IT-SOFC阴极材料的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中温固体氧化物燃料电池(IT-SOFC)是固体氧化物燃料电池发展的必然趋势。工作温度的降低有效的改善了高温固体氧化物燃料电池成本高、材料选择面窄、稳定性差等一系列问题,有效的促进固体氧化物燃料电池的商业进程。但温度的降低也使得电极的电催化活性降低,尤其是阴极。本文针对这种情况,尝试通过改进传统阴极材料La1-xSrxCo1-yFeyO3-δ(LSCF)的电极结构来提高它的性能,并探索了La1-xSrxCo1-yNiyO3-δ(LSCN)作为中温固体氧化物燃料电池(IT-SOFC)阴极材料的可能性。
     以葡萄糖/丙烯酰胺作为螯合剂,以相应金属离子的硝酸盐为原料,采用溶胶凝胶的方法制备出了LSCF、LSCN的粉体,并系统研究了螯合剂用量及不同螯合剂对制备工艺的影响。通过XRD物相分析证明所制备的粉体有着纯净的钙钛矿结构;SEM和TEM的分析结果则表明,此方法制备的粉体粒径极小。将不同方法制备的LSCF粉体用丝网印刷的办法,制成LSCF-YSZ的半电池,测试结果表明,该方法制备出的粉体所制备半电池的电化学性能最好。
     分别采用溶液注入法和丝网印刷法制备出了不同微观结构的电极。在溶液注入的方法制备半电池时,在溶液中加入表面活性剂,使得单次溶液注入的量明显提高,有效的简化了制备工艺。同时结合SEM和EIS测试,系统研究了溶液注入量和极化对半电池性能的影响。SEM分析结果表明,溶液注入法中,注入三次后,LSCF和LSCN均已经在YSZ多孔层上形成了良好的三维网络结构。而丝网印刷法的阴极也呈现出颗粒细小,微观结构良好的多孔结构。电化学测试结果表明,溶液注入法中,注入三次制备的半电池的电化学性能较好。对比丝网印刷法和溶液注入法制备半电池的电化学性能,结果表明LSCF溶液注入法的半电池性能优于丝网印刷法,而LSCN则仅在600℃到700℃的范围内,溶液注入法才更有优势。对不同方法制备的LSCF和LSCN半电池进行极化测试,发现丝网印刷法制备的半电池在极化电流作用下稳定性较好。而溶液注入法中,比较不同注入量的半电池极化性能,发现两者稳定性相差不大。
     用溶液注入法制备了LSCF的9cm*9cm的单电池,测试了溶液注入量、气流量及测试温度对单电池电化学性能的影响。发现随着注入量的增多和测试温度的升高,其电化学反应速度也随之加快,单电池需要通以更大的气流量以满足其性能要求。而将测试过的单电池进行二次测试结果表明,重复测试的单电池性能下降较小。
Intermediate temperature solid oxide fuel cell (IT-SOFC) has been widely investigated worldwide as its cost can be reduced substantially for successful commercialization of SOFC technologies. However, to lower the operating temperature of SOFCs from the traditional 1000 to 600–800℃requires a cathode with high electrocatalytic activity. The electrochemical performance for traditional cathode material La0.8Sr0.2Co0.5Fe0.5O3-δ(LSCF) was improved by a modified of the microstructure. And the electrochemical performance of La0.8Sr0.2Co0.8Ni0.2O3-δ(LSCN) was studied, which is the alternative cathode.
     The cathode material of LSCF for IT-SOFC was synthesized by a facile and cost-effective sol-gel method with combining glucose and acrylamide as chelating agents. The effect of the ratio of glucose and acrylamide monomer to metal nitrates was investigated in detail. The XRD results indicated that the pure perovskite phase was obtained. SEM and TEM results reveal that the prepared particle size is in nanometer scale. LSCF powders prepared by different methods were made as half cells by screen printing method, and the cathode prepared by the powder using glucose and acrylamide as chelating agents showed high electrochemical performance.
