Dectin-1在真菌性角膜炎中的作用及其分子机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨β-葡聚糖特异性识别受体Dectin-1对茄病镰刀菌及烟曲霉菌的识别及其在正常角膜组织和真菌感染角膜组织中的表达及特点,并初步探讨其在真菌性角膜炎中作用的分子机制。
     方法
     第一部分:真菌刺激对腹腔巨噬细胞Dectin-1表达的影响
     1.小鼠腹腔巨噬细胞的培养及鉴定C57BL/6小鼠腹腔注射巯基乙酸钠肉汤(4%),注射后第3天,收集腹腔巨噬细胞,体外培养24hr,以F4/80抗体及CD68抗体进行鉴定并利用流式细胞术检测细胞纯度。
     2.真菌刺激对巨噬细胞模式识别受体Dectin-1表达的影响利用纯化的β-葡聚糖Laminarin、茄病镰刀菌及烟曲霉菌孢子刺激培养的巨澨细胞,免疫荧光技术及RTQ-PCR检测Dectin-1的表达变化。
     第二部分:Dectin-1在小鼠真菌性角膜炎模型中的表达及特点
     角膜基质注射法建立C57BL/6小鼠茄病镰刀菌及烟曲霉菌角膜感染模型,角膜基质注射生理盐水小鼠作为阴性对照组,末处理的正常角膜为空白对照组。感染后1、2、3、5、7天取各组角膜行RTQ-PCR检测,观察Dectin-1的表达情况。角膜组织病理学方法观察角膜内炎症细胞的侵润,探讨侵润细胞与Dectin-1表达量的关系。
     第三部分:Dectin-1在真菌性角膜炎中作用分子机制的初步研究
     1.RTQ-PCR检测真菌刺激巨噬细胞及真菌感染的角膜中CARD9的表达;
     2.RTQ-PCR检测主要细胞因子及趋化因子IL-1β、IL-2、IL-6、MIP-2、IL-10、IL-12、IL-17、MCP-1、TNF-α、CXCL1/KC在Laminarin刺激细胞及真菌感染角膜中的表达;
     3.Dectin-1多克隆抗体阻断体外培养的巨噬细胞表面的Dectin-1,再利用茄病镰刀菌及烟曲霉菌刺激细胞,检测Dectin-1抗体阻断前后细胞培养上清液中IL-1β的含量。
     结果
     第一部分:真菌刺激对腹腔巨噬细胞Dectin-1表达的影响
     小鼠腹腔注射巯基乙酸钠肉汤3天后,每只小鼠腹腔大约可收集1×107个细胞。体外培养的巨噬细胞贴壁生长,呈圆形、长形及不规则三角形等,可见突触。F4/80抗体免疫荧光染色后,流式细胞术检测,可发现F4/80阳性细胞约占86%,说明此方法分离的腹腔巨噬细胞纯度较高,可以进行相关的功能性研究。
     真菌刺激后巨噬细胞表面的Dectin-1表达上调。Laminarin与培养的巨噬细胞共同孵育12hr后,RTQ-PCR结果显示Dectin-1的表达并未升高(P=0.261)。而茄病镰刀菌孢子和烟曲霉菌孢子与细胞以1:10的比例共同孵育12hr后,受真菌刺激的细胞Dectin-1的表达则明显上调(P=0.000 & P=0.009)。
     第二部分:Dectin-1在小鼠真菌性角膜炎模型中的表达及特点
     RTQ-PCR结果及Dectin-1免疫荧光染色的结果均显示,正常及阴性对照角膜组织中没有Decitin-1的表达。但是在真菌感染的角膜中,可以检测到Dectin-1的表达。Dectin-1的表达量与炎症细胞侵润程度紧密相关,在感染后的第2、3天,感染角膜组织内炎症细胞侵润最为明显,同时Dectin-1的表达水平也最高。随着病程的进展,炎症细胞的数量减少,Dectin-1的表达量也随之下降。对侵润的炎症细胞进行F4/80和Gr-1免疫荧光染色,结果则显示,侵润的巨噬细胞和中性粒细胞表达Dectin-1。
     第三部分:Dectin-1在真菌性角膜炎中作用分子机制的初步研究
     真菌感染的角膜中,CARD9的表达明显上调,其上调趋势与Dectin-1一致。腹腔巨噬细胞表面Dectin-1对p-葡聚糖的识别和清除过程中,可介导IL-1β、MIP-2、IL-12、CXCL1/KC、MCP-1等多种细胞因子的产生,上调最明显的为IL-1β、IL-12和IL-6。在两种丝状真菌的角膜炎模型中,也均可观察到上述细胞因子的表达明显上调,其中表达上调最显著的细胞因子为IL-1β、MIP-2、CXCL1/KC和IL-12。其上调及下调的变化趋势与Dectin-1及CARD9变化趋势一致。Dectin-1抗体中和实验显示:中和抗体阻断Dectin-1后,烟曲霉菌孢子与细胞共孵育24hr后,IL-1β的表达量下降(P=0.016)。
     结论
     1、茄病镰刀菌和烟曲霉菌可激活腹腔巨噬细胞表面的Dectin-1。
     2、正常的小鼠角膜组织不表达Dectin-1,但受真菌感染的角膜组织有Dectin-1的表达。
     3、FK小鼠角膜中,Dectin-1的表达量与炎症细胞的侵润程度相关。
     4、CARD9在FK中表达上调,说明其介导的信号通路可能参与了FK的发病过程。
     5、Dectin-1识别β-葡萄糖后,可诱导IL-1β、MIP-2、KC、IL-12等细胞因子的产生;茄病镰刀菌与烟曲霉菌发病过程中细胞因子的产生及表达变化趋势致。
     6、采用特异性的Dectin-1多克隆抗体中和巨噬细胞表面的Dectin-1,可以部分阻断IL-1β的表达。
     7、Dectin-1介导的信号通路参与了FK的病理过程,可能是通过细胞因子的产生介导抗真菌免疫保护。因此,以Dectin-1或真菌细胞壁β-葡聚糖作为控制靶点,有望找到治疗及调控FK的新方法。但其具体分子机制还需要进一步的研究。
Objective To identify the response and the underlying response pathways of Dectin-1 on macrophages to Fusarium solani and Aspergillus fumigatus. And then we sought to determine whether Dectin-1 plays a similar role in beta-glucan-induced activation in fungal keratitis.
