黄土剖面中微生物与有机质的古气候记录——趋磁细菌对磁化率的贡献及其特征生物标志物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据气候及地质背景,选择位于黄土高原中部的甘肃西峰和东南部的
    陕西段家坡为代表性黄土剖面,系统研究了黄土中趋磁细菌(MB)和磁小体
    (MS)的特征;首次通过实验模拟了不同温度下MB的生长及MS的形成;
    初步定量模拟了MB和MS对磁化率的贡献:探讨对比了华南沿海泥炭与西北
    黄土MB和MS特征:分析了黄土-古土壤序列及其中MB内特征生物标志物
    的组成,探讨了MB在黄土-古土壤序列中的化石行为及其古气候环境意义。
    主要结果可总结如下:
    1、MB广泛分布于黄土-古土壤序列;MB对黄土--古土壤序列磁化率的贡献表
     现在两个方面:即菌体对磁化率的影响及细菌死亡后保存下来的MS“化石”
     对磁化率和频率磁化率的影响;对10g样品,数十天培养之后,MB的生
     长能使其磁化率增长最高可达116.4%;
    2、MB广泛存在于各种沉积环境当中,菌体的多少、形态、大小等随环境变
     化而发生一定的变化。MS与环境的关系则可能更为密切,体现在其数量、
     形态、成分、大小,甚至能否形成。温度在一定范围内变化、中至偏碱的
     环境、可供MB利用并合成MS的适量的Fe等是MS形成的有利条件;EDAX
     等结果表明,段家坡与西峰黄土剖面的磁小体成份可能有些差异;
    3、黄土剖面中总有机碳(TOC)分布可反映古气候演化的趋势。由干酪根热解
     烃TMAX计算得出西峰剖面 S5-1层形成时古湿度达80%以上,而L1-L6其余各层
     古湿度均低于60%;氢、氧指数的分布表明S6-1层时的古环境亦相当稳定。
    3、L5-S5层段正构烷烃CPI值、C31/C29、C31/C27、脂肪酸的CPI(A)值、C16/C18
     以及不饱和组分等参数表明,黄土地区当时古气候偏干冷,西峰地区较段
     家坡更干冷。西峰剖面从S5-1形成到L5堆积时古湿度可能有一个突变,即
     古气候由较湿润突然转变为极干燥;而段家坡地区当时的古气候变化较之
     西峰要缓和。MB有可能是黄土剖面中脂肪酸的重要来源之一。
Characteristics of magnetotactic bacteria (MB) and the contained magnetosomes
    (MS) in the Quatemary Chinese loess-paleosol sequences were studied systemically
    through selecting sectinn Xifeng in Gansu Province in the central Loess Plateau and
    section Duanjiapo in Shaanxi Province, the southeast of the Plateau on the basis of
    the modem climatic and geologic backgrounds. The MB growth and MS formation
    under differeni temperatures were simulated for the first time in China. Primary
    studies on the contributions of MB and MS to the magnetic suscghbility of loess-
    paleosol sequences were also carried out to try to reveal the mechanism of the
    magnetic suscePtibility as a climatic proxy Moreovef, characteristics of MB and MS
    in the peat, Southeast of China were compared with those in Loess. Besides,
    characteristic Biomarkers of loess-paleosol sequences and the MB were analyzed to
    show the "fossil behavior" of MB in loess-paleosol sequences and the paleo-climatic
    significance. The major results can be drawn as fOllowing:
    1. Influences of MB on the suscoptibility of loess-Paleosol sequences can be
    represented in both the contributions of MB to the susceptibility and those of MS
    "fossils" to the frequent susceptibility. It is shown by the expetimental results
    that the susceptibility of 10g Chinese loess (paleosol) sarnples can be increased
    116.4% at most after MB cultured fOr 10-60 days.
    2. MBs are widely diStribllted in various environmenis. Howevet, the amount,
    morphologies and sizes of MB vary somewhat in different environments.
    Nevertheless, MS formation may be related more closely with the environment.
