基于Halbach结构的永磁电动悬浮技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在超高速运动领域,常规实验手段的弊端越来越凸显,电动悬浮由于其悬浮动态自稳特性,使得其在此领域具有得天独厚的优势和广阔的应用前景。
     论文以基于Halbach永磁电动悬浮的高速电动悬浮火箭撬滑轨系统为研究内容,在对Halbach永磁电动悬浮的基本原理、磁体优化和稳定性分析的基础上构建了一个电动悬浮实验装置,论文主要完成了以下工作:
     1.采用简化形式的磁场分布和线圈轨道形式,本文对Halbach永磁电动悬浮系统基本原理进行了分析,重点讨论了非理想磁场分布对系统浮阻力、浮重比等特性的影响。
     2.为了使磁体的利用率达到最大,需要对电动悬浮的永磁体进行结构优化。以浮重比为指标,本文对Halbach结构永磁阵列的几何尺寸进行了优化设计,这是Halbach结构永磁电动悬浮系统设计的一个必要步骤。
     3.动态稳定性对电动悬浮系统的设计是十分关键的,本文对其欠阻尼特性进行了探讨,并在此基础上提出了两种主动阻尼引入机制。
     4.在理论分析和仿真比较的基础上构建了一个基于金属转盘轨道的Halbach永磁电动悬浮实验平台,并进行了相关静、动态实验,对永磁电动悬浮系统的基本特性进行了验证。
     通过对永磁电动悬浮系统进行理论和实验分析表明,永磁电动悬浮技术在高速运动领域具有较好的实用性,但一定的主动阻尼措施对系统的动态特性是十分必要的,还需要进一步进行理论和实验验证。
In the ultra-high speed motion domain, there are more and more problems exposed in the conventional test measures, and due to its self-stable ability, EDS technology (short for electrodynamic suspension) is enjoying a good advantage and has an extensive prospect in the area.
     With high-speed rocket launch sled system based on halbach permanent EDS technology being the research object, and on the basis of the fundamental theory analysis, magnet optimization and stability analysis of the permanent magnet EDS system, a permanent magnet EDS experiment platform is constructed. The following works are performed:
     1. Adopting the simplified magnet field distribution, the basic theory of the EDS system based on the coil track is checked. And the effect of the non-ideal field distribution on the characteristics such as levitation-drag ratio and levitation-weight ratio is especially checked.
     2. For the best use of the magnets, the permanent magnets in the EDS system need to be structurally optimized. With levitation-weigh ratio being the optimal index, the geometrical optimal design of the halbach permanent magnets is performed.
     3. The dynamic stability is of great importance for the design of the electrodynamic system. The paper paid an emphasis on the damping of the EDS system and put forward two damping introducing methods.
     4. On the basis of the theoretical analysis and simulations, a halbach permanent magnet EDS platform is constructed with a metallic disc being the track. The corresponding static and dynamic tests are performed and the main characters of the permanent magnet EDS system are varifiedl.
     The theoretical and experimental analysis indicates that, the permanent EDS technology has a good applicability in the high speed motion area, but a certain active damping measure is important for the dynamic characters of the system and needs to be theoretically and experimentally validated.
引文
[1] J. R. Powell, G. T. Danby. High Speed Transportation by Magnetically Suspended Trains; proceedings of the ASME Winter Annual Meeting, New York, F, 1966 [C].
    [2] J. R. Powell, G. T. Danby. The German Magnetic Transportation Program [J]. IEEE Transactions on Magnetics, 1967, 10(2): 417-20.
    [3] L. Urankar. Survey of Basic Magnetic Levitation Research in Erlangen [J]. IEEE Transactions on Magnetics, 1974, 10(2): 421-4.
    [4] R. H. Borcherts. Repulsion magnetic suspension research—U.S.progress to date [J]. Cryogenics, 1975, 15(7): 385—93.
    [5] Y. Kyotani. Development of Superconducting Levitated Trains in Japan [J]. Cryogenics, 1975, 15(7): 372-6.
    [6] D. L. Atherton, A. R. Eastham. Canadian Developments in Superconducting Maglev and Linear Synchronous Motors [J]. Cryogenics, 1975, 15(7): 395—402.
    [7] David L. Atherton, A. R. EASTHAM. Superconduction Maglev and LSM Development in Canada [J]. IEEE Transactions on Magnetics 1975, 11(2): 627-32.
    [8] R. Rhodes, B. Mulhall, J. Howell, E. Abel. The Wolfson Maglev Project [J]. IEEE Transactions on Magnetics, 1974, 10(2): 398—401.