     Two kinds of composite cathodes which have different electrode microstructure were prepared with YSZ electrolyte by wet impregnation method and screen printing method. In wet impregnation method, the added of surfactant effectively increased the impregnation amount of per time and efficiently simplified the wet impregnation technique. The electrode fine structure and the electrochemical performance were measured by SEM and electrochemical impedance spectra (EIS), and the effect of impregnation amount and polarization test on the electrochemical performance were studied. SEM results showed that both LSCN and LSCF half cell have good microstructure. However, LSCN particles were much larger than LSCF particles in the half cell prepared by wet impregnation method. The EIS results indicated that both LSCN and LSCF half cell have excellent performance by impregnated 3 times. Compared the half cell made with the same material by different methods, we find that LSCF prepared by screen painting method had a better electrochemical performance between 600℃and 750℃, while LSCN prepared by the same method had better results from 600℃to 700℃. The polarization test results of both LSCF and LSCN half cell revealed that screen printing method was more stable than wet impregnation method.
     Anode supported cells were prepared with LSCF cathode by wet impregnation method, the size of the cell is 9cm*9cm. The influence of the cathodes with different ratio of LSCF to YSZ, air flow and testing temperatures was studied. The result indicated that with the increase of the impregnated amount and testing temperature, the cell need larger air flow to satisfy the more quickly electrochemical reaction. Howerve, after polarized for 320 minutes, the performance of the cell degraded gradually.
引文
[1]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.北京:科学出版社, 2004. 3-24
    [2] J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, et al. Fuel Cell Hand book. US Department of Energy, Morgantown,WV. 1998. 1~3
    [3] A. Boudghene Stambouli, E. Traversa. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews, 2002, 6: 433–455
    [4] Yaofan Yi, Ashok D. Rao, Jacob Brouwer et al. Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle. Journal of Power Sources, 2004, 132(1-2): 77–85
    [5] Dufour A. U. Fuel cells– a new contributor to stationary power. Journal of Power Sources, 1998, 71(1-2): 19-25
    [6]黄镇江,刘凤君.燃料电池及其应用.北京:电子工业出版社, 2005. 21-68
    [7] Collecting the History of fuel cells. http://americanhistory.si.edu/fuelcells/origins/origins.html.
    [8] Minh N. Q, Takahashi T. Science and technology of ceramic fuel cells. Elsevier Science B V, 1995, 4:22-23
    [9]毛宗强.燃料电池.北京:化学工业出版社. 2005,3-40
    [10] Fuel Cell Basics http://www.fctec.com/fctec_types_sofc.asp
    [11] This Fuel Cell Heats Your House http://radio.weblogs.com/0105910/2004/03/04.html
    [12] Solid Oxide Fuel Cell http://people.bath.ac.uk/cf233/sofc.html
    [13] http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/
    [14] http://www.netl.doe.gov/publications/proceedings/06/seca/index.htm
    [15] http://www.netl.doe.gov/publications/proceedings/06/seca/index.htm
    [16] S. P. Jiang, Y. J. Leng, S. H. Chan et al. Development of (La,Sr)MnO3-Based Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Electrochem Solid-State Lett. 2003, 6 (4): A67-A 70
    [17] S. P. Jiang, Sam Zhang, Y. D. Zhen et al. Performance of GDC-Impregnated Ni Anodes of SOFCs. Electrochemiacl and solid state letters, 2004, 7: 93-98
    [18]刘荣辉,马文会,王华等.固体氧化物燃料电池阴极材料的研究进展.云南化工, 2005, 3, 45-49
    [19]韩敏芳,李伯涛,彭苏萍等. SOFC电解质薄膜YSZ制备技术.电池, 2002, (3), 156-158
