小鼠真菌性角膜炎模型中主要炎性因子表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探索建立一种理想的模拟临床人角膜真菌感染的小鼠真菌性角膜炎模型并对其角膜组织损伤的临床表现和组织病理学改变进行全面观察;同时在此基础上利用分子生物学技术,对真菌性角膜炎炎症发生过程中作为核心环节的主要炎性因子的表达、作用及调控进行研究,以促进对真菌性角膜炎发病机制的研究和发展更为有效的真菌性角膜炎治疗手段。
     方法
     1、动物模型创建
     选取茄病镰刀菌、烟曲霉菌和白色念珠菌等三种主要角膜致病真菌标准菌株以及健康6~8周龄近交系BALB/c小鼠,采用“角膜表面镜片术辅助上皮刮除法”建立角膜真菌感染模型,接种菌液浓度为1×10~6CFU/ml,感染术后缝合小鼠睑裂,24 h后打开眼睑,每天于裂隙灯显微镜下观察角膜感染情况,数码相机照相记录,分别于感染后1、3、5、7和12 d采用半定量方法对感染角膜予以临床评分,并在感染后不同时间点取小鼠实验眼角膜刮片物进行病原学检测。
     2、组织病理学检测
     分别于感染后1、3、5、7和12 d摘取各实验组小鼠眼球,均置于10%福尔马林快速固定液中固定24 h,常规制作石蜡切片,并分别行苏木素-伊红(HE)染色和过碘酸Schiff(PAS)染色,光学显微镜下进行分析。观察项目包括炎症反应、真菌负荷和真菌菌丝的生长方式,其中对炎症反应和真菌负荷程度采用半定量方法分为轻、中、重三级并予以评分。对菌丝在角膜中的生长方式,以真菌菌丝走行方向与角膜板层成角大小作为判断标准,成角大于45度者被判定为垂直生长,小于45度者为水平生长。
     3、主要炎性因子表达的研究
     分别于感染后1、3、5、7和12 d取各感染组小鼠实验眼病变角膜,采用RT-PCR和ELISA技术对不同菌种感染角膜组织中的巨噬细胞炎症蛋白2(MIP-2)、细胞因子诱生性中性粒细胞趋化物(KC)、白介素1β(IL-1β)和白介素6(IL-6)等4种炎性因子的mRNA和蛋白质表达水平进行检测,RT-PCR结果采用Image J计算机图像分析软件进行半定量分析。
     4、炎性因子特异性多克隆抗体干预实验
     选取健康6~8周龄近交系BALB/c小鼠,分为3大组,每大组再分为3个小组,分别接种三种主要角膜致病真菌。第1大组为感染对照组,于术前1 h和术后24 h对小鼠实验眼分别给予20μl灭菌生理盐水结膜下注射,第2大组给予MIP-2多克隆抗体20μl(2ng/μl)、第3大组则给予IL-1β多克隆抗体20μl(2ng/μl)结膜下注射,采用“角膜表面镜片术辅助上皮刮除法”建立小鼠角膜真菌感染模型,接种菌液浓度为1×10~6CFU/ml。感染24 h拆除眼睑缝线后每天用裂隙灯显微镜观察动物角膜感染情况并予以临床评分,并分别于感染后1、3、5、7和12 d摘取各组小鼠眼球制成常规石蜡切片,HE和PAS染色观察病变组织炎症反应、真菌负荷和真菌菌丝的生长方式。此外,分别于感染后1、3、5、7和12 d摘取第2和第3大组各小组小鼠实验眼角膜,采用ELISA法对其MIP-2和KC的蛋白质表达水平进行检测。
     结果
     1、感染小鼠病变特征
     病原学检测所有小鼠均成功感染所接种真菌,三种真菌的感染病变发展过程具有一定差异,但高峰期均为感染后3~7 d,以5 d时最为严重和典型,7 d后病变逐步减轻。烟曲霉菌和白色念珠菌性病变持续时间约为10 d,茄病镰刀菌性约12 d。烟曲霉菌性病变最重,绝大多数于3~5 d时出现明显的角膜中央溃疡;白色念珠菌性病变较重,高峰期病变区糜烂呈豆腐渣样;茄病镰刀菌组则病变较平稳,大多出现典型的苔被状外观,但病程持续较长时间。各实验组在1、3、5和7 d时病变临床评分彼此差异有极显著统计学意义(P=0.000)。
     2、组织病理学改变
     HE染色观察角膜炎症反应发现在感染早期,角膜中炎症细胞浸润较少,随着病程进展,炎症细胞逐渐增多,角膜组织破坏加重,以第5 d时为著,而7 d时炎症细胞开始明显减少,角膜上皮逐渐修复。三组病变中以烟曲霉菌组炎症反应最重,白色念珠菌组次之,茄病镰刀菌组最轻。PAS染色各菌种感染后第1 d和第3 d标本均查见真菌菌丝,5 d时除白色念珠菌有2例标本查见菌丝外,其余标本均未查见菌丝,病变特点倾向于早期菌丝多,而随着病程进展菌丝逐渐减少。病原菌的负荷方面,白色念珠菌性病变真菌菌丝数量最多,密度最高。对炎症反应和真菌负荷程度分级的统计学分析表明,炎症反应程度与真菌负荷量变化呈负相关关系(r=-0.806,P=0.029),而不同菌种导致的角膜炎症反应与其病变大体表现呈正相关关系(r=0.961,P=0.000)。在角膜中的生长方式上,茄病镰刀菌菌丝主要以水平生长为主,而烟曲霉菌和白色念珠菌主要为垂直生长。