    [9] S. Miyamoto, Y. Osada, K. Yamazumi, T. Furuki. The Status of the Running Tests of JR-maglev; proceedings of the The 18th International Conference on Magnetically Levitated Systems and Linear Drives, Shanghai, F, 2004 [C].
    [10] Shigehisa Kusada, Motohro Igarashi, Kaoru Nemoto etc. The Project Overview of the HTS Magnet for Superconducting Maglev [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 211-6.
    [11] Motoharu ONO S K, Hisao Ohtsuki. Japan's Superconducting Maglev Train [M]. IEEE Instrumentation & Measurement Magazine. 2002: 9-15.
    [12] LuGuang Y. Development of the Maglev Transportation in China; proceedings of the The 18th International Conference on Magnetically Levitated Systems and Linear Drives, Shanghai, China, F, 2004 [C].
    [13] LuGuang Y. Progress of the Maglev Transportation in China [J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1138-41.
    [14] JS Wang, SY Wang, YW Zeng etc.The Present Status of the High Temperature Superconducting Maglev Vehicle in China [J]. Superconductor Science and Technology, 2005, 18(2): 215-8.
    [15] Hua Jing, Suyu Wang, Wei Liu,etc. A High-Tc Superconducting Maglev System Using T-Shaped Permanent Magnet Single-Guideway [J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 795-8.
    [16]王厚生,杜玉梅,夏平畴,金能强.电动式磁悬浮列车金属板轨道结构的研究[J].中国电机工程学报, 2005, 25(7): 163-6.
    [17]王厚生.永磁电动式导体板磁悬浮列车轨道结构及相关研究[D].北京;中国科学院, 2004.
    [18] Housheng Wang, Ying Ye, Qiuliang Wang, etc. Analysis for Ring Arranged Axial Field Halbach Permanent Magnets [J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1562-5.
    [19]李春生.永磁电动式磁悬浮的研究[D].北京;中国科学院, 2007.
    [20]李春生杜,严陆光.应用于磁浮列车的直线型Halbach磁体结构的优化设计[J].高技术通讯, 2007, 17(7): 724-9.
    [21]李春生杜,严陆光,夏平畴.磁浮列车工程中的Halbach永久磁体结构的优化[J].工程设计学报, 2007, 14(4): 334-8.
    [22]李春生,王武,杜玉梅,金能强,严陆光.直线型Halbach磁体和导体板构成的电动式悬浮系统的实验装置设计[J].工程设计学报, 2008, 15(1): 33-6.
    [23] Li Chunsheng W J, Xia Pingchou and Yan Luguang. Structure of Linear PM Halbach Array for EDS Maglev [M]. The 20th International Conference on Magnetically Levitated Systems and Linear Drives. California. US. 2008: 6.
    [24] Y. Hsu, D. Ketchen, L. Holland, A. Langhorn, D. Minto, D. Doll. Status of the Magnetic Levitation Upgrade to Holloman High Speed Test Track; proceedings of the 20th Intern Conf On Magnetically Levitated Systems and Linear Drives(Maglev’1998 Proceedings), California, F, 2008 [C].
    [25] Neil Bosmajian, David Minto, Leo Holland. Status of the Magnetic Levitation Upgrade of The Holloman High Speed Test Track; proceedings of the 21st AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Denver. US, F, 2000 [C].
    [26] Sawada K. Outlook of the Superconducting Maglev; proceedings of the The 20th International Conference on Magnetically Levitated Systems and Linear Drives, California, US, F, 2008 [C].
    [27] In-Kun Kim, Robett Kratz , David Doll. General Atomics Urban Maglev Technology Development; proceedings of the The 17th International Conference on Magnetically Levitated Systems and Linear Drives, Lausanne, Switzerland, F, 2002 [C].
    [28] Sam Gurol, Robrt Baldi, Daryl Bever. Status of The General Atomics Low Speed Urban Maglev Technology Development Program; proceedings of the The 18th International Conference on Magnetically Levitated Systems and Linear Drives, Shanghai, China, F, 2004 [C].
    [29] Sam Gurol, Bob Baldi, Richard Post. General Atomics Urban Maglev Program Status; proceedings of the The 19th International Conference on Magnetically Levitated Systems and Linear Drives, Dresden, Germany, F, 2006 [C].
    [30] Thomas E. Riester, Dr. Allan Golden. California University of Pennsylvania (CALU)– Maglev Sky Shuttle; proceedings of the The 20th International Conference on Magnetically Levitated Systems and Linear Drives, California, US, F, 2008 [C].