    [20] A. Mitterdorfer and L. J. Gauckler. Reaction kinetics of the Pt, O2(g)|c-ZrO2 system: precursor-mediated adsorption. Solid State Ionics. 1999, 117(1-4): 187-202
    [21] A. Mitterdorfer and L. J. Gauckler. Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation. Solid State Ionics. 1999, 117(3-4): 203-217
    [22] A. Mitterdorfer and L. J. Gauckler. Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part II: Model implementation, parameter estimation, and validation . Solid State Ionics. 1999, 120(1-4): 211-225
    [23] Jeffrey W. Fergus, Rob Hui, Xianguo Li et al. Solid Oxide Fuel Cells Materials Properties and Performance. CRC Press. 2008, 131-178
    [24] Kuo JH, Anderson HU, Sparlin DM. Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: Defect structure, electrical conductivity, and thermoelectric power. Solid State Chem. 1990, 87(1): 55-63
    [25] S. B. Adler. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem.rev, 2004,104: 4791-4843
    [26] Yokokawa H, Sakai N, Kawada T et al. Thermodynamic analysis on interface between perovskite and YSZ electrolyte. Solid State Ionics. 1990, 40-41: 398-401
    [27] Li Z, Behruzi M, Fuerst L et al. In Proceedings of the Third InternationalSymposium on Solid Oxide Fuel Cells: Singhal SC, Iwahara H. SOFC-III, The Electrochemical Society, Pennington, NJ, 1993, 4: 171
    [28] S.C. Singhal. In: M. Dokiya, O. Yamamoto, H. Tagawa and S.C. Singhal, Editors, Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells, PV 95-1, The Electrochemical Society, Pennington 1995, 195
    [29] S. Uhlenbruck and F. Tietz. High-temperature thermal expansion and conductivity of cobaltites: potentials for adaptation of the thermal expansion to the demands for solid oxide fuel cells. Materials Science and Engineering B. 2004, 107: 277-282
    [30] Yasuda I, Ogasawa K, Hishinuma M et al. Oxygen tracer diffusion coefficient of (La, Sr)MnO3±δ. Solid State Ionics, 1996, 86-88: 1197-1201
    [31] Jiang SP. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics, 2002, 146: 1-22
    [32] Ohno Y, Nagata S, Sato H. Properties of oxides for high temperature solid electrolyte fuel cell. Solid State Ionics, 1983, 9/10: 1001
    [33]隋智通,燃料电池及其应用.北京:冶金工业出版社,2004,91-132
    [34] S.C. Singhal and K Kendall, High Temperature Solid Oxide Fuel Cells, Fundamentals, Design and Application. 2003, 103: 188-189
    [35] A.Petric, P Huang and F Tietz, Evaluation of La-Sr-Co-Fe-O for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2000, 135: 719-725
    [36] Rajic Doshi, RichardsVon L, Carter.J.D et al. Development of solid oxide fuel cells that operate at 500℃. Electrochem Soc, 2000, 147 (5), 173-176
    [37] K. Sasakia, K. Hosodaa, T.N. Lanb, et al. Ag–Zr(Sc)O2 cermet cathode for reduced temperature SOFCs. Solid State Ionics, 2004, 174: 97–102
    [38] K. Sasaki, J. Tamura, M. Dokiy, Noble metal alloy-ZrO2 cermet cathode for reduced temperature SOFCS, Solid State Ionics, 2001, 144: 233-240
    [39] V. Dusastre, J.A. Kilner. Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics, 1999, 126: 163–174
    [40] P. Holtappels , C. Bagger. Fabrication and performance of advanced multi-layer SOFC cathodes. Journal of the European Ceramic Society, 2002, 22: 41–48
    [41] Aimin Chang , Stephen J. Skinner, John A. Kilner. Electrical properties of GdBaCo2O5+x for ITSOFC applications. Solid State Ionics, 2006, 177: 2009-2011
    [42] V. Vashook, E. Girdauskaite, J. Zosel, et al. Oxygen non-stoichiometry and electrical conductivity of Pr2?xSrxNiO4±δwith x=0–0.5. Solid State Ionics, 2006, 177 : 1163–1171