     Methods Peritoneal macrophages isolated after intraperitoneal injection of sodium thioglycollate were co-cultured with Laminarin, a purified beta-glucan and spores of Fusarium solani and Aspergillus fumigatus for 12 hours. The expression level of Dectin-1 and several cytokines was evaluated by immunofluorescence and real-time quantitative polymerase chain reaction (RTQ-PCR). Then mouse fungal keratitis model were establish by injection of inoculation fungal spores substromally. corneal lesions and inflammatory responses were observed by slit-lamp and histopathology at one, two, three, five and seven days post-infection. RTQ-PCR was used to detect the levels of Dectin-1,CARD9, CXCL1/KC and interleukin (IL)-1β,IL-2,1L-6, macrophage inflammatory protein-2 (MIP-2),IL-10,1L-12,1L-17, tumor necrosis factor a (TNF-a) and monocyte chemotactic protein-1 (MCP-1). For the intervention experiment with neutralizing antibody, macrophages were elicited and cultured for 24 hours and then co-cultured with Dectin-1 antibody (25μg/ml) for 1 hour at 37℃before stimulated with Laminarin and spores. The level of IL-1βwas measured by ELISA.
     Results Expression of Dectin-1 was upregulated significantly on macrophages stimulated by spores of Fusarium solani and Aspergillus fumigatus, but not by Laminarin(P=0.261). Dectin-1 was not detected in normal corneas of C57BL/6 mouse. But it was detected in infected corneas from the first day post-infection and the mRNA level was highest on the second and third days. Dectin-1 was expressed on the surface of macrophages (F4/80+) and neutrophilic granulocytes (Gr-1+) presence in the infected cornea. CARD9, a key transducer of Dectin-1 signalling, was also upregulated at the same time with Dectin-1 on macrophages and the infected corneas. IL-17 was not detected on macrophages with or without stimulation by Laminarin. Expression of the other examined cytokines were upregulated on macrophages stimulated by Laminarin except TNF-a (P=0.096). The cytokines which were upregulated most significantly were IL-1β、IL-6 and IL-12. All of the examined proinflammatory cytokines and inflammatory factors were produced in detectable in murine fungal keratitis. And,the predominances were IL-1β、MIP-2、CXCL1/KCand IL-12. The produced cytokines were similar in fungal keratitis caused by the two filamentous fungi. Upon administration of Dectin-1 polyclonal antibodies on macrophages, the decrease in mRNA level of IL-1βwas apparent (p=0.016).
     Conclusion Fusarium solani and Aspergillus fumigatus up-regulate the expression of Dectin-1 in mouse peritoneal macrophages. Dectin-1 could be detected in corneas infected by Fusarium solani and Aspergillus fumigatus but not in normal and mock-infected corneas. CARD9 is activated in FK and in vivo production of IL-1β, MIP-2, CXCL1/KC and IL-12 was significantly increased as compared to control groups. Dectin-1 polyclonal antibodies can reduce IL-1βproduced by macrophages. Thus, Dectin-1 may play an important role in FK and further study is still required about the molecular mechanisms.
引文
[1]Tanure MA, Cohen EJ, Sudesh S, Rapuano CJ, Laibson PR. Spectrum of fungal keratitis at Wills Eye Hospital, Philadelphia, Pennsylvania. Cornea.2000.19(3): 307-12.