    [31] R. Halbach. Application of Permanent Magnets in Accelerators and Electron Storage Rings [J]. Journal of Applied Physics, 1985, 57(3605-7.
    [32] Montgomery D B. Overview of the 2004 Magplane Design, F, 2004 [C].
    [33] Jiarong Fang, D Bruce Montgomery. Preliminary Design of the Magplane MagPipe System; proceedings of the The 20th International Conference on Magnetically Levitated Systems and Linear Drives, California. US, F, 2008 [C].
    [34] Laurence E. Blow, 1994.
    [35] L. Del Monte, F. Gamma, R. Andriana, AIAA 2001-1922 [R], 2001.
    [36] J. H. Schultz, A. Radovinsky, R. J. Thome, B. Smith, J. V. Minervini. Superconducting Magnets for Maglifter Launch Assist Sleds [J]. IEEE TRANSACTlONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11(1): 4.
    [37] John R. Hull, James Fiske, Ken Ricci, Michael Ricci. Analysis of Levitational Systems for a Superconducting Launch Ring [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2117-20.
    [38] Jueren Ackermann, J R Me Breteau. Future Launcher Preparatory Programme [M]. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, California. 2006: 7.
    [39] J. Powell, G. Maise, J. Paniagua, and J. Rather, 2008.
    [40] T. Louann, LLNL Inductrack Progress Report - February 99 through November 99 2000.
    [41] Willian A. Jacobs. Magnetic Launch Assist-NASA’s Vision for the Future [J]. IEEE TRANSACTIONS ON MAGNETICS, 2001, 37(1): 55-7.
    [42] Dan Dumabcher. NASA’S Second Generation Reusable Launch Vehicle Program Introduction, Status and Future Plans [M]. AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2002.
    [43]杨文将,刘宇,杨博.航天发射用磁悬浮助推发射系统概念研究[J].北京航空航天大学学报, 2005, 31(1): 105-10.
    [44]杨文将,刘宇,于有志.航天磁悬浮发射脉冲磁流体供能系统方案分析[J].宇航学报, 2005, 26(6): 828-32.
    [45] W. J. Yang, Z. Wen, Y. Duan, X. D. Chen, M. Qiu, Y. Liu, L. Z. Lin. Construction and Performance of HTS Maglev Launch Assist Test Vehicle [J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1108-11.
    [46]刘宇,杨文将,段毅,陈晓东.航天运载器磁悬浮助推发射关键技术[J].北京航空航天大学学报, 2006, 32(10): 1180-5.
    [47] Wenjiang Yang, Ming Qiu, Yuliu. etc. Levitation characteristics in an HTS maglevlaunch assist test vehicle [J]. SUPERCONDUCTOR SCIENCE AND TECHNOLOGY, 2007, 281-6.
    [48] Jiasu Wang, Suyu Wang, Changyan Deng. etc. Laboratory-Scale High Temperature Superconducting Maglev Launch System [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2091-4.
    [49] Ove F. Storest, Bradley E Paden. Discrete track Electrodynamic maglev PartⅠ: Modeling [J]. 2005,
    [50] P. L. Richards, M. Thinkham. Magnetic Suspension and Propulsion Systems for High-speed Transportation [J]. Journal of Applied Physics, 1972, 43(6): 2680-91.
    [51] Robert Kratz, Richard F. Post. A Null-Current Electro-Dynamic Levitation System [J]. IEEE Transactions on Applied Superconductivity, 2002, 12(1): 930-2.
    [52] W. M. Saslow. Maxwell's theory of eddy currents in thin conducting sheets and applications to electromagnetic shielding MAGLEV [J]. American Journal of Physics, 1992, 60(693-711.
    [53] T. K. Hunt. AC losses in superconducting magnets at low excitation levels [J]. Journal of Applied Physics, 1974, 45(2): 907-13.
    [54] J. R. Reitz, L. C. Davis. Force on arectangular coil moving above a conducting slab [J]. Journal of Applied Physics, 1972, 43(4): 1547-53.
    [55] J. L. Boulnois, J. L. Giovachini. The fundamental solution in the theory of eddy currents and forces for conductors in steady motion [J]. Journal of Applied Physics, 1978, 49(2241-9.
    [56] J. L. He, D. M. Rote, H. T. Coffey. Applications of the dynamic circuit theory to maglev suspension systems [J]. IEEE Transactions on Magnetics, 1993, 29(11): 4153-64.
    [57] Ove F. Storest, Bradley E. Paden. Electrodynamic magnetic levitation with discrete track Part II: Periodic track model for numerical simulation and lumped parameter model [J]. 2005,
    [58] Richard F. Post, Dmitri Ryutov. Springfield, VA: LLNL, 1996.
