黄土丘陵区生态恢复过程中土壤质量演变及调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤质量的恢复、保育是黄土高原植被建设及生态环境可持续发展的关键。本研究
    针对黄土高原生态环境建设需求及土壤学与水土保持科学研究前沿,以黄土丘陵区侵蚀
    土壤为研究对象,通过历史资料收集和野外调查相结合、野外试验与室内分析相结合,
    采用时空互代的方法,从系统分析不同土地利用方式下土壤基本理化及生物质量特征及
    其相关性入手,拟定了黄土丘陵区侵蚀环境下土壤质量评价指标体系,揭示了生态恢复
    重建过程中土壤质量演变规律并建立了土壤质量演变的回归模型,在此基础上提出了该
    区侵蚀土壤质量调控方案,为黄土丘陵区生态恢复重建及侵蚀土壤质量的恢复保育提供
    了科学依据。主要研究结论如下:
     1、建立了黄土丘陵区侵蚀土壤质量评价指标体系及相应的评价模型,拟订了黄土
    丘陵区侵蚀土壤质量分级评价标准。应用因子分析和判别分析,结合敏感性分析,从10
    种土地利用类型、208个样点的29项土壤理化及生物指标中筛选出黄土丘陵区侵蚀土壤
    质量指标为有机质、K10、抗冲性、CEC、蔗糖酶、MWD、速效磷、MICMWD。其中,
    有机质、K10、抗冲性是表征该区侵蚀土壤质量的关键指标。采用模糊数学中的加权综
    合法建立了土壤质量综合评价模型。对黄土丘陵区10种土地利用类型的表层土壤质量综
    合评价结果表明,土壤质量在不同土地利用类型之间差异显著,以天然乔木林地土壤质
    量最佳,属1级;其次是天然灌木林地和大棚菜地,土壤质量属2级;天然草地土壤质量
    属于3级,人工乔灌林地土壤质量接近3级,人工草地、撂荒地、农地和果园土壤质量属
    于4级。研究区土壤质量总体处于中等偏低水平。
     2、阐明了不同土地利用方式下土壤化学、物理、生物指标及土壤质量指数随土地
    利用年限的演变规律,并建立了土壤质量演变的回归模型。撂荒地和人工乔木林地土壤
    全氮、有机质、活性有机碳、有效氮、速效钾及 C/N、微团聚状况、结构系数、MICMWD、
    团聚体、MWD、微生物碳和氮、磷酸酶、蔗糖酶及脲酶等指标与利用年限之间有显著
    或极显著的正相关性;果园和人工灌木林地土壤全氮、有机质与利用年限之间有显著的
    正相关性;撂荒地土壤渗透系数等物理性质与土地利用年限之间有显著的正相关关系。
    用线性函数或幂函数对上述相关性进行拟合,建立了黄土丘陵区土壤理化及生物质量指
    标随土地利用年限演变的回归模型。撂荒地及人工乔灌林地土壤质量指数与利用年限之
    间呈显著或极显著的正相关性,可以用幂函数表达,建立了黄土丘陵区土壤质量指数随
    土地利用年限演变的回归模型。据此估算,撂荒地、果园、人工灌木和人工乔木林地土
    壤质量分别需要 66 年、42 年、25 年和 21 年可达到中等质量水平,而大棚菜地仅需 10
    年就可达到高等质量水平。
     3、在黄土丘陵区,土地利用方式的变化是土壤质量变化的驱动因子。以此为主导
    的纸坊沟小流域65年来生态系统退化与恢复过程中土壤质量演变可以分为3个阶段。
    
    
    ii 黄土丘陵区生态恢复过程中土壤质量演变及调控
     用通用线性回归模型(GLM)计算了土地利用及海拔、坡度、坡向、地形等环境因
    子在土壤理、化、生物属性及土壤质量指数变异(方差)中所占的百分比。结果表明,
    土壤理化及生物性质的变异大部分是由土地利用方式的变化引起的,土地利用的变化是
    土壤质量变异产生的主要来源,可解释97%的土壤质量指数的变异性。
     随着流域生态系统退化与恢复进程,31 项土壤理化及生物指标的演变过程可以分为
    先降后升型、先升后降型及平稳型三种。流域土壤质量指数表现为先降后升型变化。根
    据纸坊沟小流域土壤质量指数的演变动态,可以将纸坊沟流域 1938 年以来的 65 年间土
    壤质量演变过程划分为 3 个阶段。1938-1960 年为土壤质量退化期,1960-1990 年为
    土壤质量稳定期,1990-2002 年为土壤质量恢复期。
     4、揭示了土壤有效磷和抗冲性是黄土丘陵区侵蚀土壤质量的限制性因子以及黄土
    丘陵区侵蚀土壤质量恢复的长时序性和滞后性。提出了优化土地利用结构,增加林草植
    被覆盖度,建设基本农田,辅以科学有效的水土保持措施和土壤培肥措施的土壤质量调
    控方案。黄土丘陵区侵蚀土壤质量的恢复具有长时序性和滞后性,在安塞纸坊沟小流域,
    这种滞后期约为 10 年。不同土壤质量调控措施对土壤质量的影响不同。坡耕地培肥、
    农耕地撂荒及农耕地转为人工草地对土壤质量的改善作用较缓慢,而天然草地及人工乔
    灌林地则能有效地提高土壤质量。
     5、黄土丘陵区以实现中等土壤质量为目标的人工乔灌和天然草地植被恢复的标准
    为覆盖度达 65%以上。不论是林草地还是撂荒地,植被盖度与土壤质量间有一定的相关
    性。其中乔灌林及天然草地、撂荒地植被盖度与土壤质量的相关性达极显著水平。根据
    林草地植被盖度与土壤质量之间的线性回归模型,人工乔灌和天然草地植被盖度达 65%
    时土壤质量可达到中等质量水平。
Soil quality restoration and soil management is the key for vegetation construction and
    eco-environment sustainable development in the Loess Plateau. Aimed at the requirement of
    eco-environment construction and the hotspot in soil and environment sciences in the Loess
    Plateau, taking on the soil in the erosion environment on the hilly Loess Plateau as research
    object, through field experiment and lab test, combining with historical data collection and
    field investigation, soil quality evolvement mechanism in the process of ecosystem restoration
    was studied in this project. Soil quality indicators in the erosion environment were identified.
    Regression models for soil quality assessment were also established, and limiting soil quality
    factors were identified. Finally recommendation for vegetation restoration and soil quality
    improvement was proposed. The goal was to provide scientific reference for vegetation
    rehabilitation and soil quality care in the hilly Loess Plateau, and enrich the theory and
    method for soil quality management. The main results were as follows:
     1. Soil quality assessment indicators and corresponding assessment model for the
    erosion environment in the hilly gully region of Loess Plateau were established, the
    criterion for soil quality assessment in the region were also set up. Through factor analysis
    and discriminant analysis, combining with sensitivity analysis, 8 soil quality indicators
    including organic matter, K10、anti-scrubility、CEC、invertase、MWD、available phosphorous
    and MICMWD, were identified from 29 soil chemical , physical and biological indicators of
    208 soil sampling sites in 10 landuse types. Integrated soil quality evaluation model was
    established by applying weighted integrating method in fuzzy mathematics. The integrated
    evaluation results to the topsoil in 10 landuse types on the hilly-gully region of Loess Plateau
    showed that there were significant differences in soil quality among landuse types. Soil
    quality in natural forestland belonged to grade 1 with the best soil quality; soil quality in
    natural shrub land and vegetable land was in the next place and belonged to grade 2; soil
    quality in natural grassland belong to grade 3 and in planted woodland and shrub land was
    near to grade 3; soil quality in planted grassland, revegetated grassland, cropland and orchard
    
    
    iv 黄土丘陵区生态恢复过程中土壤质量演变及调控
    belonged to grade 4. As a whole, soil quality in the research area was in lower level.
