Fe-ZSM-5分子筛上N_2O氧化苯制苯酚反应过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe-ZSM-5分子筛对N2O氧化苯制苯酚反应具有良好的初始活性和选择性,但存在快速失活问题,制约了该工艺路线的工业化进程。目前的研究主要集中在催化剂制备和性能改进两个方面,并试图解决催化剂快速失活问题,但效果并不显著,因此亟需新的解决办法。本文基于Fe-ZSM-5分子筛催化剂,立足于循环流化床反应技术应用,对N2O氧化苯制苯酚的反应过程特性进行系统的实验和理论研究,包括工艺条件、反应网络结构和催化剂的定态/非定态性能特性等,以期为该工艺过程的循环流化床反应技术的开发提供理论指导,为其失活问题的解决提供思路。
     文中,首先采用等温固定床反应装置(尺寸为Φ21×3mm,L450mm),以单因素实验法系统考察了温度(623-773K)、空间速度(2500-10000h-1)和反应器入口苯:N2O摩尔比(2-12)对Fe-ZSM-5分子筛上N2O氧化苯制苯酚反应过程及产物分布规律的影响,结果表明:N2O转化率随反应温度的升高而增加,苯酚选择性随温度升高逐步降低,苯酚收率和时空产率随温度的升高呈现先增大后减小的趋势;高空速有利于苯酚选择性提高,但会导致N2O转化率降低,适宜的空速将有利于提高苯酚时空产率;提高苯:N2O摩尔比有利于N20转化率和苯酚选择性的提高,但过高的苯:N2O摩尔比对提高苯酚时空产率不利。最后采用L16(45)正交实验设计综合考察了以上因素对反应过程的影响,最终确定了相对适宜的反应条件为:温度673K,空速6000h"1,苯:N20摩尔比5:1。
     以等温固定床反应器和热重分析相结合的方式研究了Fe-ZSM-5分子筛上N2O氧化苯制苯酚的积炭行为,考察了反应时间、温度、原料配比和空速对积炭量的影响。依据实验观察现象和积炭物组分分布的气相色谱-质谱分析结果,提出了Fe-ZSM-5分子筛上N2O氧化苯制苯酚的积炭机理。结果表明,Fe-ZSM-5分子筛上的积炭物种主要来源于产物苯酚的深度氧化或缩聚,属连串失活。并基于所提出的积炭机理和实验数据,建立了Fe-ZSM-5分子筛催化剂的积炭动力学模型,统计分析和残差分布检验结果表明,所建模型与实验结果良好相容,是适宜和可信的。
     根据固定床反应装置研究结果,利用变空速实验和积炭机理研究所获得的信息,对该反应体系的热力学特性和反应网络结构进行了较为系统的研究。确定了该体系的主要反应和主要副反应,提出了能合理解释实验观察现象的动力学网络结构。所进行的热力学分析结果表明,当反应温度在500K以上时,生成苯酚主反应的绝热温升趋近于零,但实际过程中的反应器有明显温升,因此氧化过程反应热主要是由副反应造成的。在500K-900K温度范围内,各反应的平衡常数值极大,因而可以不考虑逆反应对反应转化率的影响。
     依据热力学分析结果和所提出的动力学网络结构,分别构建了描述该反应体系动力学特性的的幂函数型和机理型动力学模型。采用等温积分反应器(尺寸为Φ6×2mm,L300mm),在消除内、外扩散影响的实验条件下,对Fe-ZSM-5分子筛上N2O氧化苯制苯酚的本征动力学进行了实验研究。以单纯形法对两模型参数进行了搜索、选优,并经统计检验表明,所建立的两种本征动力学模型均能较好地吻合实验数据,是适宜和可靠的。但相对而言,机理模型的预测结果与实验数据更加吻合,因此将其作为实验所用催化剂的本征动力学模型将更为可靠。
     由前述研究结果可见,Fe-ZSM-5分子筛催化剂具有良好的初始活性和选择性,但存在快速失活问题,因此在对其进行反应过程研究时需考虑其性能随时间的变化规律,为此建立了动态在线质谱分析实验装置和分析方法,通过程序升温动态实验,研究了Fe-ZSM-5分子筛上N2O氧化苯制苯酚的反应机理和动态特性,提出了与实验结果相容的基元反应序列结构。即,N2O首先在催化剂表面上进行弱化学吸附,达到一定温度才会发生分解反应,在两种不同活性位上形成表面氧、氮物种,此分解步骤是整个基元反应过程的速率控制步骤,且表面氧物种的活性明显高于表面氮物种,吸附态氧物种则氧化苯生成苯酚。此外,N2O在与催化剂表面相互作用时还会伴随产生相对较强吸附的NO物种。基于以上基元反应序列结构,建立了固定床积分反应器的一维非均相瞬态动力学模型,并依据瞬态实验数据对模型参数进行了估值及数理检验,结果表明所建瞬态动力学模型能够合理地描述N20催化氧化苯反应的瞬态行为,其结果为深入认识基元过程的相对快慢和速率控制步骤及进一步采取措施优化反应效率提供了重要的理论参考。
     在催化剂积炭机理及定态/非定态反应动力学研究的基础上,考虑到流化床反应器易于实现反应和再生循环操作,可以有效解决催化剂失活问题,因此,在固定流化床反应装置上,真实考察了N2O氧化苯制苯酚周期操作工艺条件的影响规律及Fe-ZSM-5分子筛的催化性能,结果表明:周期操作可以显著提高催化剂的反应性能,且该催化剂经反复再生后,活性水平基本可以恢复到新鲜催化剂的水平。在反应工艺条件为反应温度703K、原料苯/N2O配比9:1、操作气速0.050m·s-1;再生工艺条件为再生温度703K、N2O浓度12.5%、再生操作气速0.059m·s-1;周期操作工艺条件为操作周期6min,循环裂度0.4的条件下,苯酚收率比定态操作提高了10.46%,其结果为循环流化床反应器的开发提供了更为直接的基础数据。
     最后,在反应网络、瞬态动力学和固定流化床实验研究的基础上,采用一系列合理假设,建立了固定流化床反应器的一维、非均相、瞬态数学模型,并用固定床定态实验数据对催化剂利用效率和总传热系数进行了校正。采用Crank-Nicolson差分法和二阶改进的Rosenbrock法求解所建立的数学模型,并用MATLAB语言编写了相应的模拟程序。通过模拟研究,分析了操作周期和循环裂度对反应性能的影响,模拟结果与实验现象基本一致:适当缩短操作周期和增大循环裂度均能显著提高反应的苯酚收率,这表明,采用循环流化床反应器在经济和技术上将更加有利。
Fe-ZSM-5 zeolite, as a catalyst, was widely used in the oxidation of benzene with N2O to phenol with good initial activity and selectivity. However, the rapid deactivation of the catalyst leads that the industrialization of the process route was restricted. While most researches were focused in the preparation and modification of the catalyst, it failed to solve the problem of high deactivation rate. Based on the use of Fe-ZSM-5 zeolite in circulating fluidized bed, a series of experimental and theoretical studies were carried out on the characteristic of the oxidation of benzene to phenol with N2O, including reaction conditions, reaction network and steady or unsteady state performance of the catalyst in the reaction. The purpose of this paper was to provide the theoretical instructions for the development of the circulating fluidized bed process and a new methods for the solution of the catalyst deactivation.