    [2]Bhartiya P, Daniell M, Constantinou M, Islam FM, Taylor HR. Fungal keratitis in Melbourne. Clin Experiment Ophthalmol.2007.35(2):124-30.
    [3]Tanure MA, Cohen EJ, Sudesh S, Rapuano CJ, Laibson PR. Spectrum of fungal keratitis at Wills Eye Hospital, Philadelphia, Pennsylvania. Cornea.2000.19(3): 307-12.
    [4]Chowdhary A, Singh K. Spectrum of fungal keratitis in North India. Cornea. 2005.24(1):8-15.
    [5]Xie L, Zhong W, Shi W, Sun S. Spectrum of fungal keratitis in north China. Ophthalmology.2006.113(11):1943-8.
    [6]Rosa RH Jr, Miller D, Alfonso EC. The changing spectrum of fungal keratitis in south Florida. Ophthalmology.1994.101(6):1005-13.
    [7]Taylor PR, Brown GD, Reid DM, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol.2002.169(7):3876-82.
    [8]Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J.2005.24(6): 1277-86.
    [9]Leal SM, Cowden S, Hsia YC, Ghannoum MA, Momany M, Pearlman E. Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis. PLoS Pathog.2010.6:e1000976.
    [10]Wu TG, Wilhelmus KR, Mitchell BM. Experimental keratomycosis in a mouse model. Invest Ophthalmol Vis Sci.2003.44(1):210-6.
    [11]Tarabishy AB, Aldabagh B, Sun Y, et al. MyD88 regulation of Fusarium keratitis is dependent on TLR4 and IL-1R1 but not TLR2. J Immunol.2008.181(1): 593-600.
    [12]Pearlman E, Johnson A, Adhikary G, et al. Toll-like receptors at the ocular surface. Ocul Surf.2008.6(3):108-16.
    [13]Yamamoto M, Takeda K. Current views of toll-like receptor signaling pathways. Gastroenterol Res Pract.2010.2010:240365.
    [14]Gow NA, Netea MG, Munro CA, et al. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis.2007.196(10):1565-71.
    [15]Steele C, Marrero L, Swain S, et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med.2003.198(11):1677-88.
    [16]Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med.2003. 197(9):1119-24.
    [17]Viriyakosol S, Fierer J, Brown GD, Kirkland TN. Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on Toll-like receptor 2 and Dectin-1. Infect Immun.2005.73(3):1553-60.
    [18]Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med.2009.361(18):1760-7.
    [19]Gross O, Gewies A, Finger K, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature.2006.442(7103):651-6.
    [20]Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med.2009.361(18): 1727-35.
    [21]Bharathi MJ, Ramakrishnan R, Meenakshi R, Padmavathy S, Shivakumar C, Srinivasan M. Microbial keratitis in South India:influence of risk factors, climate, and geographical variation. Ophthalmic Epidemiol.2007.14(2):61-9.
    [22]Leck AK, Thomas PA, Hagan M, et al. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br J Ophthalmol. 2002.86(11):1211-5.
    [23]de Koning HD, Rodijk-Olthuis D, van VIM, et al. A Comprehensive Analysis of Pattern Recognition Receptors in Normal and Inflamed Human Epidermis: Upregulation of Dectin-1 in Psoriasis. J Invest Dermatol.2010.
    [24]Fahad B, McKellar M, Armstrong M, Denning D, Tullo A. Aspergillus keratitis following corneal foreign body. Br J Ophthalmol.2004.88(6):847-8.
    [25]Thomas PA. Fungal infections of the cornea. Eye (Lond).2003.17(8):852-62.
    [26]Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans. Nature.2001.413(6851):36-7.
    [27]Netea MG, Gow NA, Munro CA, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest.2006.116(6):1642-50.
    [28]Shoham S, Huang C, Chen JM, Golenbock DT, Levitz SM. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol.2001.166(7): 4620-6.
    [29]Calderone RA, Braun PC. Adherence and receptor relationships of Candida albicans. Microbiol Rev.1991.55(1):1-20.
    [30]Klis FM, Mol P, Hellingwerf K, Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev.2002.26(3):239-56.
    [31]Sobanov Y, Bernreiter A, Derdak S, et al. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur J Immunol.2001. 31(12):3493-503.
    [32]Taylor PR, Tsoni SV, Willment JA, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol.2007.8(1):31-8.
    [33]Rosas M, Liddiard K, Kimberg M, et al. The induction of inflammation by dectin-1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis. J Immunol.2008.181(5):3549-57.
    [34]Hohl TM, Feldmesser M, Perlin DS, Pamer EG. Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal beta-glucan exposure. J Infect Dis.2008.198(2):176-85.
