastomer[J]. Polymer,1999,40(23):6437-6442
    [59]Yue CY, Padmanabhan K. Interfacial studies on surface modified Kevlar fibre/epoxy matrix composites[J].Composites:Part B,1999,30(2):205-217
    [60]Maity J, Jacob C, Das CK, et al. Fluorinated aramid fiber reinforced polypropylene composites and their characterization[J].Polymer Composites,2007,28 (4):462-469
    [61]Mukherjee M, Das CK, Kharitonov AP, et al. Properties of syndiotactic polystyrene composites with surface modified short Kevlar fiber [J]. Materials Science and Engineering:A,2006,441(12):206-214
    [62]Amornsakchai T, Sinpatanapan B, Meesiri W, et al. Composite of aramid fibre (polymphenylene isopht halamide) thermoplastic elastomers (SEBS):enhancement of tensile properties by maleated-SEBS compatibiliser[J]. Polymer,1999,40(11):2993-2999
    [63]Sirisinha C, Amornsakchai T, Wiriya M, et al. Improvement of interfacial adhesion of poly (mphenylene isopht halamide) short fiber thermoplastic elastomer (SEBS) composites by nalkylation on fiber surface[J]. Journal of Applied Polymer Science,1999,74(10): 2414-2422
    [64]Jengshyong L. Effect of surface modification by bromination and metalation on Kevlar fibre epoxy adhesion[J]. European Polymer Journal,2002,38 (1):79-86
    [65]宋月贤,袁安国,王有.芳纶帘线与NR的黏合性能研究[J].橡胶工业,1998,45(11):660-662
    [66]严志云,刘安华,贾德民.氮气等离子体处理对芳纶与橡胶黏合性能的影响[J].橡胶工业,2007,(8):467-472
    [67]Van O, Wim J, Shijian L, et al. Surface modification of textile fibers and cords by plasma polymerization[J]. Plasmas and Polymer,1999,4(1):33-35
    [68]Sun YM, Liu HH. Ultrasonic modification of aramid fiber-epoxy interface[J]. Journal of Applied Polymer Science,2001,81(11):2764-2768
    [69]Liu L, Huang YD, Zhang ZQ, et al. Effect of ultrasound on wettability between aramid fibers and epoxy resin[J]. Journal of Applied Polymer Science,2006,99(6):3172-3177
    [70]Zhang YH, Huang YD, Liu L, et al. Surface modification of aramid fibers with y-ray radiation for improving interfacial bonding strength with epoxy resin[J]. Journal of Applied Polymer Science,2007,106 (4):2251-2262
    [71]马晓光,刘越.高性能纤维的发展及其在先进复合材料中的应用[J].纤维复合材料,2000,17(4):14-18
    [72]Salehir-Mobarakeh H, Brisson J, Ait-Kadi A. Ionic interphase of glass fiber/polyamide 6,6 composites[J]. Polymer Composites,1998,19(3):264-274
    [73]姜勇,徐声钧,王燕舞.玻璃纤维增强聚丙烯的研制与应用[J].塑料科技,2000,(1):7-9
    [74]薛志云,胡福增,郑安呐.玻璃纤维表面的乙烯基单体接枝聚合[J].功能高分子学报,1996,9(2):177-182
    [75]杨卫疆,郑安呐,戴干策.过氧化物偶联剂在玻璃纤维表面上接枝高分子链的研究[J].华东理工大学学报,1996,22(4):429-432
    [76]李志军,程光旭,韦玮.离子体处理在玻璃纤维增强聚丙烯复合材料中的应用[J].中国塑料,2000,14(6):45-49
    [77]张军,纪奎江,夏延致.聚合物燃烧与阻燃技术[M].北京:化学工业出版社,2005.1-5
    [78]欧育湘.实用阻燃技术[M].北京:化学工业出版社,2003.48-84
    [79]徐应麟,王元宏.高聚物材料的使用技术[M].北京:化学工业出版社,1994.201-210
    [80]王保正.聚丙烯用阻燃剂及阻燃聚丙烯[J].塑料,2004,33(1):54-59
    [81]马雅琳,王标兵,胡国胜.阻燃剂及其阻燃机理的研究现状[J].材料导报,2006,20(5):392-395
    [82]Wang YZ, Yang B, Zhao GM. A novel non-dripping algometric flame retardant for polyethylene terephthalate[J]. European Polymer Journal,2004,40(8):1909-1913
    [83]Shau SM, Lin JJ, Su WC, et al. Flame retardant epoxy polymers based on all phosphorus-containing components[J]. European Polymer Journal,2002,38(4):683-693