    Conditions are favorable for MS formation with temperature varying in a certain
    range (10℃ or above), neutral to alkaline pH and enough Fe which can be used
    by MB. The EDAX results show that MS in section Xifeng may contain element
    S, somewhat different from that in section Duanjiapo.
    
    
    
    w~l
    3. The Total Organic Carbon content (TOC) of the Chinese loess can reflect the
    trend of the paleo-climatic changes. The paleo-humidity of S,-, paleosol
    formation of section Xifeng was as high as 80% calculated by the T.^.' the
    largest of layers from L, down to L,. The paleo-environment when S,-, formed
    was quite stable shown by the OI and HI.
    4. It is shown by CPI value, C,./C,,, C,,lC,, of n-alkane and CPI^ value, C,e/ C,, of
    n-fatty acid and the unsaturated components of layers from L, to S, of both
    sections that it was relatively cold then in the Loess Plateau, and colder in Xifeng
    than in Duanjiapo. Furthermore, there might exist an abruPt humidity variation
    from S, formation to Ls accumulation in section Xifeng. MB perhaPs is an
    important origin of the fatty acid in loess-paleosol sequences.
引文
1.安芷生,吴锡浩,卢演俦等,最近2万年中国古环境变迁的初步研究,1991,黄土第四纪地质全球变化,第二集,科学出版社,1-26.
    2.安芷生,吴锡浩,汪品先等,末次间冰期以来中国古季风气候与环境变迁.1992,黄土第四纪地质全球变化,第三集,科学出版社,14-30.
    3.陈骏,汪永进,季峻峰等,陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义,第四纪研究,1999,4,350-356.
    4.崔福斋等编著,生物材料学.北京:科学出版社,1997,103-110.
    5.丁仲礼,刘东生,刘秀铭等,中国黄土的土壤地层与第四纪气候,1991,黄土第四纪地质全球变化,第一集,科学出版社,34-46.
    6.范国昌,黄土趋磁细菌的分布、鉴定及其磁小体的特性,硕士论文,1996.
    7.范国昌,李荣森等,我国趋磁细菌的分布及其磁小体的研究,中国通报,1996,第41卷,第4期,349-352.
    8.傅家漠,盛国英,分子有机化学与古气候、古环境研究.1992,第四纪研究,4,306-320.
    9.郭正堂,N.Fedoroff,西峰和段家坡黄土中盐碱化古土壤气候意义的初步探讨,第四纪研究,1992,第二期,107-115.
    10.顾兆炎,刘荣谟,刘禹,黄土-古土壤碳酸盐稳定同位素组成与古环境的关系.1992,黄土第四纪地质全球变化,第三集,科学出版社,55-61.
    11.广东省地名委员会,广东省国土厅编制,广东省县图集,1989.
    12.韩家懋,姜文英,褚骏,黄土和古土壤中磁性矿物的粒度分布,第四纪研究,1997,3,281-287.
    13.贾蓉芬,林本海,西安段家坡黄土有机质特征及其环境意义,1993,地理科学,13(4),337-345.
    14.贾蓉芬等,黄土地区气候演变的有机地球化学标志,地理科学,1996,16(2),97-105.
    15.贾蓉芬,李荣森,卫扬保,微生物在铁的地质循环中的作用及意义,地质地球化学,1993,3,62-69.
    16.贾蓉芬,刘东生,林本海,陕西兰田段家坡黄土剖面有机质磁性的研究.1992,地球化学,3,234-242.
    17.贾蓉芬,从有机角度探讨中国黄土地区古土壤层磁化率高的形成机制,中国第四纪地质与环境,海洋出版社,1997,126-136.
    18.贾蓉芬,刑福建,赵林等,从渭南剖面有机质类型的差异探讨黄土地区湿度的演变趋势.1995,地球化学,24,增刊,66-74.
    19.贾蓉芬,林本海,黄土与古土壤中生物标志物及其地质意义-Ⅰ.烃类化合物的主要类型与特征.1992,黄土第四纪地质全球变化,第三集,科学出版社,79-83.