    [35]Luther K, Torosantucci A, Brakhage AA, Heesemann J, Ebel F. Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cell Microbiol.2007. 9(2):368-81.
    [36]Ozment-Skelton TR, deFluiter EA, Ha T, et al. Leukocyte Dectin-1 expression is differentially regulated in fungal versus polymicrobial sepsis. Crit Care Med. 2009.37(3):1038-45.
    [37]Kock G, Bringmann A, Held SA, Daecke S, Heine A, Brossart P. Regulation of dectin-1-mediated dendritic cell activation by peroxisome proliferator-activated receptor-gamma ligand troglitazone. Blood.2011.117(13):3569-74.
    [38]Yang Z, Marshall JS. Zymosan treatment of mouse mast cells enhances dectin-1 expression and induces dectin-1-dependent reactive oxygen species (ROS) generation. Immunobiology.2009.214(4):321-30.
    [39]Ozment-Skelton TR, Goldman MP, Gordon S, Brown GD, Williams DL. Prolonged reduction of leukocyte membrane-associated Dectin-1 levels following beta-glucan administration. J Pharmacol Exp Ther.2006.318(2): 540-6.
    [40]Kondori N, Edebo L, Mattsby-Baltzer I. Circulating beta (1-3) glucan and immunoglobulin G subclass antibodies to Candida albicans cell wall antigens in patients with systemic candidiasis. Clin Diagn Lab Immunol.2004.11(2): 344-50.
    [41]Del PA, Llenas-Garcia J, Soledad CM, et al. Serum (1-->3) beta-D-Glucan as a noninvasive adjunct marker for the diagnosis and follow-up of pneumocystis jiroveci pneumonia in patients with HIV infection. Clin Infect Dis.2010.50(3): 451-2;author reply 452-3.
    [42]陈文生,刘祖国.角膜上皮树突状细胞免疫学特性研究的现状.中华眼科杂志.2009.45(12):1145-1148.
    [43]Hu J, Wang Y, Xie L. Potential role of macrophages in experimental keratomycosis. Invest Ophthalmol Vis Sci.2009.50(5):2087-94.
    [44]杨建勋,李若瑜,刘琬等.不同免疫状态小鼠烟曲霉感染后肺组织dectin-1 mRNA表达.中华微生物学和免疫学杂志.2009.29(3):204-207.
    [45]Bertin J, Guo Y, Wang L, et al. CARD9 is a novel caspase recruitment domain-containing protein that interacts with BCL10/CLAP and activates NF-kappa B. J Biol Chem.2000.275(52):41082-6.
    [46]Dorhoi A, Desel C, Yeremeev V, et al. The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med.2010.207(4):777-92.
    [47]Yang J, Chai L, Gao C, et al. SALL4 is a key regulator of survival and apoptosis in human leukemic cells. Blood.2008.112(3):805-13.
    [48]Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood.2005.106(7):2543-50.
    [49]Herre J, Marshall AS, Caron E, et al. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood.2004.104(13):4038-45.
    [50]Hohl TM, Van Epps HL, Rivera A, et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog. 2005.1(3):e30.
    [51]Shah VB, Huang Y, Keshwara R, Ozment-Skelton T, Williams DL, Keshvara L. Beta-glucan activates microglia without inducing cytokine production in Dectin-1-dependent manner. J Immunol.2008.180(5):2777-85.
    [52]LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol.2007.8(6):630-8.
    [53]Zhong W, Yin H, Xie L. Expression and potential role of major inflammatory cytokines in experimental keratomycosis. Mol Vis.2009.15:1303-11.
    [54]Goodridge HS, Wolf AJ, Underhill DM. Beta-glucan recognition by the innate immune system. Immunol Rev.2009.230(1):38-50.
    [55]Matsumoto K, Ikema K, Tanihara H. Role of cytokines and chemokines in pseudomonal keratitis. Cornea.2005.24(8 Suppl):S43-S49.
    [56]Dinarello CA, Wolff SM. The role of interleukin-1 in disease. N Engl J Med. 1993.328(2):106-13.
    [57]Rudner XL, Kernacki KA, Barrett RP, Hazlett LD. Prolonged elevation of IL-1 in Pseudomonas aeruginosa ocular infection regulates macrophage-inflammatory protein-2 production, polymorphonuclear neutrophil persistence, and corneal perforation. J Immunol.2000.164(12):6576-82.
    [58]Werner JL, Metz AE, Horn D. et al. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol.2009.182(8):4938-46.
    [59]龚非力.医学免疫学.2003.79.
    [60]Xue ML, Thakur A, Willcox MD, Zhu H, Lloyd AR, Wakefield D. Role and regulation of CXC-chemokines in acute experimental keratitis. Exp Eye Res. 2003.76(2):221-31.