    [84]赵丽,陈占勋,陈林书.阻燃聚烯烃类热塑性弹性体研究进展[J].弹性体,2003,13(5):56-59
    [85]欧育湘,房晓敏.金属氢氧化物阻燃剂的现状与发展前景[J].精细与专用化学品,2007,15(2):1-4
    [86]李汉堂.聚硅氧烷阻燃剂[J].世界橡胶工业,2004,31(12):12-17
    [87]陈伟红,王华.含硅高分子阻燃材料热解阻燃机理研究进展[J].消防技术与产品信息,2006(4):19-22
    [88]Mauerer O. New reactive, halogen free flame retardant system for epoxy resins[J]. Polymer Degradation and Stability,2005,88 (1):70-73
    [89]Ma HY, Tong LF, Xu ZB, et al. A novel intumescent flame retardant:synthesis and application in ABS copolymer[J]. Polymer Degradation and Stability,2007,92 (4): 720-726
    [90]马志领,赵文革,张杰.膨胀型阻燃剂磷酸-季戊四醇-三聚氰酰胺聚合物的合成及其在聚丙烯中的应用[J].化学世界,2001,18(4):51-53
    [91]杨云峰,张现军,胡国胜.无卤阻燃剂的研究现状[J].山西化工,2010,30(1):50-53
    [92]Modesti M, Lorenzetti A. Improvement on fire behaviour of water blown PIR-PUR foams: use of an halogen free flame retardant[J]. European Polymer Journal,2003,39:263-268
    [93]Amino G, Maffezzoli A, Braglia M, et al. Effect of hydroxides and hydroxycarbonate structure on fire retardant effectiveness and mechanical properties in ethylenevinyl acetate copolymer[J]. Polymer Degradation and Stability,2001,74(3):457-464
    [94]Masatoshi I, Shin S. Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices[J]. Polymers for Advanced Technologies,1998, 9(10):593-600
    [95]聂玉梅.聚丙烯/层状硅酸盐纳米复合材料研究进展[J].化学工程师,2003,130:44-46
    [96]于宝刚,唐凯.阻燃纳米复合材料研究进展[J].塑料工业,2006,34:91-94
    [97]Zhang S, Horrocks AR, Hull R. Flammability, degradation and structure characterization of fibre forming polypropylene containing nanoclay flame retardant combinations[J]. Polymer Degradation and Stability,2006,91:719-725
    [98]刘剑,熊理想,陆秋欢.聚丙烯/蒙脱土纳米复合材料研究进展[J].金山油化纤,2005,24(4):29-34
    [99]Ogawa M, Kuroda K. Preparation of transparent silica-surface nanocompoistes films with controlled microstructures[J]. Bullition Chemistry Science of Japan,1997,70(11): 2833-2837
    [100]Zhang S, Hull TR, Horrocks AR. Thermal degradation analysis and XRD characterization of fiber forming synthetic polypropylene containing nanoclay[J]. Polymer Degradation and Stability,2007,92(4):727-732
    [101]宋军,王宝辉,汪丽.聚丙烯/蒙脱土纳米复合材料的非等温结晶性能[J].大庆石油学院学报,2005,29(5):54-59
    [102]章永化,许德雄,钟卫东,等.改性蒙脱土复合母粒对聚丙烯结晶性能的影响[J].华南理工大学学报,2003,31(10):1-5
    [103]王东庆,马敬红,梁伯润.聚丙烯/马来酸酐接枝聚丙烯/蒙脱土复合材料的结晶动力学和结晶形态[J].高分子材料科学与工程,2005,21(3):125-128
    [104]宋军,王宝辉,丁伟,等.聚丙烯/蒙脱土纳米复合材料的结晶性能研究[J].塑料工业,2005,33(6):48-50
    [105]谢晶曦,常俊标,王绪明.红外光谱在有机化学和药物化学中的应用[M].北京:科学出版社,2002.79-85,351-357
    [106]李响,杨亮,黄险波,等.十溴二苯乙烷阻燃PBT性能研究[J].中国塑料,2005,19(4);75-77
    [107]陈福花,李荣勋,陈国昌,等.十溴二苯乙烷阻燃改性聚丙烯的研究[J].塑料科技,2004,6:330-34
    [108]左建东,李荣勋,冯绍华,等.十溴二苯乙烷协同三氧化二锑阻燃PE研究[J].现代塑料加工应用,2004,16(3):32-35
    [109]Ma HY, Fang ZP, Tong LF. Preferential melt intercalation of clay in ABS/brominated epoxy resin-antimony oxide (BER-AO) nanocomposites and its synergistic effect on thermal degradation and combustion behavior[J]. Polymer Degradation and Stability 2006, 91:1972-1979
    [110]Lebaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites:an overview[J]. Applied Clay Science,1999,15:11-29