     At first, based on an isothermal fixed bed reactor (SizeΦ21×3mm, L450mm), the effects of temperature (623-773K), space velocity (2500~10000h-1) and benzene/N2O molar ratio (2-12) at the entrance of the reactor on the reaction process and the distribution of products during the oxidation of benzene with N2O to phenol over Fe-ZSM-5 zeolite were investigated by the single-factor test method, respectively. The results revealed that, with the increase of temperature, the conversion of N2O increased and the selectivity of phenol decreased, the productivity and yield of phenol first increased and then decreased; With the increase of space velocity, the conversion of N2O decreased and the selectivity of phenol increased. A appropriate space velocity was beneficial to increase the productivity of phenol. With the increase of benzene/N2O molar ratio, the conversion of N2O and the selectivity of phenol both increased. But overhigh benzene/N2O molar ratio would result in a reduction in the productivity of phenol. Finally, based on the results of the single-factor experiments above, the global influence of temperature, space velocity and benzene/N2O molar ratio on the reaction process was investigated by means of the orthogonal test of Li6(45). The optimal reaction conditions were determined as follows:temperature of 673K, space velocity of 6000 h-1 and benzene/N2O molar ratio of 5:1.
     The coking behavior of the Fe-ZSM-5 zeolite catalyst during the oxidation of benzene with N2O to phenol was studied in an isothermal fixed bed reactor using thermogravimetric analyzer. The effect of reaction time, temperature, molar ratio of reactants, and space velocity on coking was investigated. Based on the informations obtained from experiments and the gas chromatography-mass spectrometry analysis of the coke on the catalyst, a mechanism for coke formation was suggested. The results showed that the formed coke mainly came from the further oxidation or polymerization of phenol as product, revealing that sequential deactivation occurred in the reaction process. Based on the suggested mechanism and the experimental data, a kinetic model for coke formation that describes coke deposition over the Fe-ZSM-5 zeolite catalyst was developed. A statistical test and a residual distribution analysis showed that the established kinetic model was in good agreement with the experimental data and reliable.
     Based on the experimental results of the isothermal fixed bed reactor and the various space velocities, as well as the mechanism of coke formation, the thermodynamic properties and the reaction network of the reaction system were studied systematically. The main reaction and main side reactions were determined and the kinetic reaction network for the oxidation of benzene with N2O to phenol was proposed, which can reasonably explain the experimental phenomena. The results of the thermodynamic analysis showed that when the temperature was above 500 K, the adiabatic temperature rise of the main reaction, which phenol was produced in, tended to zero. However, there was a remarkable temperature rise in the reactor actually. Accordingly, the reaction heat in the oxidation process mainly came from side reactions. In the temperature range of 500 K to 900 K, the reaction equilibrium constants were extremely high so that the effect of counterreactions on reaction conversion was not considered.
     Based on the thermmdynamic analysis and the kinetic reaction network proposed, the power function type and the mechanism type kinetic models, which described the kinetic characteristic of the reaction system, were established. The intrinsic kinetic experiments of the oxidation of benzene with N2O to phenol over Fe-ZSM-5 zeolite were carried out in an isothermal integral reactor (sizeΦ6×2 mm, L300 mm) on condition that internal and external diffusions were excluded. The kinetic parameters were estimated by means of Simplex optimal method. Statistical test showed that the two kinetic models established were in good agreement with the experimental data and reliable. By comparison between the two models, the mechanmism type kinetic model showed better agreement with the experimental data than the power function type. Therefore, the mechanism type kinetic model, which was used for describing the catalyst kinetics, was more reliable.
     It can be seen from the above results that Fe-ZSM-5 zeolite catalyst possessed favorable initial activity and selectivity in the oxidation of benzene with N2O to phenol, whereas deactivated rapidly. Accordingly, the rule of the catalyst performance changing with time should be considered when the reaction process was investigated. The experimental apparatus and the analysis method of dynamic online mass spectrograph were established. The reaction mechanism and the dynamic characteristics of the oxidation of benzene with N2O to phenol over Fe-ZSM-5 zeolite were studied by the temperature programmed dynamic experiments. The sequence of the elementary reactions, which showed well agreement with the experimental data, was proposed. The first step corresponded to a week chemical adsorption of N2O on the catalyst surface followed by the dissociation of N2O on the condition that the temperature was above 634 K. The surface atomic oxygen and nitrogen adsorbed upon two different active sites. The dissociation of N2O was the most crucial step, dominating the overall reaction process. Moreover, the surface atomic oxygen had a remarkable higher activity than the surface atomic nitrogen. Benzene was oxidated by the chemisorbed atomic oxygen to phenol. Furthermore, the formation of the strongly adsorbed NO on the Fe-ZSM-5 by temperature programmed desorption of N2O during the reaction process was discovered. A one-dimensional heterogeneous transient kinetic model for the integral fixed bed reactor based on the elementary reaction steps above was developed. The corresponding parameters of this model were evaluated and statistically tested using the transient experimental data. The results showed that the constructed transient kinetic model can reasonably describe the transient reaction behavior for the oxidation of benzene with N2O to phenol. The results also provided important theoretical references for not only understanding the relative rates and the rate controlling step of elementary reactions thoroughly, but also taking further measures to optimize reaction efficiency.
     On the basis of the mechanism of coke formation on the catalyst, the steady/unsteady state reaction kinetics, and the solution of the catalyst deactivation by fuildized bed reactor due to realizing easily the periodic operation of reaction and regeneration, the rule of the effect of periodic operation conditions and the catalytic performance of Fe-ZSM-5 zeolite during the oxidation of benzene with N2O to phenol were investigated in a fixed fluidized bed equipment in practice. The results showed that the periodic operation can improve evidently the reaction performance of the catalyst, and that after the deactivation, the catalyst was regenerated again and again, and the activity of the deactivation catalyst can be basically recovered to the level of fresh catalyst. When reaction conditions were reaction temperature of 703 K, benzene/N2O molar ratio of 9:1 and operational gas velocity of 0.050 m·s-1, and regeneration conditions were regeneration temperature of 703 K, N2O concentration of 12.5% and regeneration gas velocity of 0.059 m·s-1, and periodic operation conditions were cycling period of 6 minutes and cycling split of 0.4, the yield of phenol increased by 10.46% than that operated under steady state. The results provided directly basic data for the development of circulating fluidized bed reactor.
     Finally, based on reaction network, transient kinetics and the experiments in the fixed fluidized bed, a one-dimensional heterogeneous transient mathematical model for the fixed fluidized bed reactor was proposed on some acceptable assumptions. The utilization efficiency of the catalyst and the total heat transfer coefficient were corrected using steady state experimental data in the fixed bed. A Crank-Nicolson finite difference algorithm and an improved second order Rosenbrock method were used to solve the mathematical model established. The simulation program was programmed in MATLAB software. The effects of operation period and cycling split on the reaction performance were analyzed by simulation study. The simulation results were in general agreement with the experimental phenomena. Shortening operation period and augmenting cycling split both increased the yield of phenol remarkably. It suggested that circulating fluidized bed reactor was more promising than fixed bed reactor in economy and technology
引文
[1]刘晓东,庞振涛,焦凤茹.国内外苯酚生产现状及市场展望[J].中国石油和化工经济分析,2007,(15):37-39
    [2]李玉芳.国内外苯酚生产技术进展[J].中国石油和化工,2004,(8):40-42
    [3]万志强.苯酚生产工艺技术评析[J].炼油与化工,2005,16(3):1-7
    [4]张日新,张晓东.我国苯酚市场供需现状和前景分析[J].化学工业,2008,26(6):47-49
    [5]李晓平.苯酚的市场状况、技术进展及发展建议[J].化工中间体,2006,(11):13-15
    [6]迟洪泉.苯酚市场供需分析[J].当代石油石化,2006,14(10):4144
    [7]章文.苯酚的市场分析和技术进展[J].上海化工,2004,(5):48-49
    [8]崔小明.苯酚生产技术进展及国内市场分析[J].四川化工,2004,7(1):19-23
    [9]孙然功,张凌志,邹长军,等.异丙苯法苯酚丙酮装置副产苯酚焦油催化裂化研究[J].石油化工应用,2010,29(2-3):31-33
    [10]邹彬,胡燚,黄鑫江,等.苯酚生产工艺的研究进展[J].石油化工,2009,38(5):575-580
    [11]Panov G I, Kharitonov A S, Sheveleva G A. Method for production for phenol and its derivatives [P]. US Patent, US 5756861.1998-5-26
    [12]Kustov L M, Tarasov A L, Tyrlov A A, et al. Method for the oxidation of benzene and/or toluene to phenol and/or cersols [P]. US Patent, US 6388145B1.2002-5-14
    [13]Panov G I, Uriartea K. Generation of active oxygen species on solid surfaces-Opportunity for novel oxidation technologies over zeolites[J]. Catal. Today,1998,41:365 Iwamato M, Hirata J, Matsukami K, et al. Catalytic oxidation by oxide radical ions on
    [14]one-step hydroxylation of benzene to phenol over Group 5 and 6 oxides supported on silica gel[J], J. Phys. Chem.,1983,87:903-913 Kumar S M, Schwidder M, Grunert W, et al. On the nature of different iron sites and their
    [15]catalytic role in Fe-ZSM-5 DeNOx catalysts:new insights by a combined EPR and UV/VIS spectroscopic approach[J]. J. Catal.,2004,227:384-397
    [16]Felix K, Heike, Hausmann, et al. (NH4)2SiF6-modified ZSM-5 as catalysts for direct hydroxylation of benzene with N2O:a comparative study with ferrisilicalite and dealuminated and iron-exchanged ZSM-5[J]. J. Catal.,2004,227:408-418
    [17]Dubkov A, Ovcanesyan N S, Shteinman A A, et al. Evolution of iron states and formation of a-Sites upon activation of Fe-ZSM-5 zeolites[J]. J. Catal.,2002,207:341-351
    [18]Wood B J, Reimer J A, Bell A T, et al. Nitrous oxide decomposition and surface oxygen formation on Fe-ZSM-5[J]. J. Catal.,2004,224:148-155
    [19]Kiwi M L, Bulrshev D A, Renken A. Benzylation of benzene by benzyl chloride over iron mesoporous molecular sieves materials[J]. J. Catal.,2003,219:273-279
    [20]Waclaw A, Nowinska K, Schwieger W, et al. N2O decomposition over iron modified zeolites ZSM-5[J]. Catal. Today,2004,90:21-31
    [21]Yuranov I, Bulushev D A, Renken A, et al. Benzene hydroxylation over Fe-ZSM-5 catalysts:which Fe sites are active[J]. J. Catal.,2004,227:138-148
    [22]张元礼.已二酸生产中N2O废气的综合治理[J].石油化工,2005,34(增刊):707-708
    [23]孙娜,杨丰科,刘均洪.降低N2O排放的己二酸问起处理技术[J].工业催化,2003,11(6):11-15
    [24]吴波,庄亚辉.N2O直接分解催化剂的研究进展[J].环境科学进展,1997,5(1):1-16
    [25]张朝晖,吕锡武,齐玉平.N2O大气污染演变及源汇分布[J].电力环境保护,2005,21(1):24-26
    [26]石明岩,吕锡武,稻森悠平.N2O的环境效应及其防治技术的发展趋势[J].城市话剧和城市生态,2002,15(5):45-47
    [27]高素华,潘亚茹.温室效应对气候和农业的影响[J].环境科学,1991,12(2):73-76
    [28]Czepiel P, Crill P, Hamiss R. Nitrous oxide emission from municipal wastewater treatment[J]. Environ. Sci. Technol.,1995,29:2352-2356
    [29]Khlil M A K, Rasmussen R A, Shearer M J. Atmospheric nitrous oxide:patterns of global change during recent decades and centuries[J]. Chemosphere,2002,47:807-821
    [30]Prasad S S, Zipf E C. Atmospheric production of nitrous oxide from excited ozone and its significance[J]. Chemosphere-Global Change Sci.,2000,2:235-245
    [31]Schmidt R J. Industrial catalytic processes-phenol production[J]. Appl. Catal. A:General, 2005,280:89-103
    [32]邹彬,胡燚,黄鑫江,等.苯酚生产工艺的研究发展[J].石油化工,2009,38(5):575-580
    [33]王永健著.异丙苯法苯酚丙酮清洁生产技术[M].北京:中国石化出版社,2009
    [34]范卓Fe-ZSM-5分子筛上N2O一步氧化苯制苯酚工艺条件及本征动力学研究[D].北京:北京化工大学,2009
    [35]李克,黄孟光,曹声春,等.苯与过氧化氢直接催化氧化合成苯酚[J].湖南大学学报,1996,23(6):64-66,81
    [36]曹声春,黄孟光,谭本祝,等.苯液相一步法合成苯酚催化剂研究[J].湖南大学学报,1998,25(6):16-19
    [37]陈练洪,李稳宏,李冬,等.苯直接羟基化制苯酚的研究进展[J].化工进展,2005,24(3):236-238
    [38]张雄福.苯直接一步氧气合成苯酚[J].化学进展,2008,20(2/3):386-395
    [39]葛汉青,顾少华,王军.(12an)3-PMo11V催化氧气氧化苯一步法制备苯酚[J].分子催化(增刊),2007,21(8):416417
    [40]尹双凤,伍水生,代威力,等.分子氧催化氧化苯直接合成苯酚[J].化学进展,2007,19(5):735-744
    [41]顾颖颖.以分子氧为氧化剂多相一步氧化苯羟基化制苯酚[D].上海:华东师范大学,2004
    [42]曹声春,杨礼嫦,黄孟光,等.苯与水一步氧化合成苯酚的催化体系[J].石油化工,1995,24(10):708-710
    [43]兰忠,王立秋,张守臣,等.N2O直接催化氧化苯制苯酚研究进展[J].化工进展,2002,21(9):621-625
    [44]张宪国.N2O一步氧化苯制苯酚的催化剂研制与性能分析[D].北京:北京化工大学,2006
    [45]Iwamoto M, Hirata J, Matsukami K, et al. Catalytic oxidation by oxide radical ions.1. One-step hydroxylation of benzene to phenol over group 5 and 6 oxides supported on silica gel[J]. J. Phys. Chem.,1983,87:903-913
    [46]Panov G I, Sheveleva G A, Kharitonov A S, et al. Oxidation of benzene to phenol by nitrous oxide over Fe-ZSM-5 zeolites[J]. Appl. Catal. A:General,1992,82:31-36
    [47]周帮荣.由苯直接生产苯酚的新工艺[J].石油化工动态,1997,7(5):52-54
    [48]Centi G., Genovese C, Giordano G, et al. Performance of Fe-BEA catalysts for the selective hydroxylation of benzene with N2O[J]. Catal. Today,2004,92:17-26
    [49]Pirutko L V, Uriarte A K, Chernyavsky V S, et al. Preparation and catalytic study of metal modified TS-1 in the oxidation of benzene to phenol by N2O[J]. Micro and Meso Mater., 2001,48:345-353
    [50]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.5-6
    [51]Centi G, Perathoner S, Arrigo R, et al. Characterization and reactivity of Fe-[Al,B]MFI catalysts for benzene hydroxylation with N2O[J]. Appl. Catal. A:General,2006,307: 30-41
    [52]Motz J L, Heinichen H,. Holderich W F. Direct hydroxylation of aromatics to their corresponding phenols catalysed by H-[Al]ZSM-5 zeolite[J]. J. Mol. Catal. A:Chem., 1998,136:175-184
    [53]Hoelderich W F. One-Pot's reactions:a contribution to environmental protection[J]. Appl. Catal. A:General,1992,86:139-152
    [54]Burch R, Howitt C. Direct partial oxidation of benzene to phenol on zeolites catalysts [J]. Appl. Catal. A:General,1992,86:139-152
    [55]Vereshchagin S N, Kirik N P,. Shishkina NN, et al. Chemistry of surface oxygen formed from N2O on ZSM-5 at moderate temperatures[J]. Catal. Today,2000,61:129-136
    [56]Hafele M, Reitzmann A, Roppelt D, et al. Hydroxylation of benzene with nitrous oxide on H-Ga-ZSM5 zeolite[J]. Appl. Catal. A:General,1997,150:153-164
    [57]Pirutko L V,. Chernyavsky V S,. Uriarte A K, et al. Oxidation of benzene to phenol by nitrous oxide:Activity of iron in zeolite matrices of various composition[J]. Appl. Catal. A:General,2002,227:143-157
    [58]Sobolev V I,. Kharitonov A S, Paukshtis Ye A, et al. Stoichiometric reaction of benzene with α-form of oxygen on FeZSM-5 zeolites. Mechanism of aromatics hydroxylation by N2O[J]. J. Mol. Catal.,1993,84:117-124
    [59]Panov G I, Kharitonov A S, Sheveleva G A. Phenol manufacture by oxidation of benzene with nitrous oxide[J]. Zeolites,1997,18:91
    [60]Kharitonov A S, Sheveleva G A, Panov G I, et al. Ferrisilicate analogs of ZSM-5 zeolite as catalysts for one-step oxidation of benzene to phenol[J]. Appl. Catal. A:General,1993,98: 33-43
    [61]Leanza R, Rossetti I, Mazzola I, et al. Study of Fe-silicalite catalyst for the N2O oxidation of benzene to phenol[J]. Appl. Catal. A:General,2001,205:93-99
    [62]Huybrechts D R C, Parton R F, Jacobs P A. Zeolites as partial oxygenation catalysis[J]. Stud. Surf. Sci. Catal.,1991,60:225-254
    [63]Sobolev V I, Dubkov K A, Paukshtis E A, et al. On the role of Bronsted acidity in the oxidation of benzene to phenol by nitrous oxide[J]. Appl. Catal. A:General,1996,141: 185-192
    [64]Kustov L M, Tarasov A L, Bogdan V I, et al. Selective oxidation of aromatic compounds on zeolites using N2O as a mild oxidant:A new approach to design active sites[J]. Catal. Today,2000,61:123-128
    [65]Sobolev V I, Panov G I, Kharitonov A S, et al. Catalytic properties of ZSM-5 zeolites in N2O decomposition:the role of iron[J]. J. Catal.,1993,139:435-443
    [66]Panov G I, Sobolev V I, Kharitonov A S, et al. The role of iron in N2O decomposition on ZSM-5 zeolite and reactivity of the surface oxygen formed[J]. J. Mol. Catal.,1990,61: 85-97
    [67]Che M, Tench A J. Characterization and reactivity of mononuclear oxygen species on oxide surfaces[J]. Adv. Catal.,1982,31:77-133
    [68]Che M, Tench A J. Characterization and reactivity of molecular oxygen species on oxide surfaces[J]. Adv. Catal.,1983,32:1-148
    [69]Chernyavsky V S, Pirutko L V, Uriarte A K, et al. On the involvement of radical oxygen species O- in catalytic oxidation of benzene to phenol by nitrous oxide[J]. J. Catal.,2007, 245:466-469
    [70]Panov G I, Dubkov K A, Starokon E V. Active oxygen in selective oxidation catalysis[J]. Catal. Today,2006,117:148-155
    [71]Panov G I, Starokon E V, Pirutko L V, et al. New reaction of anion radicals O- with water on the surface of FeZSM-5[J]. J. Catal.,2008,254:110-120
    [72]Bellussi G, Carati A, Clerici M G, et al. Reactions of titanium silicalite with protic molecules and hydrogen peroxide[J]. J. Catal.,1992,133:220-230
    [73]Iwamoto M, Hamada H. Removal of nitrogen monoxide from exhaust gases through novel catalytic processes[J]. Catal. Today,1991,10:57-71
    [741 Dandekar A, Vannice M A. Decomposition and reduction of N2O over copper catalysts[J]. Appl. Catal. B:Environ.,1999,22:179-200
    [75]Fanning P E, Vanniec M A. A DRIFTS study of Cu-ZSM-5 prior to and during its use for N2O decomposition[J]. J. Catal.,2002,207:166-182
    [76]Turek T A. A Transient kinetic study of the oscillating N2O decomposition over Cu-ZSM-5[J]. J. Catal.,1998,174:98-108
    [77]Konduru M V, Chuang S S C. Dynamics of NO and N2O decomposition over Cu-ZSM-5 under transient reducing and oxidizing conditions[J]. J. Catal.,2000,196:271-286
    [78]Ciambelli P, Benedetto A D, Garufi E, et al. Spontaneous isothermal oscillations in N2O decomposition over a Cu-ZSM catalyst[J]. J. Catal.,1998,175:161-169
    [79]Yuejin L, Armor J N. Catalytic decomposition of nitrous oxide on metal exchanged zeolites[J]. Appl. Catal. B:Environ.,1992,1:L21-L29
    [80]da Cruz R S, Mascarenhas A J S, Andrade H M C. Co-ZSM-5 catalysts for N2O decomposition[J]. Appl. Catal. B:Environ.,1998,18:223-231
    [81]Panov G I, Kharitonov A S, Sobolev V I. Oxidative hydroxylation using dinitrogen monoxide; a possible route for organic synthesis over zeolites[J]. Appl. Catal. A:General, 1993,98:1-20
    [82]Ivanov A A, Chernyavsky V S,. Gross M J, et al. Kinetics of benzene to phenol oxidation over Fe-ZSM-5 catalyst[J]. Appl. Catal. A:General,2003,249:327-343
    [83]Reitzmann A, Klemm E, Emig G. Kinetics of the hydroxylation of benzene with N2O on modified ZSM-5 zeolites[J]. Chem. Eng. J.,2002,90:149-164
    [84]陈或ZSM-5型沸石催化剂的结焦与失活[J].精细石油化工,1994,(2):31-34
    [85]王晓婷.N20一步氧化苯制苯酚Fe-ZSM-5分子筛催化剂失活与再生研究[D].北京:北京化工大学,2008
    [86]翟丕沐,王立秋,刘长厚,等HZSM-5分子筛催化剂在催化苯氧化合成苯酚反应中的积炭和失活行为[J].催化学报,2005,26(1):10-14
    [87]Hiemer U, Klemm E, Scheffler, F, et al. Microreaction engineering studies of the hydroxylation of benzene with nitrous oxide[J]. Chem. Eng. J.,2004,101:17-22
    [88]Ivanov D P, Sobolev V I, Panov G I. Deactivation by coking and regeneration of zeolite catalysts for benzene-to-phenol oxidation[J]. Appl. Catal. A:General,2003,241:113-121
    [89]黄晓峰.丁烷选择氧化制顺酐动态动力学模型及其应用[D].北京:北京化工大学,1999
    [90]陈晓春.合成甲醇反应器流向变换强制周期操作的模型化研究[D].北京:北京化工大学,1998
    [91]马特洛斯著,李成岳,阎泽群译.催化反应器中的非定态过程[M].北京:科学出版社,1994
    [92]翟丕沐,王立秋,刘长厚,等H-ZSM-5分子筛催化剂在催化苯氧化合成苯酚反应中的积炭和失活行为[J].催化学报,2005,26(1):10-14
    [93J Reitzmann A, Klemm E, Emig G. Kinetics of the hydroxylation of benzene with N2O on modified ZSM-5 zeolites[J]. Chem. Eng. J.,2002,90:149-164
    [94]Hafele M, Reitzmann A, Klemm E,et al. Hydroxylation of benzene on ZSM5 type catalysts[J]. Stud. Surf. Sci. Catal.,1997,110:847-856
    [95]Hiemer U, Klemm E, Scheffler F, et al. Microreaction engineering studies of the hydroxylation of benzene with nitrous oxide[J]. Chem. Eng. J.,2004,101:17-22
    [96]Ivanov D P, Sobolev V I, Panov G I. Deactivation by coking and regeneration of zeolite catalysts for benzene-to-phenol oxidation[J]. Appl. Catal. A:General,2003,241:113-121
    [97]Ivanov D P, Rodkin M A, Dubkov K A, et al. Mechanism of coke influence on the catalytic activity of Fe-ZSM-5 in the reaction of benzene oxidation into phenol[J]. Kinet. Catal., 2000,41:771-775
    [98]Voorhies Jr A. Carbon formation in catalytic cracking[J]. Ind. Eng. Chem.,1945,37: 318-322
    [99]王清遐,刘金香,蔡光宇,等.催化裂化干气与苯烷基化制乙苯催化剂上积炭动力学[J].石油化工,1997,26:725-730
    [100]王亚男.ZSM-5型分子筛催化联苯甲基化研究[D].大连:大连理工大学,2006
    [101]马沛生.化工热力学(通用型)[M].北京:化学工业出版社,2005
    [102]袁渭康,朱开宏.化学反应工程分析[M].上海:华东理工大学出版社,1995.1-7
    [103]金克新,赵传钧,马沛生.化工热力学[M].天津:天津大学出版社,1990
    [104]赵国良,靳长德.有机物热力学数据的估算[M].北京:高等教育出版社,1983
    [105]马沛生.化工数据[M].北京:中国石化出版社,2003
    [106]王福安.化工数据导引[M].北京:化学工业出版社,1995
    [107]王松汉.石油化工设计手册[M].北京:化学工业出版社,2002
    [108]傅献彩,沈文霞,姚天扬.物理化学(上册)[M].北京:高等教育出版社,1990
    [109]陈甘棠,梁玉衡.化学反应技术基础[M].北京:科学出版社,1981
    [110]朱炳辰.无机化工光反应工程[M].北京:化学工艺出版社,1993
    [111]孙传经.气相色谱分析原理与技术[M].北京:化学工业版社,1985
    [112]贝伦斯M.,霍夫曼H.,林肯A.著,张继炎,徐建国,齐鸣斋译.化学反应工程[M].北京:中国石化工业版社,1994
    [113]邓键中,葛仁杰,程正兴.计算方法[M].西安:西安交通大学出版社,2000
    [114]江体乾.化工数据处理[M].北京:化学工业出版社,1984
    [115]朱中南,戴迎春.化工数据处理与实验设计[M].北京:烃加工出版社,1989
    [116]李建伟.列管式甲醇合成反应器及其所用催化剂的综合优化[D].北京:北京化工大 学,1998
    [117]汪荣鑫.数理统计[M].西安:西安交通大学出版社,1999
    [118]马特洛斯著,李成岳,阎泽群译.催化反应器中的非定态过程[M].北京:科学出版社.1994.131-166
    [119]Panov G I, Uriarte A K, Rodkin M A, et al. Generation of active oxygen species on solid surfaces. Opportunity for novel oxidation technologies over zeolites[J]. Catal. Today, 1998,41:365-385
    [120]Panov G I. Advances in oxidation catalysis:oxidation of benzene to phenol by nitrous oxide[J]. CATTECH,2000,4:18-31
    [121]Kharitonov A S, Sheveleva G A, Panov G I, et al. Ferrisilicate analogs of ZSM-5 zeolite as catalysts for one-step oxidation of benzene to phenol[J]. Appl. Catal. A:General,1993,98: 33-43
    [122]Panov G I, Sheveleva G A, Kharitonov A S, et al. Oxidation of benzene to phenol by nitrous oxide over Fe-ZSM-5 zeolites[J]. Appl. Catal. A:General,1992,82:31-36
    [1231 Parmon V N, Panov G I, Uriarte A, et al. Nitrous oxide in oxidation chemistry and catalysis:application and production[J]. Catal. Today,2005,100:115-131
    [125]Pirutko L V, Chernyavsky V S, Starokon E V, et al. The role of a-sites in N2O
    [124]Uriarte A K, Rodkin M A, Gross M J, et al. Direct hydroxylation of benzene to phenol by nitrous oxide[J]. Stud. Surf. Sci. Catal.,1997,110:857-864
    [126]Sobolev V I, Kharitonov A S, Paukshtis Ye A, et al. Stoichiometric reaction of benzene decomposition over FeZSM-5. Comparison with the oxidation of benzene to phenol[J]. Appl. Catal. B:Environ.,2009,91:174-179 with a-form of oxygen on FeZSM-5 zeolites. Mechanism of aromatics hydroxylation by N2O[J]. J. Mol. Catal.,1993,84:117-124
    [127]Dubkov K A, Ovanesyan N S, Shteinman A A, et al. Evolution of iron states and formation
    [1281 Bulushev D A, Renken A, Kiwi-Minsker L. Role of adsorbed NO in N2O decomposition of a-sites upon activation of FeZSM-5 zeolites[J]. J. Catal.,2002,207:341-352 over iron-comtaining ZSM-5 catalysts at low temperatures[J]. J. Phys. Chem. B,2006, 110:10691-10700
    [129]Bulushev D A, Renken A, Kiwi-Minsker L. Formation of the surface NO during N2O interaction at low temperature with iron-containing ZSM-5[J]. J. Phys. Chem. B,2006, 110:305-312
    [130]Bulushev D A, Kiwi-Minsker L, Renken A. Dynamics of N2O decomposition over HZSM-5 with low Fe content[J]. J. Catal.,2004,222:389-396
    [131]Muller E, Hofmann H. Dynamic modeling of heterogeneous catalytic reactions-Ⅰ.theoretical considerations[J]. Chem. Eng. Sci.,1987,42:1695-1704
    [132]江体乾.化工数据处理[M].北京:化学工业出版社,1984.520-528
    [133]李佑楚.流态化过程工程导论[M].北京:科学出版社,2008.31-33
    [134]Wen C Y, Yu Y H. Mechanics of fluidization[J]. Chem. Eng. Prog. Symp. Series,1966,62: 100-111
    [135]朱开宏,袁渭康著.化学反应工程分析[M].北京:高等教育出版社,2002
    [136]米冠杰,李建伟,范卓,陈标华.Fe-ZSM-5分子筛上NzO一步氧化苯制苯酚反应失活动力学研究[J].高校化学工程学报,2010,24(3):528-531
    [137]若尾法昭,影清井一郎著,沈静珠,李有润译.填充床传热与传质过程[M].北京:化学工业出版社,1986
    [138]吴慧雄.二氧化硫催化氧化反应器流向变换强制周期操作的模型化[D].北京:北京化工大学,1995
    [139]Carberry J J, Wendel M M. A computer model of the fixed bed catalytic reactor I:The adiabatic and quasi-adiabatic cases[J]. AIChE. J.,1963,9:129-133
    [140]Young L C, Finlayson B A. Axial dispersion in non-isothermal packed bed chemical reactors[J]. Ind. Eng. Chem. Fundam.,1972,12:412-422
    [141]Danckwerts P V. Continuous flow systems:distribution of residence times[J]. Chem. Eng. Sci.,1953,2:1-7
    [1421 Eigenberger G, Butt J B. A modified Crank-Nicolson technique with non-equidistance space steps [J]. Chem. Eng. Sci.,1976,31:681-691
    [143]肖文德.非稳态SO2转化器稳定性及控制的研究[D].上海:华东化工学院,1991
    [144]曹学年.刚性微分方程的并行Rosenbrock方法[D].绵阳:中国工程物理研究院,2001
    [145]刘光启,马连湘,刘杰著.化学化工物性数据手册(无机卷)[M].北京:化学工业出版社,2002
    [146]刘光启,马连湘,刘杰著.化学化工物性数据手册(有机卷)[M].北京:化学工业出版社,2002
    [147]卢焕章著.石油化工基础数据手册[M].北京:化学工业出版社,1982
    [148]牛学坤.流向变换催化燃烧空气净化过程的模型化研究[D].北京:北京化工大学,2003
    [149]吴慧雄,李成岳.二氧化硫强制动态氧化过程的模型化Ⅳ:模型产生的修正与单级反应器的性能预测[J].化工学报,1999,50(1):31-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700