     3、主要炎性因子的表达
     三种菌种感染的小鼠角膜病变组织以及损伤对照和正常小鼠角膜各时间点标本均有MIP-2、KC、IL-1β和IL-6的mRNA和蛋白质的表达,但不同实验组之间和相同实验组不同时间点之间各因子的表达量和表达高峰时间点有差异。MIP-2、KC和IL-1β的表达变化规律保持一致,三者表达量在各实验组中的排序为:烟曲霉菌组>白色念珠菌组>茄病镰刀菌组>损伤对照组>正常对照;而IL-6的排序为:茄病镰刀菌组>白色念珠菌组>烟曲霉菌组>损伤对照组>正常对照。MIP-2、KC和IL-1β的表达高峰时间在茄病镰刀菌组中为感染后5 d,烟曲霉菌组为感染后1 d,白色念珠菌组为感染后3 d。IL-6的两个较高水平表达时间点在茄病镰刀菌和烟曲霉菌组中均为感染后1 d和7 d,而在白色念珠菌组中为感染后1 d和5 d。
     4、MIP-2和IL-1β活性中和实验
     MIP-2多克隆抗体干预后,各菌种感染角膜病变临床评分较感染对照组均有不同程度降低,其中感染后各时间点的烟曲霉菌性病变显著减轻(P<0.05);白色念珠菌性病变早期(1~3 d)减轻明显(P<0.05),中后期(5~12 d)仅略减轻(P>0.05);茄病镰刀菌性病变早期轻度减轻,中、后期减轻不明显。IL-1β多克隆抗体干预后,三组小鼠角膜病变在早期有明显减轻(P<0.05),中后期病变减轻不明显。两种中和抗体应用后,各菌种感染角膜炎症反应程度与相应时间点临床病变变化一致,但真菌负荷和菌丝生长方式与感染对照组无差异。IL-1β多克隆抗体干预病变早期标本的MIP-2和KC的蛋白表达水平明显下降(P<0.05),中后期的表达则无明显差异(P>0.05)。
     结论
     1、利用“角膜表面镜片术辅助上皮刮除法”可成功建立稳定、可靠的模拟临床人角膜病变的小鼠真菌性角膜炎模型,为进一步研究真菌性角膜炎的发病机制等奠定了坚实的基础。
     2、真菌性角膜炎病变过程可区分为早、中、晚期三个阶段,分别表现为病变的浸润扩展、化脓坏死和瘢痕愈复等主要特征,但不同菌种导致的病变严重程度各有差异,炎症反应是导致真菌性角膜炎病变损害的主要因素,这为真菌性角膜炎的基础和临床研究指出了一个新的方向。
     3、不同角膜致病真菌菌种在角膜中表现出有不同的生长方式,这一现象对临床上真菌性角膜炎患者采取手术治疗时手术方式和时机的选择具有一定的参考价值。
     4、小鼠真菌性角膜炎角膜病变组织中均有MIP-2、KC、IL-1B和IL-6等趋化因子和细胞因子的mRNA和蛋白质的表达。其中MIP-2是小鼠真菌性角膜炎发病中关键的趋化因子,IL-1β则是最重要的细胞因子并对MIP-2和KC的表达有调控作用,MIP-2和IL-1β的持续高水平表达在角膜病变损害中起着重要甚至是主要的作用,而IL-6的表达是小鼠真菌性角膜炎中机体重要的防御和保护性因素。
     5、采用特异性多克隆中和抗体对真菌性角膜炎发病过程中的主要趋化因子和细胞因子进行阻断,可有效地减轻真菌性角膜炎的病变损害,这一结果令人鼓舞,对于以主要炎性因子为靶点的真菌性角膜炎治疗方面的新药研发是一个有益的探索和重要的实验基础。
Objective
    To establish an idealized mouse model of fungal keratitis that mimics clinical human corneal fungal infection and permits the evaluation of the clinical manifestation and histopathology of corneal damages. On the basis, meanwhile, applying technique of molecular biology to investigate the expression, regulation of predominant inflammatory cytokines that play a crucial role in the inflammation process of fungal keratitis, which is beneficial to promote the investigation of the pathogenesis and development of more effective therapeutic means of fungal keratitis.
    Methods