     2. The evolvement rule of soil chemical, physical, biological indicators and soil
    quality index was clarified with landuse years in different landuse types. The regression
    models for soil quality evolvement were also established. There were significant positive
    correlations between landuse years and soil total nitrogen, organic matter, labile carbon,
    available nitrogen, available potassium, C/N, situation of micro-aggregate, structure
    coefficient, MICMWD, MWD, aggregate stability, SMBC, SMBN, phosphatase, invertase
    and urease, in revegetated grassland and planted woodland. Significant positive correlations
    were also found between landuse years and soil total nitrogen and organic matter in orchard
    and planted shrub land. Significant positive correlation was showed between landuse years
    and K10 in revegetated grassland. Linear function or power function was suitable for fitting
    the correlations mentioned above and was used to establish the regression models for soil
    chemical, physical and biological quality evolvement with landuse years. Based on the soil
    quality evolvement models established, we estimated that the time needed for soil quality to
    reach to middle level was 66, 42, 25 and 21 years respectively in revegetated grassland,
    orchard, planted shrub land and planted woodland. It’s only 10 years for soil quality in
    vegetable land to reach to high level.
     3. In the hilly-gully region of Loess Plateau, land use change was the driving force
    for soil quality change. Effected by land use change, th
引文
1. A. R. Mermut, H. Eswaran. Some major developments in soil science since the mid-1960s.
     Geoderma, 2001, 100: 403–426
    2. Achmad Rachman, S. H. Anderson, C. J. Gantzer, et al. Influence of Long-term Cropping Systems
     on Soil Physical Properties Related to Soil Erodibility. Soil Sci. Soc. Am. J. 2003, 67: 637–644.
    3. Anna K. Bandick, Richard P. Dick. Field management effects on soil enzyme activities. Soil
     Biology and Biochemistry, 1999, 31: 1471–1479
    4. B. Vigier, E. G. Gregorich, D. Kroetsch and D. King. Site description report of benchmark site
     documentation, 14 & 44–on (rockwood, ontario) soil quality evaluation program, agriculture and
     agri–food canada, research branch and eastern cereals and oilseeds research centre ecorc ottawa,
     1999
    5. Berendse, F. Organic matter accumulation and nitrogen mineralization during secondary succession
     in health land ecosystem. Journal of Ecology, 1990, 78: 413–427
    6. Blair, G. J., Lefroy, T. K. B., and Lisle, L. Soil carbon fractions based on their degree of oxidation
     and the development of a carbon management index for agricultural systems. Australian Journal of
     Soil Research, 1995, 46: 1459–1466
    7. Bo Sun, Shenglu Zhou, Qiguo Zhao. Evaluation of spatial and temporal changes of soil quality
     based on geostatistical analysis in the hill region of subtropical China. Geoderma, 2003, 115: 85–
     99
    8. Brouwer J. and R. W. Fitzpatrick (1998). Relations between soil macro–morphology and current
     soil hydrology in a toposequence in SE Australia. Proceedings of the International Soil Science
     Society Congress, Montpellier, France. 20–26 August, 1998. Symposium No. 15; p 9.
    9. C. A. Seybold, J. E. Herrick. Aggregate stability kit for soil quality assessments. Catena, 2001, 44:
     37–45
    10. Carter M. R. and Sanderson J. B. Influence of conservation tillage and rotation length on potato
     productivity, tuber disease and soil quality parameters on a fine sandy loam in eastern Canada. Soil
     & tillage research, 2001, 63(1–2): 1–13
    11. Carter, M. R. Gregorich, E. G. Angers, D. A. et al. Interpretation of soil microbial biomass
     measurements for soil quality assessment in eastern Canada and New Zealand. Canadian Journal of
     Soil Science.
    12. Cass, A., McKenzie, N. and Cresswell, H. (1996). Physical indicators of soil health. In "Indicators
     of catchment health – a technical perspective". J. W. Walker and D. J. Reuter (eds. ), CSIRO
     Publishing, Melbourne, pp 89–107.
    13. Chien YJ, Lee DY and Guo HY. Geostatistical analysis of soil properties of mid–west taiwan soils.
     Soil Sci., 1997, 162: 291~298
    14. Corwin D L, Loague K. Applications of GIS to the Modeling of Non–point Source Pollutants in the
     Vadose Zone. Madison: Soil Science Society of America, 1996
    15. Cranston, P. S., Fairweather, P. and Clarke, G. (1996). Biological indicators of water quality. In
     "Indicators of catchment health – a technical perspective". J. W. Walker and D. J. Reuter (eds.),
     CSIRO Publishing, Melbourne, pp 143–154
    16. Degens, B. P.; Schipper, L. A.; Sparling G. P.; and Vojvodic–Vukovic. M. 2000: Decreases in
     organic C reserves in soils can reduce microbial functional diversity. Soil Biology and
     Biochemistry, 32: 189–196.
    17. Dick R P. Soil enzyma activities as indicators of soil quality. In: Defining Soil Quality for a
     Sustainable Environment. Soil Science Societ y of America, Inc. , Madison, Wisconsin, USA, 1994.
    
    
    122 黄土丘陵区生态恢复过程中土壤质量演变及调控
     105–124.
    18. Doran, J. W. , and T. B. Parkin Defining and assessing soil quality. P3–21. In Doran J. W. et al.
     (ed). Defining soil quality for a sustainable environment. SSSA Special Publication Number 35,
     Madison, Wisconsin, USA, 1994.
    19. F. Caravaca, G. Masciandaro, B. Ceccanti. Land use in relation to soil chemical and biochemical
     properties in a semiarid Mediterranean environment. Soil & Tillage Research, 2002, 68: 23–30
    20. Feike J. Leij, Teamrat A. Ghezzehei, and Dani Or. Analytical Models for Soil Pore–Size
     Distribution After Tillage. Soil Sci. Soc. Am. J. , 2002, 66: 1104–1114.
    21. Filip Z. International approach to assessing soil quality by ecologically–relatedbiological
     parameters. Agriculture, Ecosystems & Environment, 2002, Special Issue, 88(2): 169–174
    22. Fitzpaterick, R. W. (1996). Morphological indicators of soil health. In "Indicators of catchment
     health – a technical perspective". J. W. Walker and D. J. Reuter (eds. ), CSIRO Publishing,
     Melbourne, pp 75–88.
    23. Fitzpatrick, R. W. , J. W. Cox and J. Bourne. (1998). Soil indicators of catchment health: tools for
     property planning. Proceedings of the International Soil Science Society Congress, Montpellier,
     France. 20–26 August, 1998. Symposium No. 37; p 8.