    [43] J.P. Viricelle, C. Pijolat, B. Riviere et al. Compatibility of screen-printing technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development. Sensors and Actuators B:chemical, 2006, 118(1-2): 263–268
    [44] Yaohui Zhang. A study of the process parameters for yttria-stabilized zirconia electrolyte films prepared by screen-printing. Journal of Power Sources, 2006, 160(2): 1065-1073
    [45] San Ping Jiang. A review of wet impregnation-An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Materials Science and Engineering, 2006, 418: 199-210
    [46] Atanu Dutta, Jayanta Mukhopadhyay, R.N. Basu. Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells. Journal of the European Ceramic Society, 2009, 29: 2003-2011
    [47] Li S G, Jin W Q, Nanping Xu, et al. Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3?δmembranes. Solid State Ionics, 1999, 124: 161-170
    [48]任引哲,郭崇峰,彭程等,碱土复合氧化物的传导和应用,化学研究, 2001, 12(1): 59-64
    [49] Ma Wenhui. Study of compositely doped cathode materials for solid oxide fuel cell (SOFC) Kunming:Kunming University of Science and Technology, 1998
    [50]李彦,骆仲泱,余春江等.复合掺杂钙钛矿氧化物La0.6Sr0.4-xCaxCo1-yNiyO3-δ阴极的制备和电性能.化工学报,2007, 58(5): 1301-1305
    [51]王茜.溶胶-凝胶(Sol-Gel)法的原理、工艺及其应用.河北化工,2007,(4), 25-55
    [52] Keqin Huang, Man Feng, Joh. B,Goodenough. Sol-Gel Synthesis of a New Oxide-Ion Conductor Sr- and Mg-doped LaGaO3 Perovskite. J. Am. Ceram. Soc. 1996, 79(4): 1100-1104
    [53]蒋先明.简明红外光谱识谱法.广西:广西师范大学出版社. 1992,1-30
    [54] Bauerle J E. Study of solid electrolyte polarization by a complex admittance method. Phys.chem.solids. 1969, 30 (12), 2675-2670
    [55]向军,胥青华,鞠文明等.交流复阻抗技术在CaTi0.85Sc0.15O3-α固体电解质中的应用、实验技术与管理. 2006 (10): 26-29
    [56]贾铮,戴长松,陈玲.电化学测量方法.北京:化学工业出版社, 2006, 127-132.
    [57]江金国,崔崇. La1-xSrxCo0.2Fe0.8O3系阴极材料制备及表征.材料科学与工程学报.2004,22 (3): 382-385
    [58] Qi X W, Lin Y S, Swartz S L. Ind. Eng. Chem. Res. 2000, 39: 646-653
    [59]翟永青,姚子华,丁士文,等.EDTA络合溶胶凝胶法制备La0.8Sr0.2FeO3纳米粉体.稀有金属. 2002, 26 (1): 69-72
    [60]邢长生. PVA法合成La0.8Sr0.2Co1-yFeyO3阴极材料的制备及其性能研究.华中科技大学硕士学位论文.华中科技大学图书馆, 2004.
    [61] Yang B Y, Montgomery R. Alkaline degradation of glucose: effect of initial concentration of reactants. Carbohydrate Research, 1996, 280(1): 27-45
    [62] Ellis A V, Wilson M A. J. Process for the preparation of lactic acid and glyceric acid. Org. Chem. 2002, 67: 8469-8474
    [63] Chunwen Sun, Jie Sun, Guoliang Xiao, Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres, J. Phys. Chem. B 2006, 110, 13445-13452
    [64] Zaj?c.W., ?. K., and J. Molenda. Thermochemical compatibility between selected (La,Sr)(Co,Fe,Ni)O3 cathodes and rare earth doped ceria electrolytes. Journal ofPower Sources. 2007. 173(2): 675-680
    [65] A. Barbucci, M. Viviani, P. Carpanese et al. Impedance analysis of oxygen reduction in SOFC composite electrodes. Electrchimica Acta. 2006, 51(8-9): 1641-1650
    [66] Vladimir V. Srdic, Radovan P. O morjan, Johannes Seydel. Electrochemical performances of (La,Sr)CoO3 cathode for zirconia-based solid oxide fuel cells. Material Science and Engineering, 2005, 116: 119-124
    [67] P. Hjalmarsson, M. S?gaard, A. Hagen, et al. Structural properties and electrochemical performance of strontium- and nickel-substituted lanthanum cobaltite. Solid State Ionics. 2008, 179: 636-646
    [68] Steven Mclntosh, Stuart B.Adler, John M. Vobs, Raymond J. Gorte. Effect of Polarization on and Implications for Characterization of LSM-YSZ Composite Cathodes. Electrochemical and Solid-State Letters. 2004, 7: A111-A114
    [69]曹楚南,张鉴清.电化学阻抗谱导论。北京:科学出版社,2002,45-75
    [70]衣宝廉.燃料电池—原理、技术、应用.北京:化学工业出版社,2003,9
    [71] Colleen S. Spiegel著,马欣、王胜开、陈国顺、阎群等译。北京:电子工业出版社,2008,84-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700