    1. Establishment of animal model
    Fusarium solani, Aspergillus fumigatus, and Candida albicans as the common corneal pathogenic species were respectively selected to induce fungal keratitis in inbred BALB/c mice aged 6~8 weeks old using "epikeratophakia with the aid of corneal epithelium erasion". The concentration of fungal suspension was 10~6 colony-forming units (CFU) per ml. Mouse palpebral fissure was sutured after the infection surgery and opened 24 hours later. All mice were observed daily for corneal involvement under slit-lamp biomicroscope and taken photographs using digital camera. At 1, 3, 5, 7 and 12d, infectious corneas were given semiquantitative clinical scoring and corneal scrapings were obtained from experimental eyes to perform etiologic examination.
    2. Histopathology examination
    At 1, 3, 5, 7, and 12d after infection, several mouse eyes in experimental groups were enucleated, immersed in 10% formalin for 24 hours, made into routine paraffin
    sections, then applied hematoxylin-eosin(HE) and periodic acid-Schiff (PAS) staining respectively. The stained sections were analyzed under light microscope, including inflammatory reaction, fungal burden and hyphal growth pattern. The degree of inflammation and fungal burden was categorized to mild, moderate, and severe grades and was given accordingly scoring. According to the angulation degrees of hyphal direction to the plane of stromal lamellae, we defined the hyphal growth patterns of fungal pathogens as vertical when hyphae grew at an angle >45 degrees, parallel when <45 degrees.
    3. Expression of predominant inflammatory cytokines
    At 1, 3, 5, 7, and 12 d after infection, four inflammatory cytokines in infectious corneas, including macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant (KC), interleukin (IL)-1β, IL-6, were detected respectively for expression of mRNA and protein levels, using RT-PCR and ELISA. Results of RT-PCR were made for semiquantitative analysis by Image J software for image analysis.