    24. Francioso, O., Ciavatta, C., Sanchez, S. et al. Spectroscopic characterization of soil organic matter
     in long-tern amendment trials[J]. Soil Sci. 2000, (165): 495-504
    25. G. Brown, , S. Al–Mazrooei. Rapid vegetation regeneration in a seriously degraded Rhanterium
     epapposum community in northern Kuwait after 4 years of protection. Journal of Environmental
     Management, 2003, 68: 387–395
    26. Garcia, C. , et al. Revegetation in semiarid zones: influence of terracing and organic refuse on
     microbial activity. SOIL SCI. SOC. AM. J. , 1998, 62(3): 670–676
    27. Gibson, R. ; Hewitt, A. ; Sparling, G. ; Bosch, O. In press: Vegetation change and soil quality in
     Central Otago tussock grasslands, Rangeland Journal.
    28. Graeme J. Blair, Rod D. B. Lefroy and Leanne Lisle. Soil carbon fractions based on their degree of
     oxidation, and the development of a carbon management index for agricultural systems. Aust. J.
     Agric. Res. , 1995, 46, 1459-1466.
    29. Guidelines for Soil Quality Assessment in Conservation Planning. United States Department of
     Agriculture, Natural Resources Conservation Service, Soil Quality Institute(Eds), January 2001
    30. Guobin Liu, Mingxiang Xu, and Coen Ritsema. 2002. Study on soil characteristics in a small
     watershed in the hilly-gullied area on the Loess Plateau in China. Catena, Vol.54 (2003), p31-44
    31. Harrison K G, Borecder W S, Bonani G. The effect of changing land use on soil radiocarbon.
     Science, 1993, 262: 725–726
    32. Hewitt, A. E. 1999. Our valuable soils. Keynote address at Manaaki Whenua Conference, Te Papa
     April 21 1999.
    33. Hewitt, A. E. ; Burgham S. J. ; Gibson, R. 1998: Spatial variability of organic carbon, Manorburn,
     Central Otago, New Zealand. New Zealand Journal of Agricultural Research. 41(4).
    34. Hewitt, A. E. ; Sparling, G. P. Soil health indicators. 2. Setting standards for regional and national
     monitoring. Planning Quarterly. Submitted. Abstract
    35. Hewitt, A. E. ; Sparling, G. 1998: Setting soil quality standards for C contents of New Zealand soils.
     New Zealand Soil Science Society Conference, Gisborne, 16–19 November 1998.
    36. Hewitt, A. E. ; Sparling, G. P. Soil health indicators. 1. Their significance and variation at a national
     scale. Planning Quarterly. Submitted. Abstract
    37. Hoosbeekmr, Bryantrb. Towards the quantitative modeling of pedogenesis—a review. Geoderma,
     1992, 55: 183–210
    
    
    参考文献 123
    38. Hu F, Li H X, Wu S M. Differentiation of soil fauna population in conven tional tillage and
     no–tillage red soil ecosystems. Pedosphere, 1997, 7(4): 339–348.
    39. Hussain I, Olson KR, Wander MM, et al. Adaptation of soil quality indices and application to three
     tillage systemsin southern Illinois. Soil & Tillage Research, 1999, Vol. 50, No. 3–4: p. 237–249
    40. Ingrid C. Bruke. Soil organic matter recovery in semiarid grasslands: implications for the
     conservation reserve program. Ecological Application, 1995, 5(3): 793–801
    41. Islam KR, Weil RR. Land use effects on soil quality in a tropical forest ecosystem ofBangladesh.
     Agriculture, Ecosystems & Environment, 2000, Vol. 79, No. 1: 9–16
    42. Jeffrey E. Herrick, Soil quality: an indicator of sustainable land management. Applied Soil Ecology,
     2000, 15(1): 75–83
    43. John, J. B, Thomas, B. M, Douglas, L. K, et al. Identification of regional soil quality factors and
     indicators: I. Central and southern high plains. SSSAJ, 64: 2115–2124(2000)
    44. John, J. B, Thomas, B. M, Douglas, L. K, et al. Identification of regional soil quality factors and
     indicators: II. Northern Mississippi Loess Hills and Palouse Prairie. Soil Sci. Soc. Am. J. 64:
     2125–2135 (2000).
    45. Johns, M. M. and Skogley, E. O. Soil organic matter testing and labile carbon identification by
     carbonaceous resin capsules. Soil Science Society of American Journal, 1994, 58: 751–758
    46. Jolly, I. , Caitcheon, G. , Donnelly, T. and Hafner, S. (1996). Physical and chemical indicators of
     water quality. In "Indicators of catchment health – a technical perspective". J. W. Walker and D. J.
     Reuter (eds. ), CSIRO Publishing, Melbourne, pp 131–141.
    47. Jones, B. , Walker, J. , Ritters, K. H. , Wickham, J. D. and Nicoll, C. (1996). Indicators of
     landscape integrity. In "Indicators of catchment health – a technical perspective". J. W. Walker and
     D. J. Reuter (eds. ), CSIRO Publishing, Melbourne, pp 155–168.
    48. Karlen D L, Diane E S. A framework for evaluating physical and chemical indicators of soil quality
     [M]. Soil Science Society ofAmerica, Inc. , Madison , Wisconsin, USA, 1994. 53–72.
    49. King, K. L. and Pankhurst, C. E. (1996). Biotic indicators of soil health. In "Indicators of
     catchment health – a technical perspective". J. W. Walker and D. J. Reuter (eds. ), CSIRO
     Publishing, Melbourne, pp 121–130.
    50. Kirkby M. Modeling the interactions between soil properties and water erosion. In: Proceedings
     CD–ROM of 16th World Soil Congress. Montpellier, France: ISSS, 1998. 1517
    51. Kwansoo Kim, Bradford L. Barham, Ian Coxhead. Measuring soil quality dynamics A role for
     economists, and implications for economic analysis. Agricultural Economics, 2001, 25: 13–26
    52. Larson , W. E. , and F. J. Pierce. Conservation and enhancement of soil quality. In Proc. Of the Int.
     Workshop on Evaluation for Sustainable land Management in the Developing World. Vol. 2.
     IBSRAM Proc. 12(2). Int. Board for Soil Res. and Management. Rangkok, Thailand. 1991.
    53. Larson W E, Pierce F J. The dynamics of soil quality as a measure of sustainble management. In:
     Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Inc. ,
     Madison, Wisconsin, USA, 1994. 37–52.
    54. Lilburne, L. ; Sparling, G. ; Schipper, L. ; Hewitt, A. ; Gibson, R. 2000: Soil quality indicators on
     the world wide web. In: Denzer, R. ; Swayne, D. A. ; Purvis, M. ; Schimak, G. ed. Environmental
     software systems: Environmental information and decision support. Boston, Kluwer. Pp. 131–141.