    20.贾蓉芬,颜备战等,陕西段家坡黄土剖面中趋磁细菌特征与环境意义,《中
    
    国科学》(D辑),1996,第26卷,第5期,411-416.
    21.姜善春,项志鹏,深海沉积物中正构、异构、不饱和一元脂肪酸色谱-质谱鉴定.质谱学杂志,1904,23-31.
    22.李荣森,范国昌等,黄土剖面中趋磁细菌及其磁小体的初步研究,地球化学,1996,第25卷,第3期,253-255.
    23.刘东生,郑绵平,郭正堂,亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性,第四纪研究,1998,3,194-203.
    24.刘东生等编译,第四纪环境,科学出版社,北京,1997.
    25.刘俊峰,苏英,陕西蓝田地区850ka以来的植被与气候变化.1996,黄土第四纪地质全球变化,第四集,科学出版社,53-62.
    26.刘晓东,安芷生,李小强,最近18ka中国夏季风气候变迁的数值模拟研究.1996,黄土.第四纪地质.全球变化,第四集,科学出版社,142-150.
    27.刘信,向磁微生物的开发和利用,微生物学通报,1991,18(3),188-189.
    28.刘秀铭,刘东生等,黄土频率磁化率与古气候变换,第四纪研究,1990,第一期,42-50.
    29.刘秀铭,刘东生等,中国黄土磁性矿物特征及其气候意义,第四纪地质,1993,281-287.
    30.卢正启等,磁性多层在磁光数据存贮技术中的应用,大自然探索,1996,第3期,35-39.
    31.鹿化煜,安芷生,洛川黄土粒度组成的古气候意义.1997,科学通报,42(1)66-69.
    32.吕厚远,磁化率和植物化石记录对第四纪沉积环境的古气候量化研究,1998,博士论文.
    33.吕厚远,郭正堂,吴乃琴,黄土高原和南海陆架古季风演变的生物记录与Heinrich事件。1996,第四纪研究,1,11-18.
    34.吕厚远,刘东生;吴乃琴等,未次间冰期以来黄土高原植被演替的植物硅酸体记录,1999,第四纪研究,4,336-349.
    35.彭先芝,贾蓉芬,李荣森等,黄土-古土壤序列中趋磁细菌的分布和磁小体形成的古环境研究,2000,科学通报.
    36.史继扬,向明菊,屈定创等,氨基酸、脂肪酸对过渡带气、低热原油形成的意义.1995,沉积学报,13(2),33-43.
    37.S.C.波特,全球变化与中国的第四纪科学,1991,黄土第四纪地质全球变化,第一集,科学出版社,124-125.
    38.孙建中,张骏,李同录等,黄土替代性气候指标之一-全铁含量之转换.第30界国际地质大会论文集,21.地质出版社,1999,66-75.
    39.童国榜,张俊牌,范淑贤等,中国4Ma以来孢粉植物群与环境演变的趋势.1996,黄土第四纪地质全球变化,第四集,科学出版社,32-45.
    40.W.D.麦科伊,R.S.布雷德利,张光宇,中国北方黄土氨基酸地层学及古温度讨论.1991,黄土第四纪地质全球变化,第二集,科学出版社,73-82.
    
    
    41.王律江,汪晶先,用转换函数推算南海古温度的尝试。1988,科学通报,33(5),371-373.
    42.王永焱,中国黄土第四纪气候变化.1987,中国科学,10,1099-1106.
    43.卫扬保,姜伟等,趋磁细菌研究:趋磁细菌WD-1的生长和磁小体的合成条件,1994(a),武汉大学学报(自然科学版),第6期,121-127.
    44.卫扬保,张洪霞等,趋磁细菌研究:武昌东湖水体中趋磁细菌WD-1的分离,1994(b),武汉大学学报(自然科学版),第6期,115-120.
    45.文启忠等著,中国黄土地球化学,科学出版社,1989.