    4. Intervention experiment of polyclonal antibodies of inflammatory cytokines Inbred 6~8weeks old BALB/c mice were selected to 3 groups with 3 subgroups in
    each and were inoculated 3 common corneal pathogenic species respectively. Group 1 was infection-control group, with subconjunctival injection of 20μl sterilized saline. Mice in group 2 and 3 were injected with 20μl(2ng/μl) MIP-2 polyclonal antibodies and 20 μl (2ng/μl) IL-1β polyclonal antibodies subconjunctivally respectively 1 h before and 24 h after surgery. Models of fungal keratitis were established in mice of 3 groups using "epikeratophakia with the aid of corneal epithelium erasion" with the concentration of 10~6CFU/ml in fungal suspension. 24 h after infection, eyelids were opened All mice were observed daily for corneal involvement under slit-lamp biomicroscope and given clinical scoring. At 1, 3, 5, 7 and 12 d, whole eyes were enucleated from several mice in each group and made into routine paraffin sections, observing tissue inflammatory reaction, fungal burden, and growth patterns of fungal hyphae by HE and PAS staining. Corneas of experimental eyes in group 2 and group 3
    were incised at different time points, MIP-2 and K.C protein levels in which were measured by ELISA assay. Results
    1. Features of infectious mice
    All mice were successful to challenge the fungi inoculated by etiologic assay. The infectious process of 3 fungi had certain variances, except that the peak time of disease was at 3~7d after infection with involvement on 5 d most severe and typical and relieving gradually after 7 d. The involvement duration of Aspergillus fumigatus and Candida albicans was about 10 days, 12 days of Fusarium solani. The involvement of Aspergillus fumigatus was most severe with conspicuous central ulcer in most corneas in 3~5 d after infection, followed by Candida albican with tofukasu anabrosis in involvement region in the peak time. Fusarium solani had steady process, typical musci appearance and longer duration. At 1, 3, 5, and 7 d after infection, the difference of clinical scorings was statistical significance among each other (P=0.000).
    2. Histopathology changes
    The inflammatory reaction in HE staining displayed infiltrated inflammatory cells at earlier period. With the process going on, inflammatory cells increased gradually and corneal tissues demolished more severely, which was most obvious in 5 d after infection. Then inflammatory cells diminished obviously and corneal tissues repaired after 7 d. Aspergillus fumigatus possessed most severe inflammatory reaction followed by Candida albicans and Fusarium solani was mildest. Fungal hyphae were exhibited in PAS staining in all 3 groups on 1 d and 3 d and only 2 cases in Candida albicans group were exhibited on 5 d after infection. The features tended to be that hyphae is multitude in earlier period and diminish gradually. As to fungus burden, fungal hyphae of Candida albicans possessed most in quantity and density. The statistical analysis of inflammation and fungus burden indicated inverse correlation (r= -0.806, P=0.029) between inflammation and fungus burden but positive correlation (r=0.961, P=0.000) between corneal inflammation and its manifestation induced by different strains. On the growth patterns, the hyphae of Fusarium solani lay parralel to the corneal lamellae; whereas the
    hyphea of Aspergillus fumigatus and Candida albicans were observed growing perpendicularly to the stromal lamellae.
    3. Expression of predominant inflammatory cytokines
    MIP-2, KC, IL-1, and IL-6 were expressed at mRNA and protein levels in corneas of all mice including infectious group, injury control group and normal group with various expression amount and peak time point between the groups and different time points in the same group. The expression regularity of MIP-2, KC, and IL-1β was in coincidence and the expression amount sequence was: Aspergillus fumigatus groups > Candida albicans groups > Fusarium solani groups > injury control groups > normal control groups. IL-6 sequence was: Fusarium solani groups > Candida albicans groups > Aspergillus fumigatus groups > injury control groups > normal control groups. The expression peak time points of MIP-2, KC, and IL-1β were 5 d in Fusarium solani groups, 1 d in Aspergillus fumigatus groups and 3 d in Candida albicans groups after infection. The time points of high-levels expression of IL-6 were 1 d and 7 d in Fusarium solani groups and Aspergillus fumigatus groups but 1 d and 5 d in Candida albicans groups.
    4. Neutralization of MIP-2 and IL-1β activities
    After intervened by MIP-2 polyclonal antibodies, clinical scorings of all infectious groups degraded in certain extent with obvious extent of Aspergillus fumigatus groups (P<0.05), obvious extent (P<0.05) at earlier period (1~3 d) and mild (P>0.05) at midanaphase (5~12 d) in Candida albicans groups, and mild extent at earlier periods but not obvious at midanaphase in Fusarium solani groups. As to IL-1β polyclonal antibodies, the degrading extent was obvious at earlier periods (P<0.05) but not at midanaphase in all 3 groups. After neutralization antibodies were applied, the inflammatory reaction extent and the manifestation at corresponding time points were in coincidence of all groups with no difference of fundus burden and hyphae growth patterns. Protein levels of MIP-2 and KC in corneas intervened by IL-1β polyclonal antibodies descended obviously at earlier periods (P<0.05) but had no difference at midanaphase (P>0.05).