    [59] Davey K. Optimization Shows Halbach Arrays to be Non-Ideal for Induction Devices [J]. IEEE Transactions on Magnetics, 2000, 36(4): 4.
    [60] Q. Han, C. Ham, R. Phillips. Four- and Eight-piece Halbach Array Analysis and Geometry Optimization for Maglev [J]. IEE Proceedings on Electr Power Appl, 2005, 152(3): 535-42.
    [61] P. Suominen O T, H. Koicisto. Optimization of the Halbach-type Magnetic Multipole for an Electron Cyclotron Resonance Ion Source [J]. Review of Science Instruments, 2004, 75(1): 58-63.
    [62] N. Takahashi, T. Yamada, D. Miyagi, S. Markon. Basic Study of Optimal Design of Linear Motor for Rope-less Elevator [J]. 201-2.
    [63] Koen J. Mssesen, Bart L. J. Gysen, Johannes J. H. Paulides, Elena A. Lomonova. Halbach Permanent Magnet Shape Selection for Slotless Tubular Actuators [J]. IEEE Transactions on Magnetics, 2008, 44(11): 4305-8.
    [64] XiaoYuan Wang, Yongfei Wang, Qingyan Wang. Effects of Different Permanent Magnet Structures on the Air Gap, F, 2009 [C].
    [65] Z. Q. Zhu, D. Howe. Halbach Pernmanent Magnet Mashines and Applications [J]. IEE Proceedings on Electr Power Appl, 2001, 148(4): 299-308.
    [66] Z. Q. Zhu. Recent Development of Halbach Permanent Magnet Machines and Applications [J]. 2007, 8.
    [67] James F. Horburg. Modeling Maglev Passenger Compartment Static Magnetic Fields From Linear Halbach Permanent magnet Arrays [J]. IEEE Transactions on Magnetics, 2004, 40(2): 59-64.
    [68] Richard F. Post, Dmitri D. Ryutov. The Inductrack: A Simpler Approach to Magnetic Levitation [J]. IEEE Transactions on Applied Superconductivity, 2000, 10(1): 901-4.
    [69] Y. Cai, D. M. Rote, T. M. Mulcahy, Z. Wang, S. S. Chen, S. Zhu. Dynamic Stability of Maglev Systems[R]. 1993
    [70] Y. Cai, D. M. Rote, T. M. Mulcahy, Z. Wang, S. S. Chen, S. Zhu. On the Unsteady-Motion Theory of Magnetic Forces for Maglev[R]. 1993.
    [71] Y. Cai, D. M. Rote, T. M. Mulcahy, Z. Wang, S. S. Chen, S. Zhu. Dynamic Stability Experiment of Maglev Systems[R]. 1995.
    [72] Y. Cai, D. M. Rote, T. M. Mulcahy, Z. Wang, S. S. Chen, S. Zhu. Magnetic Damping for Maglev[R]. 1995.
    [73] Y. Cai, D. M. Rote, T. M. Mulcahy, Z. Wang, S. S. Chen, S. Zhu. On the Unsteady-Motion Theory of Magnetic Forces for Maglev[R]. 1996.
    [74] Donald M. Rote, Yigang Cai. Review of Dynamic Stability of Repulsive-Force Maglev Suspension Systems [J]. IEEE Transactions on Magnetics, 2002, 38(2): 1383-41.
    [75]郑杰.感应线圈对磁浮系统性能影响研究[D].长沙;国防科学技术大学, 2006.
    [76] Tessuzo Sakamoto, Toshihiro Kobayashi. Levitation Force Assist through LSM Armature Currents in Superconducting maglev Vehicle [J]. Electrical Engineering in Japan, 2006, 155(4): 45-52.
    [77]闫宇壮,李云钢,程虎.电动电磁混合磁浮悬浮稳定性及技术特性分析[J].中国电机工程2007, 27(6): 53-6.
    [78]陈慧星,李云钢,闫宇壮. EDS&EMS混合磁浮系统的稳定裕度分析[J].电气传动, 2007, 37(7): 50-3.
    [79] Qinghua Han. Analysis and Modeling of the EDS Maglev System Based on theHalbach Permanent Magnet Array [D]. Orlando; University of Central Florida, 2004.
    [80] Friend P, Magnetic Levitation Train Technology 1. 2004.
    [81]陈宇明,金能强.直线同步电机的磁场与力特性分析[J].电工电能新技术, 2002, 21(1): 26-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700