    55. Lindstrom, M. J. , et al. Management considerations for returning CRP lands to crop production. J.
     Soil Water Conservation, 1994, 49(5): 420–425
    56. Loch, R. J. Effects of vegetation cover on runoff and erosion under sumulated rain and overland
     flow on a rehabilitated site on the Meandu Mine, Tarong, Queensland. Aust. J. Soil Res. , 2000, 38:
    
    
    124 黄土丘陵区生态恢复过程中土壤质量演变及调控
     299–312
    57. M. K. Shuklal, R. Lall, L. B. Owens, et al. Land Use And Management Impacts On Structure And
     Infiltration Characteristics Of Soils In The North Appalachian Region Of Ohio. Soil Science, 2003,
     168(3): 167-177
    58. M. A. Arshad , S. Martin. Identifying critical limits for soil quality indicators in agro-ecosystems.
     Agriculture, Ecosystems and Environment, 2002, 88: 153–160
    59. M. C. Leirós , C. Trasar–Cepeda , F. García–Fernández, F. Gil–Sotres. Defining the validity of a
     biochemical index of soil quality. Biol Fertil Soils , 1999, 30: 140–146
    60. M. L. Norfleetl, C. A. Ditzler, W. E. PuckettO, et al. Soil Quality And Its Relationship To
     Pedology. Soil Science, 2003, 168(3): 149-155
    61. M. R. Hoosbeek and J. Bouma. Obtaining soil and land quality indicators using research chains
     and geostatistical methods. Nutrient Cycling in Agroecosystems, 1998, 50: 35–50, .
    62. Ma keming, Zu Yuangang and Michel Godron. Scale correlation between vegetation and soil in
     larch forest, NE China. Journal of Environmental Sciences, 2001, 13(1): 51–57
    63. Mannipieri, P. (1994). The potential use of soil enzymes as indicators of productivity, sustainability
     and pollution. In "Soil biota: management in sustainable farming systems". C. E. Pankhurst, B. M.
     Doube, V. V. S. R. Gupta and P. R. Grace (eds. ), CSIRO Publishing, Melbourne, pp 238–244.
    64. María de la Paz Jimenez , Ana María de la Horra, Laura Pruzzo , et al. Soil quality: a new index
     based on microbiological and biochemical parameters, Biol Fertil Soils, 2002, 35: 302–306
    65. Merry, R. H. (1996). Chemical indicators of soil health. In "Indicators of catchment health – a
     technical perspective". J. W. Walker and D. J. Reuter (eds. ), CSIRO Publishing, Melbourne, pp
     109–119.
    66. Mohanty B, Shouse P J, Van Genuchten M. Spatio–temporal dynamics of water and heat in a field
     soil. In: Proceedings CD–ROM of 16th World Soil Congress. Montpellier, France: ISSS, 1998.
     1314
    67. Natural Resources Conservation Service, Soil Quality Institute Staff. 1996. Soil quality is critical
     factor in management of natural resources. Soil Quality – Agronomy Technical Note No. 1.
    68. Natural Resources Conservation Service, Soil Quality Institute Staff. 1996. Cover and Green
     Manure Crop Benefits to Soil Quality. SOIL QUALITY– AGRONOMY Technical Note No. 1
    69. Natural Resources Conservation Service, Soil Quality Institute Staff. 1996. Conservation crop
     rotation effects on soil quality. Soil Quality – Agronomy Technical Note No. 2.
    70. Natural Resources Conservation Service, Soil Quality Institute Staff. 1996. Residue Management
     and No–Till on Soil Quality. Soil Quality – Agronomy Technical Note No. 3
    71. Natural Resources Conservation Service, Soil Quality Institute Staff. 1996. Effect of Soil Quality
     on Nutrient Efficiency. Soil Quality Agronomy Technical Note No. 4
    72. Natural Resources Conservation Service, Soil Quality Institute Staff. 1996. Legumes and Soil
     Quality. Soil Quality Agronomy Technical Note No. 6
    73. Natural Resources Conservation Service, Soil Quality Institute Staff. 1996. Managing
     Conservation Tillage. Soil Quality Agronomy Technical Note No. 9
    74. Oldeman L R. Guidlingness for gloval assessment of the status of human induced soil degradation.
     Glasod, 1988, 1–11
    75. Pankhurst, C. E. , Hawke, B. J. , McDonald, H. J. , Kirkby, C. A. , Buckerfield, J. C. , Michelsen,
     P. , O’Brien, K. A. , Gupta, V. V. S. R. and Doube, B. M. (1995). Evaluation of soil biological
     properties as potential bioindicators of soil health. Australian Journal of Experimental Agriculture
     35: 1015–28.
    76. Parr, J. F. R. I. Papendick, S. B. Homick , and R. E. Meyer. Soil quality: Attributes and relationship
    
    
    参考文献 125
     to alternative and sustainable agriculrure. Am. J. Altern. Agric. 1992, (7): 5–11
    77. Parrish, A. G. et al. 1982. Responses of plants from three successional communities on a nutrient
     gradient [J]. J. Ecol. , 70: 233~248.
    78. Patricia Guid?o Cruz Ruggiero, Marco Ant?nio Batalha, Vania Regina Pivello, et al.
     Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest,
     Southeastern Brazil. Plant Ecology, 2002, 160: 1–16, .
    79. Patricia Guid?o Cruz Ruggiero, Marco Ant?nio Batalha, Vania Regina Pivello, et al.
     Soil–vegetation relationships in cerrado (Brazilian savanna) and semi deciduous forest,
     Southeastern Brazil. Plant Ecology, 2002, 160: 1–1
    80. Pedro J. Valarini1, Ma Cruz Díaz Alvarez, José Ma Gascó, et al. Integrated Evaluation Of Soil
     Quality After The Incorporation Of Organic Matter And Microorganisms. Brazilian Journal of
     Microbiology, 2002, 33: 35-40
    81. Power, J. F. , and R. J. K. Myers. The maintenance or improvement of farming systems in Morth
     America and Australia. In J. W. B. Stewart (ed.). Soil quality in semi–arid agriculture. Proc. of an
     Int. Cong. Sponsored by the Canadian Int. Development Agency, Saskatoon, Saskatchewan,
     Canada, 11–16 June 1989.
    82. Reicosky, D. C. , W. D. Kemper, G. W. Langdale, C. L. Douglas, Jr. , and P. E. Rasmussen. 1995.
     Soil organic matter changes resulting fromtillage and biomass production. J. Soil and Water Cons.
     50: 253–261.
    83. Ronggui Wu and H. Tiessen. Effect of Land Use on Soil Degradation in Alpine Grassland Soil,
     China. Soil Sci. Soc. Am. J. 2002, 66: 1648–1655.
    84. Ross, D. J. , et al. Land rehabilitation under pasture on volcanic parent materials: changes in soil
     microbial biomass and C and N metabolism. Aust. J. Soil Res. , 1994, 32: 1321–1327
    85. Ross, D. J. , et al. Soil restoration under pasture after lignite mining: management effects on soil
     biochemical properties and their relationships with herbage yields. Plant and Soil, 1992, 140: 85–
     97
    86. S. H. Schoenholtz, H. Van Miegroet, J. A. Burger. A review of chemical and physical properties as
     indicators of forest soil quality: hallenges and opportunities. Forest Ecology and Management,
     2000, 138: 335–356
    87. Schipper, L. A. Sparling, G. P. 2000: Performance of a standard set of soil quality indicators over a
     wide range of soils and land uses. Soil Science Society of America Journal. 64: 300–311.
    88. Smith J L, Halvorson J J, Papendick R I. Multiple varible indicator Kriging: a procedure for
     integrating soil quality indicators. In: Defining Soil Quality for a Sustainable Environment. Soil
     Science Society of America, Inc., Madison, Wisconsin, USA, 1994. 149–157.
    89. Smyth, A. J. ad Dumaski, J. (1993). FESLM: An international framework for evaluating
     sustainable land management. World Soil Resources Report 73. Food and Agriculture Organisation
     of the United Nations, Rome, Italy.
    90. Soil Quality Management and Agro–ecosystem Health, Proceeding of 14th Internati onal
     Conference, East and Southeast Asia Federation of Soil Science Societies[ M]. Cheju: Republic
     of Korea. 1997.
    91. Soil Quality Test Kit Guide. United States Department of Agriculture, Agricultural Research
     Service, Natural Resources Conservation Service, Soil Quality Institute, August 1999
    92. Sparling G. ; Schipper L. 1998: Soil quality monitoring in New Zealand. New Zealand Soil Science
     Society Conference, Gisborne, 16–19 November 1998.
    93. Sparling G. ; Schipper L. ; Hewitt A. 1998: Soil quality characteristics of Waiareka and Wakanui
    
    
    126 黄土丘陵区生态恢复过程中土壤质量演变及调控
     soils under cropping. New Zealand Soil Science Society Conference, Gisborne, 16–19 November
     1998.
    94. Sparling, G. ; Schipper, L. ; Hewitt, A. ; Degens, B. 2000: Resistance to cropping pressure of two
     New Zealand soils with contrasting mineralogy. Australian Journal of Soil Research Paper number
     SR 99065, in Volume 38, 85–100.
    95. Sparling, G. ; Vojvodic–Vukovic, M. ; Schipper, L. 1998: Hot–water–soluble C as a simple
     measure of labile soil organic matter – the relationship with microbial biomass C. Soil Biology &
     Biochemistry. 30: 1469–1472.
    96. Sparling, G. P. ; Shepherd, T. G. ; Schipper, L. A. 2000: Topsoil characteristics of three contrasting
     New Zealand soils under long–term indigenous forest, plantation forest, pastures or arable
     cropping. New Zealand Journal of Agricultural Research.
    97. Sposito G, Reginat R J. Opportunities in Basic Soil Science Research. Madison: Soil Science
     Society of America, 1992
    98. Sun Bo, Moreau R, Poss R. Alleviation of subsoil acidity of red soil in Southeas t China with lime
     and gypsum. Pedosphere, 1998, 8(2): 113 –120.
    99. Sundquist E T. The global carbon dioxide budget. Science, 1993, 259: 934–941
    100. Syers, J. K. , Hamblin, A. and Pushparajah, E. (1995). Indicators and thresholds for the evaluation
     of sustainable land management. Canadian Journal of Soil Science 75: 423–428.
    101. T. M. Zobeck, T. W. Popham, E. L. Skidmore, et al. Aggregate–Mean Diameter and
     Wind–Erodible Soil Predictions Using Dry Aggregate–Size Distributions. Soil Sci. Soc. Am. J. ,
     VOL. 67, ARCH–APRIL 2003.
    102. Taskin Oztas, Ali Koc, Binali Comakli. Changes in vegetation and soil properties along a slope on
     overgrazed and eroded rangelands, Journal of Arid Environments, 2003, 55: 93–100
    103. Tingmei Yan, Linzhang Yang, C. D. Campbell. Microbial biomass and metabolic quotient of soils
     under different land use in the Three Gorges Reservoir area. Geoderma, 2003, 115: 129– 138
    104. Townsley, R. J. ; Gardiner, P. D. ; Wilkinson, R. L. ; Meister, A. D. 1997: The effects of soil quality
     on land value. Proceedings of the fourth annual conference of the New Zealand Agricultural and
     Resource Economics Society. Agribusiness and Economics Research Unit discussion paper No.
     145, Lincoln University. Pp. 145–150.
    105. Trumbore S E, Chadwick O A, Amundson R. Rapid exchange between soil carbon and atmosphere
     carbon dioxide driven by temperature change. Science, 1996, 272: 393–396
    106. UNDP. World map on status of human induced soil degradation. Boom ruygrok, Harllem, the
     netherlands, 1990
    107. Van Bavel, C.H.M., 1949. Mean weight diameter of soil aggregates as a statistical index
     aggregation. Soil
    108. Science Society of America Journal Proceedings 14 (1), 20– 23.
    109. Wander, M., yang, X. Influence of tillage on the dynamics of loose and occluded particulate and
     humified organic matter fractions [J]. Soil Biol. Biochem. 2000, (32): 1151-1160
    110. Walker, J. and Reuter, D. J. (1996). Key indicators to assess farm and catchment health. In
     "Indicators of catchment health – a technical perspective". J. W. Walker and D. J. Reuter (eds. ),
     CSIRO Publishing, Melbourne, pp 21–33.
    111. Walker, J. , Dowling, T. , Jones, B. , Wickham, J. Mackenzie, D. and Ritters, K. (1998). Indicators
     of catchment health. INTECOL Symposium, Workshop on Environmental Indices: Theoretical
     background and systems analysis. Florence, July 1998
    112. Ward, S. C. Soil development on rehabilitated bauxite mines in south–west Australia. Aust. J. Soil
    
    
    参考文献 127
     Res. , 2000, 38: 453–464
    113. Webb, K. T. , Wang, C. , Astatkie, T. , et al. Spatial and temporal trends in soil properties at a soil
     quality benchmark site in central Mova Scotia. Canadian Journal of Soil Science, 567–575(2000)
    114. Whitbread, A. M. . Lefroy, R. D. B. and Blair, G. J. . A survey of the impact of cropping on soil
     physical and chemical properties in north–western New South Wales, Australian Journal of Soil
     Research, 1998, 36: 669–681
    115. Wylie, P. (1994). Indicators of sustainable cropping system. In "Soil biota: management in
     sustainable farming systems". C. E. Pankhurst, B. M. Doube, V. V. S. R. Gupta and P. R. Grace
     (eds. ), CSIRO Publishing, Melbourne, pp 224–229.
    116. Z. Filip. International approach to assessing soil quality by ecologically-related biological
     parameters. Agriculture, Ecosystems and Environment, 2002, 88: 169–174
    117. Z. X. Tan, R. LalP, N. E. Smeck, F. G. Calhoun, et. al. Identifying Associations Among Soil And
     Site Variables Using Canonical Correlation Analysis. Soil Science, 2003, 168(5): 376-382
    118. 安树青. 土壤因子对森林群落演替的影响. 生态学报, 1997, 17(1): 45–50
    119. 曹慧, 杨浩, 孙波 等. 太湖流域丘陵地区土壤养分的空间变异. 土壤, 2002, 4: 201–205
    120. 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展. 应用与环境生物学报,
     2003, 9(1): 105–109
    121. 曹志洪. 解译土壤质量演变规律, 确保土壤资源持续利用. 科技前沿与学术评论, 2001, 23(3):
     28–32
    122. 查轩, 黄少燕. 植被破坏对黄土高原加速侵蚀及土壤退化过程的影响 [J]. 山地学报, 2001,
     19(2): 109-114.
    123. 常庆瑞, 安韶山, 刘京 等. 黄土高原恢复植被防止土地退化效益研究 [J]. 土壤侵蚀与水土
     保持学报. 1999, 5(4): 6-9.
    124. 陈本楚, 钱泽澎. 红壤微生物学特性(二)––浙江省低丘红壤的酶和呼吸活性. 土壤学报, 1966,
     14(3): 221–224.
    125. 陈怀顺, 赵晓英. 西北地区生态恢复对策. 科技导报, 2000, 8: 42-44.
    126. 陈怀顺, 赵晓英. 西北地区不同类型区生态恢复的途径与措施. 草业科学. 2000, 17(5): 65–
     70
    127. 川锅佑夫. 沙化草地恢复过程中植被及土壤的变化. 水土保持科技情报, 2000(4): 16–20
    128. 慈龙骏. 我国荒漠化方式机理及防止对策. 第四纪研究, 1998, 2: 97–105
    129. 邓铁金, 樊友安, 周任发. 红壤性水稻土的形成过程特点及其肥力演变. 土壤学报, 1985,
     22(1): 1–11.
    130. 樊润威, 朱济成, 姚贤良. 赣中丘陵地区红壤及红壤性水稻土的孔隙性. 土壤学报, 1966,
     14(2): 196–205.
    131. 傅伯杰, 陈利顶, 马克明. 黄土丘陵区小流域土地利用变化对生态环境的影响–以延安市羊
     圈沟流域为例. 地理学报, 1999, 54(3):
    132. 傅伯杰. 土地评价的理论与实践[M]. 北京: 中国科学技术出版社, 1991.
    133. 龚子同, 陈鸿昭, 骆国保. 人为作用对土壤环境质量的影响及对策. 土壤与环境, 2000, 9(1): 7
     –10
    134. 郭旭东, 傅伯杰, 陈利顶. 低山丘陵区土地利用方式对土壤质量的影响——以河北省遵化市
     为例. 地理学报, 2001, 56(4): 447–455
    135. 侯扶江, 肖金玉, 南志标. 黄土高原退耕地的生态恢复. 应用生态学报, 2002, 13(8): 923–929
    
    
    128 黄土丘陵区生态恢复过程中土壤质量演变及调控
    136. 侯庆春, 韩蕊莲, 韩仕锋. 黄土高原人工林草地“土壤干层”问题初探[J]. 中国水土保持, 1999,
     5: 11-14.
    137. 胡金明, 刘兴土. 三江平原土壤质量变化评价与分析. 地理科学, 1999, 19(5)
    138. 胡曰利, 吴晓芙. 土壤微生物生物量作为土壤质量生物指标的研究. 中南林学院学报, 2002,
     22(3): 51–53
    139. 胡月明, 万洪富, 吴志峰, 等. 基于GIS的土壤质量模糊变权评价. 土壤学报, 2001, 38(3): 266
     –274
    140. 贺秀斌. 林地开垦土壤质量的结构性指标响应. 水土保持学报. 2002, 16: 110-112.
    141. 黄绍文, 金继运. 土壤特性空间变异研究进展. 土壤肥料, 2002, (1): 7–14
    142. 蒋定生, 黄国俊. 黄土高原土壤入渗速率的研究. 土壤学报, 1986(4): 299–304
    143. 雷志栋, 杨诗秀, 谢森传. 土壤水动力学. 北京: 清华大学出版社, 1988
    144. 李保国. 土壤变化及其过程的定量化. 土壤学进展, 1995, 23(2): 33–42
    145. 李毅, 刘建军. 土壤空间变异性研究方法. 石河子大学学报(自然科学版), 331-337
    146. 李红鹰, 王戬, 孟昭明. 层次分析法在农业生态环境质量评价中的应用. 北方环境, 1999, 3
    147. 李瑞雪, 薛泉宏, 杨淑英, 等. 黄土高原沙棘、刺槐人工林对土壤的培肥效应及其模型 [J]. 土
     壤侵蚀与水土保持学报, 1998, 4(1): 14-21.
    148. 李香兰. 黄土高原不同林型对土壤物理性质影响的研究. 林业科学, 1992, 28(2): 98–105
    149. 梁春祥, 姚贤良. 华中丘陵红壤物理性质空间变异的研究. 土壤学报, 1993, 30(1): 69–78.
    150. 刘震. 中国的水土保持. 中国.北京: 中美水土保持研讨会, 2003,11
    151. 刘崇洪. 几种土壤质量评价方法的比较. 干旱环境监测, 1996, 10(1): 26–63
    152. 刘光崧. 土壤理化分析与剖面描述. 北京: 中国标准出版社. 1996. 6
    153. 刘国彬, 胡维银, 许明祥. 黄土丘陵区小流域生态经济系统健康评价. 自然资源学报, 2003,
     18(1): 44–49
    154. 刘国彬. 黄土高原草地植被恢复与土壤抗冲性形成过程, Ⅱ,植被恢复不同阶段土壤抗冲性特
     征. 水土保持研究, 1997, 4(5): 122-128
    155. 刘良梧, 龚子同. 全球土壤退化评价. 自然资源, 1995, (1): 10–15.
    156. 刘另更. 红壤丘陵自然植被恢复及其对某些土壤条件的影响. 中国农业科学, 1990, 23(3): 60
     –69
    157. 刘晓冰, 邢宝山, Stephen. J. Herbert. 土壤质量及其评价指标. 农业系统科学与综合研究,
     2002, 18(2): 109–112
    158. 卢宗凡, 梁一民, 刘国彬. 黄土高原生态农业[M]. 陕西: 陕西科学技术出版社, 1997
    159. 卢纹岱 主编. SPSS for Windows 统计分析. 北京: 电子工业出版社, 2000, 6
    160. 马祥庆, 范少辉, 刘爱琴, 等. 不同栽植代数杉木人工林土壤肥力的比较研究[J]. 林业科学研
     究, 2000, 13(6): 577~582.
    161. 马兴旺. 草原退化与恢复过程中土壤有机矿质复合体分组研究. 土壤与环境, 2000, 9(1): 19–
     22
    162. 潘映华, 施亚琴, 李振高. 红壤区不同植被下土壤酶活性的研究. 见: 中国 科学院红壤生态
     实验编. 红壤生态系统研究(第三集). 北京: 中国农业科技出版社. 1995. 172–178.
    163. 彭少麟. 南亚热带森林群落动态学 [M]. 北京:科学出版社, 1996,233-243.
    164. 彭少麟. 恢复生态学及植被重建. 生态科学, 1996, 15(2): 26-31
    165. 秦明周, 赵杰. 城乡结合部土壤质量变化特点与可持续性利用对策——以开封市为例. 地理
    
    
    参考文献129
     学报, 2000, 55(5)
    166. 任天志. 持续农业中的土壤生物指标研究. 中国农业科学, 2000, 33(1): 68–75
    167. 沈慧, 姜凤岐, 杜晓军, 等. 水土保持林土壤肥力及其评价指标. 水土保持学报, 2000, 14(2):
     60–65
    168. 史德明, 韦启潘, 梁音, 等. 中国南方侵蚀土壤退化指标体系研究. 水土保持学报, 2000,
     14(3): 1–9
    169. 史德明, 韦启潘, 梁音. 关于侵蚀土壤退化及其机理. 土壤, 1996, 3: 140–144
    170. 史德明. 土壤侵蚀对生态环境的影响及防治对策. 水土保持学报, 1991, 5(3): 1–8
    171. 史衍玺, 唐克丽. 林地开垦加速侵蚀下土壤养分退化的研究 [J]. 土壤侵蚀与水土保持学报,
     1996, 2(4): 26-33.
    172. 史衍玺. 人为开垦加速侵蚀下土壤质量演变及其机理研究. 1998 届攻度博士学位研究生学位
     论文.
    173. 史衍玺, 唐克丽. 人为加速侵蚀下土壤质量的生物学特性变化. 土壤侵蚀与水土保持学报,
     1998, 4(1)
    174. 史奕, 陈欣, 沈善敏. 土壤团聚体的稳定机制及人类活动的影响. 应用生态学报, 2002, 13(11):
     1491–1494
    175. 史奕, 陈欣, 沈善敏. 有机胶结形成土壤团聚体的机理及理论模型. 应用生态学报, 2002,
     13(11): 1495–1498
    176. 史志华, 蔡崇法, 王天巍, 等. 红壤丘陵区土地利用变化对土壤质量影响. 长江流域资源与环
     境, 2001, 10(6): 537–543
    177. 孙波, 张桃林, 赵其国. 我国中亚热带缓丘区红粘土红壤肥力的演化──II. 化学和生物学肥
     力的演化 [J]. 土壤学报, 1999, 36(2): 1-6.
    178. 孙波, 赵其国, 张桃林. 我国东南丘陵山区土壤肥力的综合评价. 土壤学报 , 1995, 32(4):
     362–369.
    179. 孙波, 赵其国, 张桃林, 等. 土壤质量与持续环境 I. 土壤质量评价的生物学指标. 土壤, 1997,
     29(5): 225–234)
    180. 孙波, 赵其国. 红壤退化中的土壤质量评价指标及评价方法. 地理科学进展, 1999, 18(2):
    181. 孙波. 南方红壤丘陵区土壤养分贫瘠化的综合评价. 土壤, 1995, 27(3): 119–128
    182. 孙长忠. 黄土高原沟坡次生植被与土壤营养现状的关系. 林业科学研究, 1998, 11(3): 330–
     334
    183. 孙武, 李森. 土地退化评价与监测技术路线的研究. 地理科学, 2000, 20(1): 92–96
    184. 唐克丽, 张科利, 郑粉莉, 等. 子午岭林区自然侵蚀和人为加速侵蚀剖析. 西北水土保持研究
     所集刊(第 17 集). 西安: 陕西科学技术出版社, 1993, 17–28.
    185. 唐克丽. 黄土高原生态环境建设与侵蚀环境调控. 中国科学技术协会, 中国工程院, 陕西省
     人民政府主编. 中国西部生态重建与经济协调发展学术研讨会论文集——中国西部地区科技
     经济与社会发展论坛专辑(一), 四川科学技术出版社, 1999. 7: 28–32
    186. 唐克丽. 开发西部切入点的研究——以黄土高原生态环境建设切入点为例. 第四纪研究,
     2000, 20(6): 504–513
    187. 唐克丽. 土壤侵蚀环境演变与全球变化及防灾减灾的机制. 土壤与环境, 1999, 8(2)
    188. 唐克丽. 黄土高原地区土壤侵蚀区域特征及其治理途径. 北京: 中国科学技术出版社, 1991,
     213–222.
    
    
    130 黄土丘陵区生态恢复过程中土壤质量演变及调控
    189. 唐克丽. 水蚀风蚀交错带和神木试区环境背景及整治方向. 中科院水土保持研究所集刊,
     1993, (18): 2–8.
    190. 朱祖祥 主编. 土壤学(上册). 北京: 农业出版社,1983
    191. 万存绪, 张效勇. 模糊数学在土壤质量评价中的应用. 应用科学学报, 1991, 9(4): 359–365
    192. 王国梁, 刘国彬, 许明祥. 黄土丘陵区纸坊沟流域植被恢复的土壤养分效应. 水土保持通报,
     2002, 22(1): 1–5
    193. 王恒俊, 张淑光. 黄土高原地区土壤资源及其合理利用. 北京: 中国科学技术出版社, 1991,
     160–173
    194. 王建国, 杨林章, 单艳红. 模糊数学在土壤质量评价中的应用研究. 土壤学报, 2001, 2
    195. 王效举, 龚子同. 红壤丘陵小区域不同利用方式下土壤变化的评价和预测. 土壤学报, 1998,
     35(1): 135–139
    196. 王效举, 龚子同. 红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析. 地理科学,
     1997, 17(2): 141–148.
    197. 王效举, 龚子同. 亚热带小区域水平上土壤质量时空变化的定量化评价. 土壤与环境. 1996,
     (4)
    198. 魏孝孚, 罗永进, 张志达. 低丘红壤新造田土壤肥力特征及其演变. 土壤, 1981, 13(6):
     201–204.
    199. 吴杰民, 许加宁, 吴顺志. 模拟酸雨对土壤酶活性的影响. 环境科学, 1988 , 9(1): 26–30.
    200. 吴钦孝, 杨文治. 黄土高原值被建设与持续发展[M]. 北京: 科学出版社, 1998, 70-117.
    201. 吴蔚东, 张桃林, 高超, 等. 红壤地区杉木人工林土壤肥力质量性状的演变 [J]. 土壤学报,
     2001, 38(3): 285-294. .
    202. 武冠云. 不同肥力红壤及其位团聚体的肥力特征. 土壤, 1986, 18(4): 174–180.
    203. 武伟, 唐明华, 刘洪斌. 土壤养分的模糊综合评价. 西南农业大学学报, 2000, 22(3)
    204. 谢宝平, 牛德奎. 华南严重侵蚀地植被恢复对土壤条件影响的研究. 江西农业大学学报, 2000,
     22(1): 135–139
    205. 熊利民. 亚热带常绿阔叶林不同演替阶段土壤种子库的初步研究. 植物生态学与地植物生态
     学学报, 1992, 16(3): 249–257
    206. 熊运兴. 紫色丘岗区水土流失严重地区植被恢复技术研究. 中南林学院学报, 1995, 15(2): 184
     –189
    207. 徐明岗, 于荣, 王伯人. 土壤活性有机质的研究进展. 土壤肥料, 2000(6): 3–7
    208. 许明祥, 刘国彬, 卜崇峰. 黄土丘陵区人工林地土壤肥力评价. 西北植物学报, 2003, 8: 15-21.
    209. 许明祥, 刘国彬. 黄土丘陵区刺槐人工林土壤养分特征及演变. 植物营养与肥料学报, 2004,
     12(1)
    210. 许绣云, 姚贤良, 刘克樱. 长期施用有机物料对红壤性水稻土的物理性质的影响. 土壤, 1996,
     28(2): 57–61.
    211. 杨风, 潘超美, 李幼菊. 亚热带赤红壤不同林型对土壤微生物区系的影响. 热带亚热带土壤
     科学, 1996, 5(1): 20–26.
    212. 杨江峰, 黄自力, 郭占富. 延安地区耕地土壤质量模糊评价及其应用. 土壤通报, 1992, 23(1):
     21–24
    213. 杨俐苹. 评价区域性土壤肥力的取样技术的回顾与展望. 土壤肥料, 2000, 1: 3–8
    214. 杨文治, 邵明安, 彭新德, 等. 黄土高原环境的旱化与黄土中水分关系. 中国科学(D),
     1998,28(4): 357-365
    
    
    参考文献 131
    215. 杨文治, 余存组主编. 黄土高原区域治理与评价. 北京: 科学出版社, 1992. 241–291
    216. 杨武德, 王兆骞, 眭国平, 等. 土壤侵蚀对土壤肥力及土地生物生产力的影响. 应用生态学报,
     1999, 10(2)
    217. 杨小波. 海南岛热带地区弃荒农田次生植被恢复特点. 植物生态学报, 2000, 24, (4): 477–482
    218. 杨艳生. 土壤退化指标体系研究. 土壤侵蚀与水土保持学报, 1998, 4(4): 44–46
    219. 姚贤良, 许绣云, 于德芬. 不同利用方式下红壤结构的形成. 土壤学报, 1990, 27(1): 25–33.
    220. 姚贤良, 于德芬. 赣中丘陵地区红壤的不同结构对某些水分物理性质的影响. 土壤学报, 1966,
     14(1): 65–72.
    221. 姚贤良, 于德芬. 赣中丘陵地区红壤性水稻土的结构状况及其肥力意义. 土壤学报, 1962,
     10(3): 267–289.
    222. 易志军, 吴晓芙, 胡曰利. 人工林地土壤质量指标及评价. 林业资源管理, 2002, 1: 31-34
    223. 尹瑞龄. 利用方式对红壤的细菌区系及活性的影响. 土壤, 1992, 24 (5): 264–265.
    224. 于秀波. 我国生态退化、生态恢复及政策保障研究. 资源科学,2002,24(1):72-76
    225. 翟瑞常, 张之一. 耕作对土壤生物碳动态变化的影响. 土壤学报, 1996, 33(2): 201–210
    226. 张华, 张甘霖. 土壤质量指标和评价方法. 土壤, 2001,(6):298-305
    227. 张成娥, 梁银丽, 贺秀斌. 地膜覆盖玉米对头让微生物量的影响. 生态学报, 2002, 22(4): 508
     –512
    228. 张凤荣, 安萍莉, 王军艳, 等. 耕地分等中的土壤质量指标体系分等方法. 资源科学, 2002,
     24(2): 71–75
    229. 张甘霖, 龚子同. 世纪之交土壤学研究的挑战和契机*——从第 16 届世界土壤学大会看土壤
     学的未来. 土壤与环境, 1999, 8(2)
    230. 张庆费, 宋永昌, 由文辉. 浙江天童常绿阔叶林主要演替阶段凋落物与土壤肥力的关系 [J].
     生态学报, 1999, 19(2): 174-178.
    231. 张庆费, 由文辉, 宋永昌. 浙江天童植物群落演替对土壤化学性质的影响 [J]. 应用生态学报,
     1999, 10(1): 19-22.
    232. 张全发. 植物群落演替与土壤发育之间的关系 [J]. 武汉植物学研究. 1990, 8(4): 325~334.
    233. 张桃林, 潘剑君, 赵其国. 土壤质量研究进展与方向. 土壤, 1999, 1: 1–7
    234. 张桃林, 王兴祥. 土壤退化研究进展. 自然资源学报, 2000, 15(3): 280-284
    235. 张兴昌, 邵明安, 黄占斌. 不同植被对土壤侵蚀和氮素流上的影响. 生态学报, 2000, 20(6):
     1038–1044
    236. 张学雷, 张甘霖. 龚子同. SOTER 数据库支持下的土壤质量综合评价——以海南岛为例. 山
     地学报, 2001, 19(4): 377-380
    237. 章家恩, 廖宗文. 试论土壤的生态肥力及其培育. 土壤与环境, 2000, 9(3): 253–256
    238. 章明奎. 亚热带丘陵区植被退化对丘陵红壤理化性质的影响. 土壤, 1995, 27 (5): 241–244.
    239. 章明奎. 退化红壤肥力恢复性能与土壤性质的关系. 水土保持学报, 2000, 14(3): 52–56
    240. 赵杰, 秦明周, 郑纯永. 城乡结合部土壤质量及其动态研究——以开封为例. 资源科学, 2001,
     23(3): 42-46
    241. 赵其国, 刘良梧. 人类活动与土地退化, 见: 中国科协学会部编. 中国土地退化防治研究. 北
     京: 中国科学技术出版社, 1990.  
    242. 赵其国, 孙波, 张桃林. 土壤质量与持续环境 Ⅲ. 土壤质量评价的生物学指标, 1997, 29(5):
     225–234.
    
    
    132 黄土丘陵区生态恢复过程中土壤质量演变及调控
    243. 赵其国, 孙波, 张桃林. 土壤质量与持续环境 I. 土壤质量的定义及评价方法. 土壤, 1997,
     29(3): 113–120.
    244. 赵其国, 孙波, 张桃林. 土壤质量与持续环境 Ⅱ. 土壤质量评价的碳氮指标, 1997, 29(4):
     169–184.
    245. 赵其国, 吴志东. 继往开来, 迎接 21 世纪兑土壤科学的挑战. 土壤, 1999, 5: 225–243
    246. 赵其国, 吴志东. 深入开展“土壤与环境”问题的研究. 土壤与环境, 1999, 8(1)
    247. 赵其国. 土壤与环境问题国际研究概况及其发展趋向—参加第 16 届国际土壤学会专题综述.
     土壤, 1998, 30(6): 281–291
    248. 赵其国. 我国红壤的退化问题. 土壤, 1995, 27(6): 281–285.
    249. 赵其国. 现代土壤学与农业持续发展. 土壤学报, 1996, 33(1): 1–12
    250. 赵晓英, 孙成权. 恢复生态学及其发展. 地球科学进展. 1998, 13(5): 474–480
    251. 赵晓英. 西北地区生物资源开发利用现状及有关问题研究. 地球科学进展, 1996, (增刊 2): 69
     –77
    252. 郑粉莉. 子午岭林区植被破坏与恢复对土壤演变的影响. 水土保持通报. 1996, 16 (5): 41–44
    253. 郑粉丽. 土壤侵蚀与旱地农业研究中的若干论点——黄土高原侵蚀环境调控与农业持续发展
     学术研讨会综述. 水土保持通报, 1994, 14(2): 16–21
    254. 中国科学院南京土壤研究所. 土壤理化分析. 北京: 科学技术出版社, 1978.
    255. 中国科学院南京土壤研究所微生物室 主编. 土壤微生物研究法. 北京: 科学出版社, 1985
    256. 周厚诚, 任海, 向言词, 等. 南澳岛植被恢复过程中不同阶段土壤的变化. 热带地理, 2001,
     21(2): 104–112
    257. 周建斌, 陈竹君, 李生秀. 土壤微生物量氮含量、矿化特性及其供氮作用. 生态学报, 2001,
     21(10): 1721–1728
    258. 周慧珍, 龚子同. 土壤空间变异性研究[J]. 土壤学报, 1996, 33(3): 232-240.2000, 4(4):
    259. 朱志诚. 陕北黄土高原森林草原地带植被恢复演替初步研究. 山西大学学报(自然科学版),
     1994, 16(1): 94–100
    260. 朱志诚. 陕北黄土高原植被基本特征及其对土壤性质的影响. 植物生态学与地植物生态学,
     1993, 17(3): 280–286
    261. 邹厚远. 黄土高原植被保护和恢复利用途径的探讨. 中国科学院水利部西北水土保持研究所
     集刊, 1986, (3): 90–101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700