    Conclusions
    1. Stable and reliable fungal keratitis that mimics clinical keratopathy can be established by "epikeratophakia with the aid of corneal epithelium erasion", which is a substantial foundation for further reseach such as pathogenesis of fungal keratitis.
    2. The process of fungal keratitis is devided to 3 phases: early phases, intermediate phases, and later phases with infiltration and extending, suppuration and necrosis, scarring and recover as the key features of manifestation respectively. The severity of involvements by each strain is diverse and inflammatory reaction is predominant factors of corneal impairment, which indicates a new direction for basic and clinical reseach of fungal keratitis.
    3. The different corneal pathogenic species of fungi display various growth patterns in cornea, which have referred roles in the choice of modus and opportunity of operation for clinical patients with fungal keratitis.
    4. The chemokines and cytokines such as MIP-2, KC, IL-1β, and IL-6 are expressed in mice corneal tissues of fungal keratitis.. MIP-2 is crucial chemokine to fungal keratitis in mice and IL-1β is the predominant cytokine which regulate the expression of MIP-2 and KC. The persistent high-level expression of MIP-2 and KC is the important factors even being predominant factors in corneal impairment, but the expression of IL-6 is the defensive and protective factors in fungal keratitis of mouse.
    5. Specific polyclonal neutralizing antibodies can be adopted to inhibit predominant chemokines and cytokines and effectivly relieve the corneal damage by fungal keratitis. This result is encouraging, which is a beneficial explore and significant experiment basis for new drugs aimed with predominant inflammatory cytokines as targets for fungal keratitis.
引文
1 Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ, 2001, 79: 214-221.
    2 Xie L, Zhong W, Shi W, Sun S. Spectrum of fungal keratitis in north China. Ophthalmology, 2006, 113(11): 1943-1948.
    3 Gopinathan U, Garg P, Femandes M, et al. The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye care centre in South India. Cornea, 2002, 21: 555-559.
    4 Chowdhary A, Singh K. Spectrum of Fungal Keratitis in North India. Cornea, 2005,24:8-15.
    5 Leck AK, Thomas PA, Hagan M, et al. Aetiology of suppurative corneal ulcers in Ghana and South India, and epidemiology of fungal keratitis. Br J Ophthalmol, 2002,86:1211-1215.
    6 Sun XG, Zhang Y, Li Y, et al. Etiological analysis on ocular fungal infection in the period of 1989-2000. Chin Med J (EngI),2004,117:598-600.
    7 Tanure MA. Cohen EJ, Sudesh S, et al. Spectrum of fungal keratitis at Wills Eye Hospital, Philadelphia, Pennsylvania. Cornea, 2000,19:307-312.
    8 Thomas PA. Current perspectives on ophthalmic mycoses. Clin Microbiol Rev, 2003,16(4): 730-797.
    9 Wu TG, Wilhelmus KR, Mitchell BM., Experimental keratomycosis in a mouse model. Invest Ophthalmol Vis Sci, 2003,44:210-216.
    10 Vemuganti GK, Garg P, Gopinathan U, et al. Evaluation of agent and host factors in progression of mycotic keratitis: a histologic and microbiologic study of 167 corneal buttons. Ophthalmology, 2002,109:1538-1546.
    11 Alexandrakis G, Jalali S, Gloor P. Diagnosis of fusarium keratitis in an animal model using the polymerase chain reaction. Br J Ophthalmol, 1998,82:306-311.
    12 Wu TG, Keasler VV, Wilhelmus KR. Immunosuppression affects the severity of experimental fusarium solani keratitis. J Infect Dis, 2004,190:192-198.
    13 O'Day DM, Head WS, Robinson RD, et al. Contact lens-induced infection-a new model of Candida albicans keratitis. Invest Ophthalmol Vis Sci, 1999,40:1607-1611.