    46.吴乃琴,吕厚远,植物硅酸体-气候因子转换函数及其在渭南晚冰期以来古环境研究中的运用.1994,第四纪研究,3,270-279.
    47.宣桂鑫等,磁性多层膜研究进展,大自然探索,1996,第2期,68-71.
    48.向明菊,史继扬,周友平等,不同类型沉积物中脂肪酸的分布、演化和生烃意义.1997,沉积学报,15(2),84-88.
    49.徐立,洪华生,厦门西港颗粒有机碳的形态分布特征和来源.1995,台湾海峡及邻近海域海洋科学讨论会会议论文集,海洋出版社,296-301.
    50.颜备战,西北黄土古气候的有机地球化学研究,硕士论文,南京大学,1997.
    51.颜备战,贾蓉芬,胡凯,陕西黄土剖面系列链烃化合物的分布与古气候意义.1998,地球化学,27(2),180-186.
    52.阎桂林等,河南双河油田第四纪沉积物(土壤)中趋磁细菌的发现,地球化学-中国地质大学学报,第20卷,166-167.
    53.杨仕清等,纳米磁性功能材料的军事应用研究进展,大自然探索,1996,第一期,13-17.
    54.尧德中,熊茜桃,生物合成磁铁矿及其应用,《大自然探索》,1995,N0.2,Vol.14,63-66.
    55.张言,近十万年来渭南黄土波谱-地球化学环境信息探讨,第四纪研究,1994,No.3,214-222.
    56.中国科学院地球化学研究所有机地球化学与沉积学研究室编著,有机地球化学,科学出版社,1982.
    57.中国矿产发现史(广东卷),地质出版社,1996,41-46.
    58.朱照宇,丁仲礼,中国黄土高原古气候与新构造演化,1994,地质出版社.
    59.朱照宇,中国黄土时空分布及其环境意义.1996,黄土第四纪地质全球变化,第四集,科学出版社,22-31.
    60. Akihiko Iida and Junji Akai, Crystalline suffer inclusions in magnetotactic bacteria, Sci. Rep. Niigata Univ., Ser. E(Geology), 1996, NO.11, 35-42.
    61. Akihiko Iida and Junji Akai,TEM study on magnetotactic bacteria and contained magnetite grains as biogenic minerals, mainly from Hokuriku-niigata region, Japan, Rep. Niigata Univ., Ser. E(Geology), 1996, NO. 11, 43-46.
    62. Banfield J. F. & Nealson K. H. Editors, Reviews in Mineralogy Geomicrobiology: Interactions Between Microbes and Minerals, Mineralogical Society of America, 1997, Vol. 35.
    
    
    63. Bazylinski D. A. et al., Anaerobic magnetite production by a marine, magnetotactic bacterium, Nature, .1988, 334, 518-519.
    64. Blakemore R. P et al., Microaerobic conditions are required for magnetite formation within aquaspirillum magnetotacticum, Geomicrobiology Journal, Vol.4, No. 153-71.
    65. Blakemore R. P, et al., Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium, J. Bacteriology, 1979, Vol.140, 720-729.
    66. Blakemore R.P, Magnetotactic bacteria, Science, 1975, Vol. 190,377.
    67. Brassell S.C., Eglimton G., Marlowe I. T. et al., Molecular stratigraphy: a new tool for climatic assessment. 1986, Nature, 320(13) 129-133.
    68. Bruce M. Moskowits et al., Rock magnetic criteria for the detection of biogenic magnetite, Ear. and Plan. Sci. Lett., 1993,120,283-300.
    69. Carlife Michael J. and Dudeney A. W. L, Zonation in Migrating magnetococci, Journal of General Bacteriology, 1993, 139: 1671-1680.
    70. Cranwell P.A., Extractable and bound lipid components in a freshwater sediment, 1978, Geochim. Cosmochim. Acta, 42,1523-1532.
    71. Delong Edward F., et al., Multiple evolutionary origin of magnetotaxis in bacteria, Science, 1993, Vol.259, 803-805.
    72. Erwin Suess, Biomarkers for ancient climates, 1986, Nature, 320(13) , 107-108.
    73. Eyre J. K. and Show J., Magnetic enhancement of Chinese Loess-the role of Y Fe_2O_3?, Geophy. J. Int. 1994,117,265-271.