    [61]Minari J, Mochizuki S, Matsuzaki T, Adachi Y, Ohno N, Sakurai K. Enhanced cytokine secretion from primary macrophages due to Dectin-1 mediated uptake of CpG DNA/beta-1,3-glucan complex. Bioconjug Chem.2011.22(1):9-15.
    [62]Cole N, Bao S, Thakur A, Willcox M, Husband AJ. KC production in the cornea in response to Pseudomonas aeruginosa challenge. Immunol Cell Biol.2000. 78(1):1-4.
    [1]Karp CL, Auwaerter PG. Coinfection with HIV and tropical infectious diseases. II. Helminthic, fungal, bacterial, and viral pathogens. Clin Infect Dis.2007.45(9):1214-20.
    [2]Ustianowski AP, Sieu TP, Day JN. Penicillium marneffei infection in HIV. Curr Opin Infect Dis.2008.21(1):31-6.
    [3]Ramos-E-Silva M, Lima CM, Schechtman RC, Trope BM, Carneiro S. Superficial mycoses in immunodepressed patients (AIDS). Clin Dermatol.2010.28(2):217-25.
    [4]McNeil MM, Nash SL, Hajjeh RA, et al. Trends in mortality due to invasive mycotic diseases in the United States,1980-1997. Clin Infect Dis.2001.33(5):641-7.
    [5]钟文贤,孙十营,赵靖等.1054例化脓性角膜炎的回顾性分析.中华眼科杂志.2007.43(3):245-250.
    [6]Gopinathan U, Shanna S. Garg P, Rao GN. Review of epidemiological features, microbiological diagnosis and treatment outcome of microbial keratitis:experience of over a decade. Indian J Ophthalmol.2009.57(4):273-9.
    [7]Proenca-Pina J, Ssi YKI, Bourcier T, Fabre M, Offret H, Labetoulle M. Fusarium keratitis and endophthalmitis associated with lens contact wear. Int Ophthalmol.2010.30(1):103-7.
    [8]Calderone RA, Braun PC. Adherence and receptor relationships of Candida albicans. Microbiol Rev.1991.55(1):1-20.
    [9]Gantner BN, Simmons RM, Underhill DM. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J.2005.24(6):1277-86.
    [10]Klis FM, Mol P, Hellingwerf K, Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev.2002.26(3):239-56.
    [11]Ross GD, Vetvicka V, Yan J, Xia Y, Vetvickova J. Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology.1999.42(1-3):61-74.
    [12]Tzianabos AO. Polysaccharide immunomodulators as therapeutic agents:structural aspects and biologic function. Clin Microbiol Rev.2000.13(4):523-33.
    [13]Del PA, Llenas-Garcia J, Soledad CM, et al. Serum (1-->3) beta-D-Glucan as a noninvasive adjunct marker for the diagnosis and follow-up of pneumocystis jiroveci pneumonia in patients with HIV infection. Clin Infect Dis.2010.50(3):451-2;author reply 452-3.
    [14]Ariizumi K, Shen GL, Shikano S, et al. Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem.2000.275(26):20157-67.
    [15]Brown GD, Gordon S. Immune recognition. A new receptor for beta-glucans. Nature.2001. 413(6851):36-7.
    [16]Sobanov Y, Bernreiter A, Derdak S, et al. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur J Immunol.2001.31(12):3493-503.
    [17]Heinsbroek SE, Taylor PR, Rosas M, et al. Expression of functionally different dectin-1 isoforms by murine macrophages. J Immunol.2006.176(9):5513-8.
    [18]Yokota K, Takashima A, Bergstresser PR, Ariizumi K. Identification of a human homologue of the dendritic cell-associated C-type lectin-1, dectin-1. Gene.2001.272(1-2):51-60.
    [19]Hermanz-Falcon P, Arce I, Roda-Navarro P, Fernandez-Ruiz E. Cloning of human DECTIN-1. a novel C-type lectin-like receptor gene expressed on dendritic cells. Immunogenetics.2001. 53(4):288-95.
    [20]Willment JA, Gordon S, Brown GD. Characterization of the human beta -glucan receptor and its alternatively spliced isoforms. J Biol Chem.2001.276(47):43818-23.
    [21]Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med.2003.197(9): 1107-17.
    [22]Brown GD, Herre J, Williams DL, Willment JA, Marshall AS, Gordon S. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med.2003.197(9):1119-24.
    [23]Rogers NC, Slack EC, Edwards AD, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity.2005.22(4): 507-17.
    [24]Taylor PR, Brown GD, Reid DM, et al. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol.2002.169(7):3876-82.
    [25]Olynych TJ, Jakeman DL, Marshall JS. Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. J Allergy Clin Immunol.2006. 118(4):837-43.
    [26]Yang Z, Marshall JS. Zymosan treatment of mouse mast cells enhances dectin-1 expression and induces dectin-1-dependent reactive oxygen species (ROS) generation. Immunobiology. 2009.214(4):321-30.