    14 Dong X, Shi W, Zeng Q, et al. Role of adherence and matrix metalloproteinases in growth patterns of fungal pathogens in cornea. Curr Eye Res, 2005, 30:613-620.
    15 Thomas PA, Leck A, Myatt M. Characteristic clinical features as an aid to the diagnosis of suppurative keratitis caused by filamentous fungi. Br J Ophthalmol, 2005,89:1554-1558.
    16 Klotz SA, Penn CC, Negvesky GJ, et al. Fungal and parasitic infections of the eye. Clin Microbiol Rev, 2000,13:662-685.
    17 Thomas PA. Fungal infections of the cornea. Eye, 2003,17:852-862.
    18 贺燚,孙秉基,赵东卿,等.真菌性角膜炎的临床特征及疗效观察.中华眼科杂志,2000,36:358-361.
    19 白海青,金梅玲,赵桂秋,等.镰刀菌和曲霉菌性角膜溃疡的组织病理学特点.中华眼科杂志,2004,40:341-343.
    20 Sharma S, Srinivasan M, George C. The current status of Fusarium species in mycotic keratitis in south India. Indian J Med Microbiol, 1993, 11: 140-147.
    21 Rosa Jr RH, Miller D, Alfonso EC. The changing spectrum of fungal keratitis in South Florida. Ophthalmology, 1994, 101: 1005-1013.
    22 Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev, 1999, 12: 310-350.
    23 Stern GA, Buttross M. Use of corticosteroids in combination with antimicrobial drugs in the treatment of infectious corneal disease. Ophthalmology, 1991, 98: 847-853.
    24 O'Day DM, Ray WA, Head WS, et al. Influence of corticosteroid on experimentally induced keratomycosis. Arch Ophthalmol, 1991, 109: 1601-1604.
    25 Naiker S, Odhav B. Mycotic keratitis: profile of Fusarium species and their mycotoxins. Mycoses, 2004, 47(1-2): 50-56.
    26 Xie L, Dong X, Shi W. Treatment of fungal keratitis by penetrating keratoplasty. Br J Ophthalmol, 2001, 85: 1070-1074.
    27 Xie L, Shi W, Liu Z, et al. Lamellar keratoplasty for the treatment of fungal keratitis. Cornea, 2002, 21: 33-37.
    28 Gopinathan U, Pamakrishna P, Willcox M, et al. Enzymatic, clinical and histologic evaluation of corneal tissues in experimental fungal keratitis in rabbits. Exp Eye Res 2001, 72: 433-442.
    1 Charo IF, Ransohoff RM. The many roles of chemokines and chemokinc receptors in inflammation. N Engl J Med, 2006, 354: 610-621.
    2 Chensue SW. Molecular machinations: chcmokinc signals in host-pathogen interactions. Clin Microbiol Rev, 2001, 14: 821-835
    3 Wallace GR, John CS, Wloka K, et al. The role of chemokines and their receptors in ocular disease. Prog Retin Eye Rcs, 2004, 23: 435-448.
    4 Hazlett LD. Corneal response to Pseudomonas acruginosa infection. Prog Retin Eye Rcs, 2004, 23: 1-30.
    5 Huang X, Hazlett LD. Analysis of Pseudomonas acruginosa corneal infection using an oligonucleotidc microarray. Invest Ophthalmol Vis Sci, 2003, 44: 3409-3416.
    6 Hazlett LD, Rudncr XL, McClellan SA, et al. Role of IL-12 and IFN-gamma in Pseudomonas aeruginosa corneal infection. Invest Ophthalmol Vis Sci, 2002, 43: 419-424.
    7 McClellan SA, Huang X, Barrett RP, ctal. Macrophagcs restrict Pscudomonas acruginosa growth, regulate polymorphonuclcar ncutrophil influx, and balance pro- and anti-inflammatory cytokines in BALB/c mice. J Immunol, 2003, 170: 5219-5227.