    [111]Golebiewski J, Galeski A. Thermal stability of nanoclay polypropylene composites by simultaneous DSC and TGA[J]. Composites Science and Technology,2007,67: 3442-3447
    [112]刘芳,孙令,罗远芳,等.用锥形量热仪研究膨胀性非卤阻燃聚丙烯阻燃性能[J].华南理工大学学报(自然科学版),2009,37(3):10-14
    [113]郝权,蒋曙光,位爱竹,吴征艳,等.锥形量热仪在火灾科学研究中的应用[J].能源技术与管理,2009,(1):72-75
    [114]Morgan AB, Gilman JW. Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction:a comparative study[J]. Applied Polymer Science,2003,87:1329-1338
    [115]邓华,李淳,曾秋苑,等.微波辐射下秸秆纤维微观结构的变化[J].分析测试学报,2010,29(4):336-340
    [116]Maity J, Jacob C, Das CK, et al. Direction fluorination of Twaron fiber and the mechanical, thermal and crystallization behaviour of short Twaron fiber reinforced polypropylene composites[J]. Composites:Part A,2008,39:825-833
    [117]Kukureka SN, Hooke CJ, Rao M, et al. The effect of fiber reinforcement on the friction and wear of polyamide 66 under dry rolling-sliding contact[J]. Tribology International, 1999,32:107-116
    [118]Abdulkadir G, Ahmet O, Emin O. Experimental investigation of the effect of glass fibers on the mechanical properties of polypropylene (PP) and polyamide 6 (PA6) plastics[J]. Materials and Design,2006,27:316-323
    [119]Arroyo M, Zitzumbo R, Avalos F. Composition based on PP/PEDM blends and aramid short fiber:Morphology/behaviour relationship[J]. Polymer,2000,41:6351-6359
    [120]Zheng YY, Wang CY, Fu ML. Study on the non-isothermal crystalline behaviour and melting characteristics of Kevlar fiber reinforced nylon 6 composites[J]. Polymer Materials Science and Engineering,2006,22(2):126-129
    [121]Zheng YY, Wang CY, Fu ML. Study on the behaviour of non-isothermal crystallization and melting of the modified PA6/Kevlar fiber composites[J]. Journal of Aeronautical Material,2006,26(1):51-54
    [122]Liao KT, Lu ZJ, Zheng XP. Crystallization behaviour and morphology of glass fiber reinforced polypropylene[J]. Polymer Material Science and Engineering,1995,11(3): 75-79
    [123]Sain M, Park SH, Suhara F, et al. Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide[J], Polymer Degradation and Stability,2004,83:363-36
    [124]Chen YH, Wang Q. Preparation, properties and characterizations of halogen-free nitrogen phosphorous flame-retarded glass fiber reinforced polyamide 6 composite[J]. Polymer Degradation and Stability,2006,91:2003-2013
    [125]张志谦,龙军,刘立洵,等.玻璃纤维增强聚丙烯复合材料界面改性研究[J].宇航材料工艺,2002,(4):28-31
    [126]李姚瑶,余木火,袁象恺,等.新型偶联剂改性玻纤增强聚丙烯复合材料的研究[J].中国材料科技与设备,2009,(1):34-37
    [127]Chen M, Kocsisb KJ. Effect of micromorphologic features on the interfacial strength of iPP/Kevlar fiber microcomposites[J]. Polymer,2001,42:199-208
    [128]咸贵军,沈烈,益小苏.聚丙烯/玻璃纤维复合材料界面区的结晶行为[J].材料研究学报,1999,13(5):509-513
    [129]Liu Y, Deng CL, Zhao J, et al. An efficiently halogen-free flame-retardant long-glass-fiber-reinforced polypropylene system[J]. Polymer Degradation and Stability., 2010, ⅩⅩⅩ:1-8
    [130]Braun U, Schartel B, Fichera AM, et al. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6[J]. Polymer Degradation and Stability,2007,92:1528-1545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700