    [27]Reid DM, Montoya M, Taylor PR, et al. Expression of the beta-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J Leukoc Biol.2004.76(1):86-94.
    [28]Willment JA, Marshall AS, Reid DM, et al. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur J Immunol. 2005.35(5):1539-47.
    [29]Shah VB, Huang Y, Keshwara R, Ozment-Skelton T, Williams DL, Keshvara L. Beta-glucan activates microglia without inducing cytokine production in Dectin-1-dependent manner. J Immunol.2008.180(5):2777-85.
    [30]Willment JA, Lin HH, Reid DM, et al. Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. J Immunol.2003.171(9):4569-73.
    [31]Kobayashi M, Yoshiki R, Sakabe J, Kabashima K, Nakamura M, Tokura Y. Expression of toll-like receptor 2, NOD2 and dectin-1 and stimulatory effects of their ligands and histamine in normal human keratinocytes. Br J Dermatol.2009.160(2):297-304.
    [32]Brown GD. Dectin-1:a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006.6(1):33-43.
    [33]Viriyakosol S, Fierer J, Brown GD, Kirkland TN. Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on Toll-like receptor 2 and Dectin-1. Infect Immun.2005. 73(3):1553-60.
    [34]Skrzypek F, Cenci E, Pietrella D, Rachini A, Bistoni F, Vecchiarelli A. Dectin-1 is required for human dendritic cells to initiate immune response to Candida albicans through Syk activation. Microbes Infect.2009.11(6-7):661-70.
    [35]Taylor PR, Tsoni SV, Willment JA, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol.2007.8(1):31-8.
    [36]Steele C, Marrero L, Swain S, et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med.2003.198(11):1677-88.
    [37]Steele C, Rapaka RR, Metz A, et al. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog.2005.1(4):e42.
    [38]Hohl TM, Van Epps HL, Rivera A, et al. Aspergillus fumigatus triggers inflammatory responses by stage-specific beta-glucan display. PLoS Pathog.2005.1(3):e30.
    [39]Gersuk GM, Underhill DM, Zhu L, Marr KA. Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol.2006.176(6): 3717-24.
    [40]Adams EL, Rice PJ, Graves B, et al. Differential high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching. J Pharmacol Exp Ther.2008.325(1):115-23.
    [41]Tada R, Ikeda F, Aoki K, et al. Barley-derived beta-D-glucan induces immunostimulation via a dectin-1-mediated pathway. Immunol Lett.2009.123(2):144-8.
    [42]Saijo S, Fujikado N, Furuta T, et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol.2007.8(1):39-46.
    [43]Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med.2009.361(18):1760-7.
    [44]Adachi Y, Ishii T, Ikeda Y, et al. Characterization of beta-glucan recognition site on C-type lectin, dectin 1. Infect Immun.2004.72(7):4159-71.
    [45]Brown J, O'Callaghan CA, Marshall AS, et al. Structure of the fungal beta-glucan-binding immune receptor dectin-1:implications for function. Protein Sci.2007.16(6):1042-52.
    [46]Palma AS, Feizi T, Zhang Y, et al. Ligands for the beta-glucan receptor, Dectin-1, assigned using "designer" microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem.2006.281(9):5771-9.
    [47]Weis Wl, Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem.1996.65:441-73.
    [48]Zelensky AN, Gready JE. Comparative analysis of structural properties of the C-type-lectin-like domain (CTLD). Proteins.2003.52(3):466-77.
    [49]Grunebach F, Weck MM, Reichert J, Brossart P. Molecular and functional characterization of human Dectin-1. Exp Hematol.2002.30(11):1309-15.
    [50]Yokoyama WM, Plougastel BF. Immune functions encoded by the natural killer gene complex. Nat Rev Immunol.2003.3(4):304-16.
    [51]Iizuka K, Naidenko OV. Plougastel BF. Fremont DH, Yokoyama WM. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nat Immunol.2003.4(8):801-7.
    [52]Underhill DM, Rossnagle E, Lowell CA, Simmons RM. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood.2005. 106(7):2543-50.
    [53]Herre J. Marshall AS, Caron E, et al. Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood.2004.104(13):4038-45.
    [54]Lanier LL, Corliss BC, Wu J, Leong C, Phillips JH. Immunoreceptor DAP 12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature.1998.391(6668): 703-7.
    [55]Van den Herik-Oudijk IE, Capel PJ, der Bruggen T v, Van de Winkel JG. Identification of signaling motifs within human Fc gamma RⅡa and Fc gamma RⅡb isoforms. Blood.1995. 85(8):2202-11.
    [56]Pitcher LA, van ONS. T-cell receptor signal transmission:who gives an ITAM. Trends Immunol.2003.24(10):554-60.