    74. Frankel Richard B. and Blakemore Richard P., Magnetite and Magnetotaxis in Microorganism, Bioelectromagtics 10: 223-237(1989) , Invited Paper.
    75. Frankel Richard B., et al., Fe_3O_4 Precipitayion in Magnetotactic Bacteria, Biochimica et Biophisica Acta 763(1982) : 147-159.
    76. Gorby Yuri A et al., Characterization of the Bacterial Magnetosome Membrane, Journal of Bacteriology, 1988, Vol. 170,
    77. Guerin William F. and Blakemore Richard P., Redox Cycling of Iron Supports Growth and Magnetite Synthesis by Aquaspirillum magnetotacticum, Applied and Environmental Microbiology, 1992, Vol. 58, No. 4,1102-1109.
    78. Heller F. and Liu T. S., Magnetostratigraphical dating of loess deposits in China, Nature, 1982,431-433.
    79. Heller F. and Liu, T .S., Magnetism of Chinese Loess deposits, Journal of Geophysical Research 77,1984, 125-141.
    80. Jia Rongfen, Peng Xianzhi, Xu Shiping et al., Roles of Organic matter on Higher susceptibility in the paleosols in Chinese loess sections, Proc. 30~(th) Int'l Congr., 21,28-86.
    81. Junji Akai and Akihiko Iida, Fine structures and crystallographic orientations in biogenic magnetite observed by TEM.
    82. Kenneth P. Kodama, Magnetic fabrics, Reviews of Geophysics, Supplement, 1995, 7,129-135.
    83. Kirchvink Joseph L., Magnetite Biomineralization and Geomagnetic Sensitivity in Higher Animals: An Update and Recommendations for Future Study,
    
     Bioelectromagtics 10: 239-259(1989) , Invited Paper.
    84. Kirschvink Joseph L. and Shih-Bin R. Chang, Ultrafine-grained magnetite in deep-sea sediments: Possible bacterial magnetofossils, Geology, 1984, 12, 559-562.
    85. Kruger S., et al., Small Angle Neutron and X-Ray Scattering from magnetite crystals in magnetotactic bacteria, J. Magnetism and Magnetic Materials , 1989, vol.82, 17-28.
    86. Kruger S., et al., Small Angle Neutron Scatterring from bacterial magnetite, J. Appl. Phy. 67(9) , 1990,4475-4477.
    87. Kukla G., Heller R, Liu X. M. et al., Pleistocene climates in China dated by magnetic susceptibility, Geology, 1988, 16, 811-814.
    88. Liu Tungsheng et al., LOESS and THE ENVIRONMENT, 1985,China Ocean Press Beijing.
    89. Lovley Derek R., Stolz John F. et al., Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature, 1987, Vol.330,252-255
    90. Lowenstam Heinz A., Minerals Formed by Organisms, Science, Vol. 211, 1981, 1126-1131.
    91. Mann Stephen, Frankel Richard B. & Blakemore Richard P., Structure, morphology and crystal growth of bacterial magnetite, Nature, 1984, Vol. 310, 405-407.
    92. Mann Stephen, Sparks Nicholas H. C., et al., Biomineralization of ferrimagnetic greigite ( Fe_3S_4) and iron pyrite (FeS_2) in a magnetotactic bacterium, Nature, Vol.343,1990,258-261.
    93. Maher Barbara A. & Taylor Reginald M., Formation of ultrafine-grained magnetite in soils, Nature, 1988, Vol. 336, 368-405.
    94. Mayer B. A. and Thompson R., Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols, Quaternary Research, 1992, 37,155-170.
    95. Mayer B. A. and Thompson R., Pedogenesis and paleoclimate: Interpretation of magnetic susceptibility of Chinese loess-paleosol sequences: comment and reply, Geology, 1994,857-860.