    8 Thomas PA. Current perspectives on ophthalmic mycoses. Clin Microbiol Rev, 2003, 16: 730-797.
    9 Vemuganti GK, Garg P, Gopinathan U, ct al. Evaluation of agent and host factors in progression of mycotic keratitis: a histologic and microbiologic study of 167 corneal buttons. Ophthalmology, 2002, 109: 1538-1546.
    10 白海青,金梅玲,赵桂秋,等.镰刀菌和曲霉菌性角膜溃疡的组织病理学特点.中华眼科杂志,2004,40:341-343.
    11 Steuhl KP, Doring G, Henni A, et al. Relevance of host-derived and bacterial factors in Pseudomonas aeruginosa corneal infection. Invest Ophthalmol Vis Sci, 1987, 28: 1559-1568.
    12 Thiel HJ, Steuhl KP, Doring G. Therapy of Pseudomonas aeruginosa eye infections. Antibiot Chemother, 1987, 39: 92-101.
    13 Chensue SW. Molecular machinations: chemokine signals in host-pathogen interactions. Clin Microbiol Rev, 2001, 14: 821-835.
    14 Yan X, Tumpey TM, Kunkel SL, et al. Role of MIP-2 in neutrophil migration and tissue injury in the herpes simplex virus-1 infected cornea. Invest Ophthalmol Vis Sci, 1998, 39: 1854-1862.
    15 Dinarello CA, Wolff SM. The role of interleukin-1 in disease. N Engl J Med, 1993, 328: 106-113.
    16 Kernacki KA, Barrett RP, Hobden JA, et al. Macrophage inflammatory protein-2 is a mediator of polymorphonuclear nertrophil influx in Ocular bacterial infection. J Immunol, 2000, 164: 1037-1045.
    17 Matsumoto K, Ikema K, Tanihara H. Role of cytokines and chemokines in Pseudomonal keratitis. Cornea, 2005, 24(Suppl 1): S43-S49.
    18 钟文贤,孙士营,赵靖,等.1054例化脓性角膜炎的回顾性分析.中华眼科杂志,2007,43:245-250.
    19 Wu TG, Wilhelmus KR, Mitchell BM. Experimental keratomycosis in a mouse model. Invest Ophthalmol Vis Sci, 2003, 44: 210-216.
    20 Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ, 2001, 79: 214-221.
    21 Gopinathan U, Garg P, Fernandes M, et al. The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye care centre in South India. Cornea, 2002, 21: 555-559.
    22 Chowdhary A, Singh K. Spectrum of Fungal Keratitis in North India. Cornea, 2005, 24: 8-15.
    23 Tanure MA. Cohen EJ, Sudesh S, et al. Spectrum of fungal keratitis at Wills Eye Hospital, Philadelphia, Pennsylvania. Cornea, 2000, 19: 307-312.
    24 Kenacki KA, Barrett RP, McClellan S, et al. MIP-la regulates CD4~+ T cell chemotaxis and indirectly enhances PMN persistence in Pseudomonas aeruginosa corneal infection. J Leuk Biol, 2001, 70: 911-919.
    25 Luster AD. Chemokines--chemotactic cytokines that mediate inflammation. N Engl J Med, 1998,338:436-445.
    26 Xue ML, Thakur A, Willcox MDP, et al. Role and regulation of CXC-chemokines in acute experimental keratitis. Exp Eye Res, 2003,76:221-231.
    27 Gainet J, Chollet-Martin S, Brion M, et al. Interleukin-8 production by polymorphonuclear neutrophils in patients with rapidly progressive peridontitis: an amplifying loop of polymorphonuclear neutrophil activation. Lab Invest, 1998,78:755-762.
    28 Mercer-Jones MA, Shrotri MS, Heinzelmann M, et al. Regulation of early peritoneal neutrophil migration by macrophage inflammatory protein-2 and mast cells in experimental peritonitis. J Leukocyte Biol, 1999,65:249-255.
    29 Rudner XL, Kernacki KA, Barrett RP, et al. Prolonged elevation of IL-1 in Pseudomonas aeruginosa ocular infection regulates macrophageinflammatory protein-2 production, polymorphonuclear neutrophil persistence, and corneal perforation. J Immunol, 2000,164:6576-6582.
    30 Nishimoto N, