费托反应高选择性合成汽油Co基催化剂制备与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国石油进口依存度的逐年上升,国内石油安全供给面临日趋严峻的挑战。因此,寻找石油替代能源,积极利用我国丰富的煤炭资源,发展煤间接液化费托合成技术对解决我国能源安全及环境污染问题具有重大的战略意义。
     催化剂是费托合成的核心技术,长期以来,Co基催化剂是费托催化剂研究的重点。本论文首次采用真空浸渍、添加助剂、真空浸渍过程中辅以超声波处理并复合HZSM-5分子筛的方法,成功地制备了含Zr的Co基分子筛复合催化剂(Co/Zr/SiO2(H)+HZSM-5),该催化剂在固定床反应器中显示了高活性和高C5-C11汽油馏分选择性,以及良好的反应稳定性。
     1.研究了真空浸渍与普通常压浸渍对于Co/SiO2催化剂物性织构及反应性能的影响,结果显示:与普通常压浸渍催化剂相比,真空浸渍具有更高的载体孔道利用率,可使更多较小的Co颗粒分布于载体孔道内;并且在Co氧化物颗粒与载体间形成一定强度的相互作用,避免了Co晶粒在催化剂干燥和焙烧过程中聚集形成较大的晶粒簇。通过不同反应工艺条件考察,得到真空浸渍Co/SiO2催化剂最优反应条件:T=493 K、P= 2.0MPa、H2/CO(摩尔比,下同)=2.0以及GHSV=1000 h-1。在此条件下,其CO初始转化率可达90.9%,Cs+烃选择性为58.9%;而普通常压浸渍催化剂CO初始转化率仅为83.2%,C5+烃选择性仅为56.1%。表明真空浸渍更有利于催化剂活性的提高。
     2.研究了5-25%的Co含量对于真空浸渍Co/SiO2催化剂反应性能的影响,结果表明随着Co含量增加,催化剂中Co晶粒逐渐增大,这有利于Cs+烃选择性的提高,从而确定了催化剂中最优的Co含量。进一步研究了2-10%的Zr助剂含量对于真空浸渍Co/SiO2催化剂反应性能的影响。结果表明,Zr助剂的加入有助于减弱Co氧化物与Si02载体间的相互作用,有利于Co催化剂还原度的提高。当真空浸渍Co/SiO2催化剂中添加了5%的Zr助剂后,催化剂CO初始转化率和C5+烃选择性从76.0%和72.9%分别提高到了92.8%和77.6%。
     3.在Co/Zr/SiO2催化剂真空浸渍过程中辅以超声波处理,考察了超声波功率和超声处理时间对于Co、Zt浸渍溶液pH值变化及催化剂反应性能的影响。结果显示随着超声波功率增强和超声处理时间延长,浸渍溶液pH值显著降低,催化剂中Co颗粒分散度和还原度得到提高,CO初始转化率和C5+选择性从92.8%和77.6%分别提高到95.5%和81.0%。经过20小时反应,真空浸渍并辅以高功率超声波处理制备的催化剂CO转化率降幅最小。表明高功率超声波对于催化剂活性、C5+烃选择性和稳定性均有一定的提高。
     4.将真空浸渍并辅以高功率超声波处理制备的Co/Zr/SiO2催化剂与HZSM-5分子筛复合,考察了二者复合比例、分子筛硅铝比以及反应工艺条件对于复合催化剂C5+液相烃产率及C5-C11汽油馏分质量分率的影响。最终确定了将Co/Zr/SiO2与硅铝比为50的HZSM-5分子筛按照体积比1.0:1.0组成复合催化剂。在T=523 K、P=2.0 MPa、H2/CO=2.0和GHSV=500 h-1的反应条件下,在固定床反应器中进行500小时稳定性考察,结果显示该复合催化剂的CO转化率基本保持在90%左右,C5+液相烃产率在130g/Nm3(CO+H2)左右,总烃中C5+液相烃质量分率约为73%。由于反应生成的C12+长链烃在分子筛酸性中心部分裂解,C5-C11汽油馏分质量分率在57%左右,比经典Anderson-Schultz-Flory(ASF)分布模型预测出的汽油质量分率最高值(45%)高出12%。此外,C5-C11汽油馏分在C5+液相烃中质量分率接近80%,显示了复合催化剂具有良好的反应性能和稳定性。
     5.基于Co基催化剂的反应机理,经过烃类产物合理的简化,从费托反应生成的水、烃质量比关系出发,建立了C5+液相烃在总烃中质量分率的简化计算方法。经过相关实验验证,表明通过该方法可以便利、快捷以及较为准确地计算出C5+烃质量分率。
     通过以上研究工作,开发了具有高CO转化率和较高C5-Cl1汽油馏分选择性的Co/Zr/SiO2+HZSM-5新型复合催化剂,为费托合成制汽油催化剂的进一步研发开辟了一条新的研究途径。
In China, the last few years has witnessed an increasing dependence on importing petroleum, which is posing severe challenge to the security of our energy supply. Therefore, the exploration of the substitute energy through utilizing the abundant coal resources in our country and developing the technology of indirect coal liquefaction via Fischer-Tropsch synthesis(FTS) reaction has strategic significance for ensuring our energy security and protecting the environment.
     Catalysts play a vital role in FTS and ample research has focused on the Co-based catalyst. In this dissertation, the collaborative method including vacuum impregnation under ultrasonic treatment, application of promoter and the mixing with HZSM-5 molecular sieve was initiated to successful prepare the Co-based-zeolite composite catalyst (Co/Zr/SiO2+HZSM-5).In addition, the catalytic activity, the selectivity for C5-C11 gasoline fraction and the stability of the catalyst prepared in this way was proved to be high in a fixed bed reactor.
     1. The effect of impregnation method on the textural property and performance of Co/SiO2 catalysts was studied firstly.Compared to the Co/SiO2 catalyst impregnated under atmospheric pressure, the more inner pores and channels of the support were utilized when the catalyst was prepared under vacuum conditions. Vacuum impregnation enabled a large number of smaller cobalt particles to distribute in the pores. Meanwhile, a certain interaction was generated between cobalt oxides and the support, which prevented the cobalt oxide crystals from agglomerating into larger grain-clusters during the drying and calcination process of the catalyst. Through evaluating the two catalysts under different reaction conditions, the optimal condition for the vacuum impregnated Co/SiO2 catalyst was concluded as follows:T=493 K, P=2.0 MPa, H2/CO (mole ratio)=2.0 and GHSV=1000 h-1.Under this condition, the initial CO conversion was as high as 90.9% and the selectivity for C5+ hydrocarbon was 58.9%. In contrast, the initial CO conversion of the Co/SiO2 impregnated under atmospheric pressure was as low as 83.2% and the selectivity for C5+ hydrocarbon was only 56.1%. The above results indicated that the initial CO conversion of the Co/SiO2 catalyst had been greatly enhanced through vacuum impregnation.
     2. The effect of cobalt content (5-25%) on the performance of vacuum impregnated Co/SiO2 was also explored in this study. It was shown that the size of cobalt particles enlarged gradually with the increase of cobalt content, which was helpful to enhance the selectivity for C5+ hydrocarbon. On this basis, the optimal cobalt content was fixed on. Furthermore, the effect of the content of zirconium promoter (2-10%) on the performance of Co/SiO2 catalyst was examined. The addition of Zr promoter conduced to weakening the interaction between cobalt oxides and SiO2 support, which in turn improved the reduction degree of the cobalt particles. After 5% Zr promoter was added to the CO/SiO2 catalyst, the initial CO conversion and the selectivity for the C5+ hydrocarbon enhanced from 76.0% and 72.9% to 92.8% and 77.6%, respectively.
     3. The Co/Zr/SiO2 catalyst was prepared through vacuum impregnation with the ultrasonic treatment. The effects of ultrasonic power and treatment duration on the catalyst performance and the pH value of Co, Zr nitrate solution were studied. It was indicated that the pH value of the solution dropped significantly with the increase of ultrasonic power and duration, which conduced to improving dispersion and reduction degree of cobalt oxides. Specifically, the initial CO conversion and the selectivity for C5+ hydrocarbon enhanced from 92.8% and 77.6% to 95.5% and 81.0%, respectively. After 20-hour reaction, the declining rate of the CO conversion of Co/Zr/SiO2 catalyst treated by high-power ultrasound was minimized. This also showed that the catalytic activity, stability and selectivity for C5+ hydrocarbon were improved to a certain extent when ultrasound was applied in the process of vacuum impregnation.
     4. The Co/Zr/SiO2 catalyst was blended with the HZSM-5 zeolite. The effects of the two ingredients mixture ratio and the molecular sieve Si/Al ratio on the C5+ hydrocarbon yield and C5—C11 gasoline weight fraction were examined. The optimal composite catalyst was composed of Co/Zr/SiO2 with HZSM-5(Si/Al=50) according to the volume ratio 1.0:1.0.Under the reaction condition of T=523 K, P=2.0 MPa, H2/CO=2.0(mole ratio) and GHSV=500 h-1, the catalyst was evaluated over 500 hours in the fixed-bed reactor. The results showed that CO conversion remained as high as 90% and the yield of C5+ liquid hydrocarbon was about 130 g/Nm3(CO+H2). The weight fraction of C5+ liquid hydrocarbon in the total hydrocarbons was about 73%. Due to the cracking of partial C12+ long chain hydrocarbons at the acidity center of the molecular sieve, the weight fraction of C5-C11 gasoline was about 57%, which was higher than the maximum value 45% predicted by the ASF model. Furthermore, in the C5+ liquid hydrocarbon, the weight fraction of the gasoline was close to 80%. This result indicated the composite catalyst had good performance and high stability.
     5. Considering the reaction mechanism of Co-based catalyst and excluding the negligible oxygenated hydrocarbons, the simplified method for calculating the weight fraction of C5+ liquid hydrocarbon in the total hydrocarbons was established on the basis of the weight relation between products water and hydrocarbon in the FTS. This method was proved to be convenient and accurate for calculating the weight fraction of C5+ liquid hydrocarbon.
     In summary, through the results concluded in this dissertation, a new Co/Zr/SiO2+HZSM-5 composite catalyst with high CO conversion was developed for highly synthesizing C5-C11 gasoline under FTS, which explored a new approach to the catalyst development for conversion of syngas to gasoline.
引文
[1]李元红.我国石油安全形势与对策[J].合作经济与科技,2011,413:16-17.
    [2]李莹莹.中国石油发展现状、问题与前景分析[J].中国能源,2010,32(12):17-20.
    [3]BP世界能源统计年鉴编辑部.2011年BP世界能源统计年鉴[M].伦敦:BP公司,2011.
    [4]周溪华.我国现代煤化工技术发展路线探讨[J].中外能源,2008,13(3):25-34.
    [5]曹湘洪.实现我国煤化工、煤制油产业健康发展的若干思考[J].化工进展,2011,30(1):80-87.
    [6]张玉卓.神华现代煤制油化工工程建设与运营实践[J].煤炭学报,2011,36(2):179-184.
    [7]王洁青,陈少红,方堃等.车用汽油标准概况[J].石油商技,2000,18,(6):11-14.
    [8]林彤.京标B(国Ⅲ)清洁汽油的开发与质量控制[J].浙江化工,2007,38(6):22-24.
    [9]杨妙梁.GTL燃料在车用柴油机上应用研究动向[J].汽车与配件,2004,17:32-36.
    [10]Zhang Q H, Kang J C, Wang Y. Development of novel catalysts for Fischer-Tropsch synthesis:tuning the product selectivity [J]. Chemcat Chem,2010,2(9):1030-1058.
    [11]舒歌平.煤炭液化技术[M].北京:煤炭工业出版社,2003.
    [12]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社,2005.
    [13]Burtron H D. Overview of reactors for liquid phase Fischer-Tropsch synthesis [J]. Catalysis Today,2002(71):249-300.
    [14]罗方.沙索期待在华复制成功[J].中国石油石化,2011,7:41-43.
    [15]Hao X, Dong G Q, Yang Y, et al.Coal to liquid (CTL):commercialization prospects in China [J].Chemical Engineering and Technology,2007,30, (9),1157-1165.
    [16]孙予罕,陈建刚,王俊刚等.费托合成钴基催化剂的研究进展[J].催化学报,2010,31(8):919-927.
    [17]王涛,丁云杰,朱何俊等.Zr02改性Co/活性炭催化剂对浆态床Fischer-Tropsch合成反应的催化性能[J].石油化工,2008,37(4):323-327.
    [18]韩梅.煤间接液化工业示范项目及煤制油主要产品市场前景[J].中国煤炭,2007,33(7):10-12.
    [19]吴昊,胡志海,聂红等.一种费托合成方法[P].CN 101863728.
    [20]周敬来,张志新,张碧江.煤基合成液体燃料的MFT工艺技术[J].燃料化学学报,1999,27:58-64.
    [21]Li G H, Zhou J L, Li Y, et al. A 3000- hour scale- up test of a Fe-Cu-K catalyst for F-T synthesis in fixed bed reactor [J]. Journal of Fuel Chemistry and Technology,2000, 28(1):89-91.
    [22]杨柏龄,白冰,杨红梅.社会化——煤制油项目产业化的破冰之路[J].政策与管理研 究,2010,25(3):298-303.
    [23]张殿奎.煤间接制油——煤化工发展的重要趋势[J].化学工业,2008,26(11):8-11.
    [24]丁云杰,马文平,林励吾.用于由合成气选择制备柴油馏分段烷烃的催化剂及其制备[P].CN 1417292.
    [25]Ding Y J, Ma W P, Lin L W. Activated carbon supported cobalt based catalyst for direct conversion of synthesis gas to diesel fuels [P].US 6,720,283.
    [26]马文平,林培滋,罗洪原等.一种由合成气选择合成汽、柴油馏分用的催化剂[P].CN1418933.
    [27]熊建民.合成气制液体燃料F-T合成Co/AC催化剂的研究[D].中国科学院研究生院大连化学物理研究所,2005.
    [28]张鸣林,韩梅.兖矿集团煤炭间接液化项目的进展及其煤气化多联产系统的应用前景[J].中国煤炭,2006,32(2):8-9.
    [29]孙启文,蒋凡凯,杨文书等.一种高温费托合成铁基催化剂及其制备方法[P].CN1695803.
    [30]孙启文,肖建平,蒋凡凯等.一种高温费托合成微球型铁基催化剂及其制备方法[P].CN 1817451.
    [31]任伟.兖矿集团高温煤间接液化技术获新突破[J].中国煤炭,2009,35(5):120.
    [32]Burtron H D. Fischer-Tropsch Synthesis:Comparison of performances of iron and cobalt catalysts. Industrial and Engineering Chemistry Research,2007,46:8938-8945.
    [33]Saib A M, Moodley D J, Ciobica I M,et al. Fundamental understanding of deactivation and regeneration of cobalt Fischer-Tropsch synthesis catalysts. Catalysis Today,2010, 154(3-4):271-282.
    [34]Iglesia E. Design, synthesis and use of cobalt-based Fischer-Tropsch synthesis catalysts.Applied Catalysis A:General,1997,161:59-78.
    [35]Zhang Y, Hanayama K, Tsubaki N, et al. The surface modification effects of silica support by organic solvents for Fischer-Tropsch synthesis catalysts [J]. Catalysis Communications,2006,7:251-254.
    [36]石利红,李德宝,候博等.有机改性二氧化硅及其负载钴催化剂的费托合成反应性能[J].催化学报,2007,28(11):999-1002.
    [37]Li H L, Wang S G, Ling F X, et al. Studies on MCM-48 Supported cobalt catalyst for Fischer-Tropsch synthesis [J]. Journal of Moleculor Catalysis A:Chemical,2006,244 (1-2):33-40.
    [38]Stors(?)ter S, T(?)tdal B, Walmsley J C, et al. Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts[J]. Journal of Catalysis,2005,236: 139-152.
    [39]Khodakov A Y, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chemical Reviews,2007,107:1692-1744.
    [40]Ghampson I T, Newman C, Kong L, et al. Effects of pore diameter on particle size, phase, and turnover frequency in mesoporous silica supported cobalt Fischer-Tropsch catalysts [J]. Applied Catalysis A:General,2010,388:57-67.
    [41]Dalai A K, Das T K, Chaudhari K V, et al. Fischer-Tropsch synthesis:Water effects on Co supported on narrow and wide-pore silica [J]. Applied Catalysis A:General,2005, 289:135-142.
    [42]程萌,房克功,陈建刚等.亲水疏水硅胶Co/Ru/SiO2催化剂的表征及催化性能的研究[J].燃料化学学报,2006,34(3):343-347.
    [43]程萌,房克功,陈建刚等.苯基改性硅胶对钴基费托催化剂制备及反应性能的影响[J].石油化工,2005,34:310-312.
    [44]Zhang Y, Liu Y, Yang G H, et al. The solvent effects during preparation of Fischer-Tropsch synthesis catalysts:Improvement of reducibility, dispersion of supported cobalt and stability of catalyst [J]. Catalysis Today,2009,142:85-89.
    [45]Jong H O,Jong W B,Seon J P,et al.Slurry phase Fischer-Tropsch synthesis using Co/γ-Al2O3,Co/SiO2 and Co/TiO2:effect of support on catalyst aggregation [J]. Catalysis Letters,2009,130:403-409.
    [46]Zhang J L, Chen J G, Ren J,et al. Support effect of CO/Al2O3 catalysts for Fischer-Tropsch synthesis[J]. Fuel,2003,82:581-586.
    [47]Li C, Sun Q W, Cao F H, et.al. Pretreatment of alumina and its influence on the properties of Co/alumina catalysts for Fischer-Tropsch synthesis [J]. Journal of Natural Gas Chemistry,2007,16:308-315.
    [48]Borg O, Eri S, Blekkan E A, et al. Fischer-Tropsch synthesis over y-alumina supported cobalt catalysts:effect of support variables [J]. Journal of Catalysis,2007,248:89-100.
    [49]Xiong H F, Zhang Y H, Li J L, et.al. Fischer-Tropsch synthesis:the effect of Al2O3 porosity on the performance of CO/Al2O3 catalyst [J]. Catalysis Communications,2005, 6:512-516.
    [50]Jacobs G, Das T K, Li J L, et al.Fischer-Tropsch synthesis:influence of support on the impact of co-fed water for cobalt-based catalysts [J]. Studies in surface science and catalysis,2007,163:217-254.
    [51]Jacobs G, Das T K, Zhang Y Q, et al. Fischer-Tropsch synthesis:support, loading, and promoter effects on the reducibility of cobalt catalysts [J]. Applied Catalysis A: General,2002,233:263-281.
    [52]Jacobs G, Ma W P, Davis B H, et al.Fischer-Tropsch synthesis:TPR-XAFS analysis of Co/silica and Co/alumina catalysts comparing a novel NO calcination method with conventional air calcination[J]. Catalysis Letters,2010,140:106-115.
    [53]Jacobs G, Ji Y Y, Davis B H, et al. Fischer-Tropsch synthesis:temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles [J]. Applied Catalysis A:General,2007,333:177-191.
    [54]Jongsomjit B, Sakdamnuson C, Praserthdam P. Dependence of crystalline phases in titania on catalytic properties during CO hydrogenation of Co/TiO2 catalysts [J]. Materials Chemistry and Physics,2005,89:395-401.
    [55]Liu Y C, Chen J G, Fang K G, et al. A large pore-size mesoporous zirconia supported cobalt catalyst with good performance in Fischer-Tropsch synthesis [J]. Catalysis Communications,2007,8:945-949.
    [56]刘亚纯,陈建刚,房克功等.介孔二氧化锆负载钴催化剂的F-T合成反应性能[J].石油化工,2005,34:307-309.
    [57]Guczi L, Kiricsi I. Zeolite supported mono- and bimetallic systems:structure and performance as CO hydrogenation catalysts [J]. Applied Catalysis A:General,1999, 186:375-394.
    [58]Patricia C, Carlos L, Martinez, et al. Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer-Tropsch synthesis reaction [J]. Journal of Catalysis,2004,228:321-332.
    [59]银董红,李文怀,钟炳等.中孔分子筛负载钴催化剂的制备及在费托合成中的催化性能[J].催化学报,2000,21(3):221-224.
    [60]杨文书,高海燕,相宏伟等.新型钴基介孔分子筛催化剂F-T合成性能和烃分布研究[J].高等学校化学学报,2002,23(9):1748-1752.
    [61]杨文书,房鼎业,相宏伟等Co/HMS和Co/SiO2催化剂的表征及在费托合成反应中的催化性能[J].催化学报,2005,26(4):329-334.
    [62]Martinez A, Rollan J, Arribas M A, et al. A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer-Tropsch catalysts [J]. Journal of Catalysis,2007,249:162-173.
    [63]Martinez A, Valencia S, Murciano R, et al. Catalytic behavior of hybrid Co/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline[J]. Applied Catalysis A:General,2008,346:117-125.
    [64]Li X H, Luo M F, Asami K J. Direct synthesis of middle iso-paraffins from synthesis gas on hybrid catalysts [J]. Catalysis Today,2004,89:439-446.
    [65]Liu Z W, Li X H, Asami K J, et al. High performance Pd/β catalyst for the production of gasoline range iso-paraffins via a modified Fischer-Tropsch reaction [J]. Applied Catalysis A:General,2006,300:162-169.
    [66]Noritatsu, Yoneyama, Keisuke M, et al. Three component hybrid catalyst for direct synthesis of isoparaffin via modified Fischer-Tropsch synthesis [J]. Catalysis Communications,2003,4:108-111.
    [67]高海燕,相宏伟,李永旺.Ru助剂对Co/SiO2催化剂费托合成反应性能的影响[J].催化学报,2010,31(3):307-312.
    [68]相宏伟,张永青,钟炳等.锰助剂对Co/ZrO2超细催化剂F-T合成性能的影响[J].分子催化,1997,11(3):169-202.
    [69]张俊岭,任杰,陈建刚等.锰助剂对FT合成Co/Al2O3催化剂反应性能的影响[J].物理化学学报,2002,18(3):260-263.
    [70]Liu Y Y, Hanaoka T, Miyazawa T,et al. Fischer-Tropsch synthesis in slurry-phase reactors over Mn- and Zr-modified Co/SiO2 catalysts[J]. Fuel Processing Technology, 2009,90:901-908.
    [71]师海波,沈师孔.用脉冲D2反应研究Ce02在Co-CeO2/SiO2费托合成催化剂中的促进作用机理[J].催化学报,2006,27(12):1096-1100.
    [72]熊建民,丁云杰,王涛等.La203助剂对Co/AC催化剂上费托合成反应性能的影响[J].催化学报,2005,26(10):874-878.
    [73]徐东彦,李文钊,段洪敏等.Pt,Ru和Pd助剂对F-T合成中CO/γ-Al2O3催化剂性能的影响[J].催化学报,2005,26(9):780-784.
    [74]Moradi G R, Basir M M, Taeb A, et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium [J]. Catalysis Communications,2003,4:27-32.
    [75]Ma W P,Ding Y J,Lin L W. Fischer-Tropsch synthesis over activated-carbon-supported cobalt catalysts:effect of Co loading and promoters on catalyst performance [J]. Industry and Engineering Chemical Research,2004,43(10):2391-2398.
    [76]王涛,丁云杰,熊建民.Zr助剂对Co/AC催化剂催化费-托合成反应性能的影响[J].催化学报,2005,26(3):178-182.
    [77]Ali S, Chen B, Goodwin J G. Zr promotion of Co/SiO2 for Fischer-Tropsch synthesis [J]. Journal of Catalysis,1995,157:35-41.
    [78]Feller A, Claeys M, Steen E V. Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts [J]. Journal of Catalysis,1999,185:120-130.
    [79]陈建刚,相宏伟,王秀芝等.锆助剂含量对钴基费-托合成催化剂的影响[J].催化学报,2000,21(4):359-362.
    [80]Jongsomjit B, Kittiruangrayub S, Praserthdam P. Study of cobalt dispersion onto the mixed nano-SiO2-ZrO2 supports and its application as a catalytic phase[J].Materials Chemistry and Physics,2007,105:14-19.
    [81]Hong J P, Chu W, Chernavskii P A, et al. Effects of zirconia promotion on the structure and performance of smaller and larger pore silica-supported cobalt catalysts for Fischer-Tropsch synthesis[J]. Applied Catalysis A:General,2010,382:28-35.
    [82]Steen E V, Sewell G S, Makhothe R A, et al. TPR study on the preparation of impregnated Co/SiO2 catalysts [J]. Journal of catalysis,1996,162:220-229.
    [83]Withers, H P, Eliezer K F, Mitchell J W. Slurry-phase Fischer-Tropsch synthesis and kinetic studies over supported cobalt carbonyl derived catalysts [J].Industrial and Engineering Chemistry Research,1990,29:1807-1814.
    [84]马文平,丁云杰,林励吾.真空浸渍法制备催化剂时组分均匀分布问题浅谈[M].第八届全国青年催化学术会议论文集.北京:中国化学会,154-155.
    [85]Ma W P, Ding Y J, Yang J, et al. Study of activated carbon supported iron catalysts for the Fischer-Tropsch synthesis [J]. Reaction Kinetics and CatalysisLetters,2005,84(1): 11-19.
    [86]Wang Y L, Chen J G, Fang K G, et al. Effect of preparation methods on the catalytic properties of Co/SBA-15 catalysts for Fischer-Tropsch synthesis[J]. Studies in Surface Science and Catalysis,2007,167:103-109.
    [87]Pirola C, Bianchi C L, Michele A D, et al. Ultrasound and microwave assisted synthesis of high loading Fe-supported Fischer-Tropsch catalysts[J]. Ultrasonics Sonochemistry, 2010,17:610-616
    [88]Bianchi C L, Martini F, Ragaini V. New ultrasonically prepared Co-based catalysts for Fischer-Tropsch synthesis [J]. Ultrasonics Sonochemistry,2001,8:131-135.
    [89]Park, G. A. The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxo complex systems [J]. Chemical Reviews,1965,65:177-198.
    [90]穆仕芳,李德宝,侯博等.浸渍溶液pH值对Co/SBA-15催化剂F-T合成反应催化性能的影响[J].石油学报(石油加工),2009(增刊):5-8.
    [91]赵红霞,朱拓权,陈建刚等.浸渍溶液pH值对Co/SiO2催化剂催化F-T合成反应的影响[J].催化学报,2004,25(4):289-292.
    [92]朱柘权,房克功,陈建刚等.浸渍溶液pH值对Co/TiO2催化剂F-T反应性能的影响[J].燃料化学学报,2005,33(4):506-508.
    [93]Eggenhuisen T M, Breejen J P, Verdoes D, et al. Fundamentals of melt infiltration for the preparation of supported metal catalysts:the case of Co/SiO2 for Fischer-Tropsch synthesis [J]. Journal of the American Chemical Society,2010,132:18318-18325.
    [94]Puskas I, Fleisch T H, Kaduk J A,et al. Novel aspects of the physical chemistry of Co/SiO2 Fischer-Tropsch catalyst preparations Cobalt oxide-induced silica migration during calcination of cobalt nitrate-impregnated high surface area silica[J]. Applied Catalysis A:General,2007,316:197-206.
    [95]Lee S Y, Aris R. The distribution of active ingredients in supported catalysts prepared by impregnation [J]. Catalysis Reviews,1985,27(2):207-340.
    [96]Lekhal A, Glasser B J, Khinast J G. Impact of drying on the catalyst profile in supported impregnation catalysts [J]. Chemical Engineering Science,2011,56:4473-4487.
    [97]Ataloglou T, Fountzoula C, Bourikas K,et al.Cobalt oxide/y-alumina catalysts prepared by equilibrium deposition filtration:The influence of the initial cobalt concentration on the structure of the oxide phase and the activity for complete benzene oxidation[J]. Applied Catalysis A:General,2005,288:1-9.
    [98]Girardon J S, Lermontov A S, Gengembre L, et al. Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts [J]. Journal of Catalysis,2005,230:339-352.
    [99]Loosdrecht J V, Barradas S, Caricato E A, et al. Calcination of Co-based Fischer-Tropsch synthesis catalysts[J]. Topics in Catalysis,2003,26(1-4):121-127.
    [100]Reubroycharoen P, Vitidsant T, Liu Y,et al. Highly active Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from microwave irradiation[J].Catalysis Communications, 2007,8 (3):375-378.
    [101]Das T K, Zhan X D, Li J L, et al. Fischer-Tropsch synthesis:kinetics and effect of water for a CO/Al2O3 catalyst [J]. Studies in Surface Science and Catalysis,2007,163: 289-314.
    [102]Zhou W, Chen J G, Fang K G, et al. The deactivation of Co/SiO2 catalyst for Fischer-Tropsch synthesis at different ratios of H2 to CO [J]. Fuel Processing Technology,2006,87:609-616.
    [103]周玮,陈建刚,孙予罕.费托合成中Co/ZrO2/SiO2催化剂的失活行为[J].催化学报,2004,25(6):467-470.
    [104]Chang J, Chen J G, Teng B T,et al. Effect of ZrO2 promoter on structural change of Co/SiO2 catalyst during its deactivation in F-T synthesis [J]. Chinese Journal of Catalyst, 2005,26(9):731-733.
    [105]高海燕,陈建刚,相宏伟等.Co/SiO2催化剂合成重质烃的反应性能[J].催化学报,2001,22(2):133-137.
    [106]高海燕.改性商业硅胶担载的钴基催化剂用于合成重质烃反应的研究[D].中国科学院研究生院山西煤炭化学研究所,2003.
    [107]Tsakoumis N E, Running M, Borg O, et al. Deactivation of cobalt based Fischer-Tropsch catalysts:A review [J].Catalysis Today,2010,154:162-182.
    [108]贺永德.现代煤化工技术手册[M].北京:化学工业出版社,2003.
    [109]Song D C, Li J L.Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer-Tropsch catalysts [J]. Journal of Molecular Catalysis A: Chemical,2006,247:206-212.
    [110]段永涛,张德翱.真空浸渍工艺的研究与应用[J].真空,2003,4:54-57.
    [111]Kong A G, Zhu H Y, Wang W J, et al. Novel nanocasting method for synthesis of ordered mesoporous metal oxides [J]. Journal of Porous Materials,2011,18:107-112.
    [112]Saib A M, Claeys M, Steen E V. Silica supported cobalt Fischer-Tropsch catalysts: effect of pore diameter of support [J]. Catalysis Today,2002,71:395-402.
    [113]陈诵英,孙予罕,丁云杰等.吸附与催化[M].郑州:河南科学技术出版社,2001.
    [114]徐如人,庞文琴,于吉红等.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [115]Ernst B, Libs S, Chaumette P, et al. Preparation and characterization of Fischer-Tropsch active Co/SiO2 catalysts[J]. Applied Catalysis A:General,1999,186:145-168.
    [116]Ertl G, Knozinger H, Schuth F,et al.Handbook of Heterogeneous Catalysis (Second) [M]. Viliey-VCH,1080-1082.
    [117]杨锡尧.固体催化剂的研究方法[J].石油化工,2001,30(12):952-959.
    [118]Shanmugam Y, Lin F Y, Chang T H, et al.Thermal decomposition of metal nitrates in air and hydrogen environments [J]. Journal of Physical Chemistry B,2003,107, 1044-1047.
    [119]Lin H Y, Chen Y W.The mechanism of reduction of cobalt by hydrogen [J]. Materials Chemistry and Physics,2004,85:171-175.
    [120]Chernavskii P A, Lermontov A S, Pankina G V, et al. Effect of the ZrO2 pore structure on the reduction of a supported cobalt oxide in catalysts for Fischer-Tropsch synthesis [J]. Kinetics and Catalysis,2002,43(2):268-274.
    [121]Kanervo J. Kinetic analysis of Temperature-Programmed-Reaction [D]. Helsinki University of Technology, Finland,2003.
    [122]张俊岭,陈建刚,任杰等.钴基F-T合成重质烃催化剂载体效应的研究[J].催化学报,2001,22(3):275-278.
    [123]Zhao H X, Lu H L. Effect of preparation methods on Co/ZrO2 catalysts in Fischer-Tropsch synthesis [J]. Reaction Kinetics and Catalysis Letters,2009,97: 289-293.
    [124]Jacobs G, Patterson P M, Zhang Y Q, et al. Fischer-Tropsch synthesis:deactivation of noble metal-promoted Co/Al2O3 catalysts [J]. Applied Catalysis A:General,2002,233: 215-226.
    [125]张俊岭,赵红霞,陈建刚等.锆改性钴基费-托合成催化剂催化性能的研究[J].催化学报,2002,23(6):530-534.
    [126]Tao C L, Li J L, Zhang Y H, et al. Effect of isomorphic substitution of zirconium on mesoporous silica as support for Cobalt Fischer-Tropsch synthesis catalysts [J]. Journal of Molecular Catalysis A:Chemical,2010,331(1-2):50-57.
    [127]Wei M D, Okabe K, Arakawa H, et al.Synthesis and characterization of zirconium containing mesoporous silicates and the utilization as support of cobalt catalysts for Fischer-Tropsch synthesis [J].Catalysis Communications,2004,5:597-603.
    [128]Li X N, Zhang Y, Smith K J. Metal-support interaction effects on the growth of filamentous carbon over Co/SiO2 catalysts [J]. Applied Catalysis A:General,2004, 264:81-91.
    [129]Moodley D J, Loosdrecht J V, Saib A M,et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions[J]. Applied Catalysis A:General,2009,354:102-110.
    [130]Borg 0, Ronning M, Storsaeter S, et al. Identification of cobalt species during temperature programmed reduction of Fischer-Tropsch catalysts [J]. Studies in Surface Science and Catalysis,2007,163:255-272.
    [131]李廷盛,尹其光.超声化学[M].北京:科学出版社,1995.
    [132]Mason T J, Lorimer J P. Applied Sonochemistry:uses of power ultrasound in chemistry and processing [M]. Weinheim:Wiley VCH Verlag GmbH,2002.
    [133]林仲茂.超声波碳氢真空清洗[J].清洗世界,2004,20(10):24-26.
    [134]梁新义,张黎明,丁宏远等.超声促进浸渍法制备催化剂LaCoO3/γ-Al2O3[J].物理化学学报,2003,19:666-669.
    [135]张畹徽,杜尧国,曹锡章.无机化学(第二版)下册[M].北京:高等教育出版社,1984.
    [136]陈建刚,相宏伟,孙予罕.硅胶来源对费-托合成用Co/SiO2催化剂性能的影响[J].催化学报,2000,21(2):169-171.
    [137]Kosmulski M.Chemical Properties of Material Surfaces [M]. New York:Marcel Dekker Inc,2001.
    [138]Tauster S J, Fung S C, Baker R T K,et al. Strong interactions in supported-metal catalysts[J].Science,1981,211:1121-1125.
    [139]Ishihara T, Harada K, Eguchi K, et al. Electronic interaction between supports and ruthenium catalysts for the hydrogenation of carbon monoxide[J]. Journal of Catalysis, 1992,136(1):161-169.
    [140]Martinez A, Lopez C. The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer-Tropsch products over hybrid catalysts [J]. Applied Catalysis A:General,2005,294:251-259.
    [141]Visconti C G, Tronconia E, Groppi G, et al. Monolithic catalysts with high thermal conductivity for the Fischer-Tropsch synthesis in tubular reactors[J]. Chemical Engineering Journal,2011,171(3):1294-1307.
    [142]Zhu X W, Lu X J, Liu X Y, et al. Study of radial heat transfer in a tubular Fischer-Tropsch synthesis reactor [J]. Industrial and Engineering Chemistry Research, 2010,49:10682-10688.
    [143]侯祥麟.中国炼油技术(第二版)[M].北京:中国石化出版社,2001.
    [144]高滋.沸石催化与分离技术[M].北京:中国石化出版社,1999.
    [145]蔡芙蓉,张玉兰,张伟等.红外光谱法研究改性Y型分子筛表面酸性与活性的关系[J].华东理工大学学报(自然科学版),2006,32(9):1034-1036.
    [146]Borg 0, Storsaeter S, Eri S, et al. The effect of water on the activity and selectivity for y-alumina supported cobalt Fischer-Tropsch catalysts with different pore sizes [J]. Catalysis Letters,2006,107:95-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700