    96. Moskowitz Bruce M., Biomineralization of magnetic minerals, Reviews of Geophysics, Supplement, 1995,7,123-128.
    97. Petersen Nikolai & Tilo von Dobenneck, Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean, Nature, 1986, Vol. 320,611-615.
    98. Petersen Nikolai, et at, Magnetic Bacteria in Lake Sediments, Geomagnetism and Paleomagnetism, 1989,231-241.
    99. Reynolds R. L. and King J. W., Magnetic records of climate change, Review of Geophysics, Supplement, 1995,101-110.
    100. Reynolds Richard L., King John W., Magnetic records of climate change, Reviews of Geophysics, Supplement, 1995,7, 101-110.
    101. Saliot A, Andre C., Fevrier A. et al., Alalysis and budget of biogeochemical Markers in dissolved, small and large size suspend matter in the Ocean. 1981, Advance in Organic Geochemistry, 251-258
    
    
    102. Saliot A., Goutx M., Feverier A. et al., Organic sedimentation in the water collumn in the Arabian Sea: Relationship between the lipid composition of small and large-size, surface and deep particles. 1982, Marine Chemistry, 11,257-278.
    103. Sparks N.H.C, L. Courtaux, et al., Magnetotactic bacteria are widely distributed in sediments in the UK, FEMS Microbiology Letters 37 (1986) , 305-308.
    104. Spring Stefan, et al., Dominating Role of an Unusual Magnetotactic Bacterium in the Microaerobic Zone of a Freshwater Sediment , Applied and Environmental Microbiology, 1993, V01. 59, N0. 8, 2397-2403.
    105. Stolz John F., Lovley Derek R., Haggerty Stephen E., Biogenic Magnetite and the Magnetization of Sediments, Journal of Geophysical Research, 1990, Vol. 95, No. M, 4355-4361.
    106. Tadashi Matsunaga et al., Magnetite formation by a magnetic bacterium capable of growing aerobically, Appl. Microbiol Biotechnol , 1991, 35: 651-655.
    107. Tadashi Matsunaga et al., Respiratory inhibitors of a magnetic bacterium magnetospirillum SP. AMB-1 capable of grown aerobically, Appl. Microbiol Biotechnol , 1993, 39: 368-371.
    108. Tadashi Matsunaga, Application of Bacterial Magnets, TIBTECH, 1991 Vol.9 91-95.
    109. Tadashi Matsunaga, et al., Gene Transfer in Magnetic Bacteria: Transposon Mutagenesis and Cloning of Genomic DNA Fragments Required for Magnetosbme Synthesis, Journal of Bacteriology, 1992, Vol. 174, No.9, 2748-2753.
    110. Taylor R. M., Maher B. A., and Self P. G., Magnetite in soils: I. The synthesis of single-domain and superparamagnetic magnetite, Clay Minerals ( 1987 ), 22, 411-422.
    111. Tenforde T.S, Electroreception and Magnetoreception in Simple and Complex Organisms, Bioelectromagtics 10: 215-221(1989) , Invited Paper.
    112. Thornhill Richard H., et al., A morphological classification of bacteria containing bullet-shaped magnetic particles, FEMS Microbiology Letters 115(1994) 160-176.
    113. Vali H., Forster O., G. Amarantidis and N. Petersen, Magnetotactic bacteria and their magnetofossils in sediments, Earth and Planetary Science Letters, 86 (1987) , 389-400.
    114. Verosub K. L. and Roberts A. P., Environmental magnetism: Past, Present, and future, Journal of Geophysical Research, 1995, 100, 2175-2192.
    115. Verosub, K. L., Fine, P., Singer, M. J., et al., Pedogenesis and paleoclimate: Interpretation of magnetic susceptibility of Chinese loess-paleosol sequences, Geology, 1993,21, 1011-1014.
    116. Walker Michael M. and Bitterman M. E., Conditioning Analysis of Magnetoreception in Honeybees, Bioelectromagtics 10: 261-175(1989) , Invited Paper.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700