    [57]Crowley MT, Costello PS, Fitzer-Attas CJ, et al. A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J Exp Med.1997.186(7): 1027-39.
    [58]Turner M, Mee PJ, Costello PS, et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature.1995.378(6554):298-302.
    [59]Cambi A, Figdor CG. Dual function of C-type lectin-like receptors in the immune system. Curr Opin Cell Biol.2003.15(5):539-46.
    [60]Curtis BM, Scharnowske S, Watson AJ. Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120. Proc Natl Acad Sci U S A.1992.89(17):8356-60.
    [61]Geijtenbeek TB, Van Vliet SJ, Koppel EA, et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med.2003.197(1):7-17.
    [62]Gringhuis SI, den Dunnen J, Litjens M, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol.2009. 10(2):203-13.
    [63]Gross O, Gewies A, Finger K, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature.2006.442(7103):651-6.
    [64]Hara H, Ishihara C, Takeuchi A, et al. The adaptor protein CARD9 is essential for the activation of myeloid cells through ITAM-associated and Toll-like receptors. Nat Immunol. 2007.8(6):619-29.
    [65]Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med.2009.361(18):1727-35.
    [66]Goodridge HS, Simmons RM, Underhill DM. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol.2007. 178(5):3107-15.
    [67]Slack EC, Robinson MJ, Hernanz-Falcon P, et al. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur J Immunol.2007.37(6): 1600-12.
    [68]Dillon S, Agrawal S, Banerjee K, et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J Clin Invest.2006. 116(4):916-28.
    [69]Netea MG, Gow NA, Munro CA, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest.2006.116(6):1642-50.
    [70]Heinsbroek SE, Taylor PR, Martinez FO, Martinez-Pomares L, Brown GD, Gordon S. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog.2008.4(11):e1000218.
    [71]Underhill DM, Ozinsky A, Hajjar AM, et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature.1999.401(6755): 811-5.
    [72]Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A.2000.97(25):13766-71.
    [73]Kataoka K, Muta T, Yamazaki S. Takeshige K. Activation of macrophages by linear (lright-arrow3)-beta-D-glucans. Impliations for the recognition of fungi by innate immunity. J Biol Chem.2002.277(39):36825-31.
    [74]Young SH, Ye J, Frazer DG, Shi X, Castranova V. Molecular mechanism of tumor necrosis factor-alpha production in 1-->3-beta-glucan (zymosan)-activated macrophages. J Biol Chem. 2001.276(23):20781-7.
    [75]Dennehy KM, Ferwerda G, Faro-Trindade I, et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol.2008. 38(2):500-6.
    [76]Ferwerda G, Meyer-Wentrup F, Kullberg BJ, Netea MG, Adema GJ. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol.2008.10(10):2058-66.
    [77]Shin DM, Yang CS, Yuk JM, et al. Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cell Microbiol.2008.10(8):1608-21.
    [78]Taylor PR, Brown GD, Herre J, Williams DL, Willment JA, Gordon S. The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J Immunol.2004.172(2):1157-62.
    [79]Valera I, Fernandez N, Trinidad AG, et al. Costimulation of dectin-1 and DC-SIGN triggers the arachidonic acid cascade in human monocyte-derived dendritic cells. J Immunol.2008. 180(8):5727-36.
    [80]Arbibe L, Mira JP, Teusch N, et al. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac 1-dependent pathway. Nat Immunol.2000.1(6):533-40.
    [81]Brown GD, Taylor PR, Reid DM, et al. Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med.2002.196(3):407-12.
    [82]Romani L. Immunity to fungal infections. Nat Rev Immunol.2004.4(1):1-23.
    [83]Torosantucci A, Bromuro C, Chiani P, et al. A novel glyco-conjugate vaccine against fungal pathogens..1 Exp Med.2005.202(5):597-606.
    [84]杨建勋,李若瑜,刘琬等.不同免疫状态小鼠烟曲霉感染后肺组织dectin-1 mRNA表达.中华微生物学和免疫学杂志.2009.29(3):204-207.
    [85]Nakamura K, Miyazato A, Koguchi Y, et al. Toll-like receptor 2 (TLR2) and dectin-1 contribute to the production of IL-12p40 by bone marrow-derived dendritic cells infected with Penicillium marneffei. Microbes Infect.2008.10(10-11):1223-7.
    [86]Viriyakosol S, Fierer J, Brown GD, Kirkland TN. Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on Toll-like receptor 2 and Dectin-1. Infect Immun.2005. 73(3):1553-60.
    [87]Rosas M, Liddiard K, Kimberg M, et al. The induction of inflammation by dectin-1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis. J Immunol. 2008.181(5):3549-57.
    [88]Vazquez-Torres A, Jones-Carson J, Wagner RD, Warner T, Balish E. Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect Immun.1999.67(2): 670-4.
    [89]Netea MG, Sutmuller R, Hermann C, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol.2004.172(6): 3712-8.
    [90]Montagnoli C, Bacci A, Bozza S, et al. B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J Immunol. 2002.169(11):6298-308.
    [91]Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol.2004. 172(5):3059-69.
    [92]Villamon E, Gozalbo D, Roig P, O'Connor JE, Fradelizi D, Gil ML. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect.2004.6(1): 1-7.
    [93]Netea MG, Van der Meer JW, Kullberg BJ. Toll-like receptors as an escape mechanism from the host defense. Trends Microbiol.2004.12(11):484-8.
    [94]Gale CA, Bendel CM, McClellan M, et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science.1998.279(5355):1355-8.
    [95]Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell.1997.90(5):939-49.
    [96]d'Ostiani CF, Del SG, Bacci A, et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med.2000.191(10):1661-74.
    [97]Gow NA, Brown AJ, Odds FC. Fungal morphogenesis and host invasion. Curr Opin Microbiol.2002.5(4):366-71.
    [98]LeibundGut-Landmann S, Gross O, Robinson MJ, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol.2007.8(6):630-8.
    [99]Leibundgut-Landmann S, Osorio F, Brown GD, Reis eSC. Stimulation of dendritic cells via the dectin-1/Syk pathway allows priming of cytotoxic T-cell responses. Blood.2008.112(13): 4971-80.
    [100]Osorio F, LeibundGut-Landmann S, Lochner M, et al. DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol.2008.38(12):3274-81.
    [101]Karumuthil-Melethil S, Perez N, Li R, Vasu C. Induction of innate immune response through TLR2 and dectin 1 prevents type 1 diabetes. J Immunol.2008.181(12):8323-34.
    [102]Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol.2007.37(10):2695-706.
    [103]Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis.2004.190(3):624-31.
    [104]Ma CS, Chew GY, Simpson N, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med.2008.205(7):1551-7.
    [105]Carter RW, Thompson C, Reid DM, Wong SY, Tough DF. Preferential induction of CD4+ T cell responses through in vivo targeting of antigen to dendritic cell-associated C-type lectin-1. J Immunol.2006.177(4):2276-84.
    [106]Yoshitomi H, Sakaguchi N, Kobayashi K, et al. A role for fungal{beta}-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med.2005.201(6):949-60.
    [107]Week MM, Appel S, Werth D, et al. hDectin-1 is involved in uptake and cross-presentation of cellular antigens. Blood.2008.111(8):4264-72.
    [108]Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol.2001. 9(7):327-35.
    [109]Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell.2003.2(5):1053-60.
    [110]Wheeler RT, Kombe D, Agarwala SD, Fink GR. Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog.2008.4(12): e1000227.
    [111]Wheeler RT, Fink GR. A drug-sensitive genetic network masks fungi from the immune system. PLoS Pathog.2006.2(4):e35.
    [112]Marr KA, Patterson T, Denning D. Aspergillosis. Pathogenesis, clinical manifestations, and therapy. Infect Dis Clin North Am.2002.16(4):875-94, vi.
    [113]Jahn B, Koch A, Schmidt A, et al. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun.1997.65(12):5110-7.
    [114]Langfelder K, Jahn B, Gehringer H, Schmidt A, Wanner G, Brakhage AA. Identification of a polyketide synthase gene (pksP) of Aspergillus fumigatus involved in conidial pigment biosynthesis and virulence. Med Microbiol Immunol.1998.187(2):79-89.
    [115]Jahn B, Boukhallouk F, Lotz J, Langfelder K, Wanner G, Brakhage AA. Interaction of human phagocytes with pigmentless Aspergillus conidia. Infect Immun.2000.68(6):3736-9.
    [116]Luther K, Torosantucci A, Brakhage AA, Heesemann J, Ebel F. Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cell Microbiol.2007.9(2):368-81.
    [117]Hohl TM, Feldmesser M, Perlin DS, Pamer EG. Caspofungin modulates inflammatory responses to Aspergillus fumigatus through stage-specific effects on fungal beta-glucan exposure. J Infect Dis.2008.198(2):176-85.
    [118]Lamaris GA, Lewis RE, Chamilos G, et al. Caspofungin-mediated beta-glucan unmasking and enhancement of human polymorphonuclear neutrophil activity against Aspergillus and non-Aspergillus hyphae. J Infect Dis.2008.198(2):186-92.
    [119]Werner JL, Metz AE, Horn D, et al. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol.2009.182(8):4938-46.
    [120]Rappleye CA, Eissenberg LG, Goldman WE. Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci U S A. 2007.104(4):1366-70.
    [121]陈文生,刘祖国.角膜上皮树突状细胞免疫学特性研究的现状.中华眼科杂志.2009.45(12):1145-1148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700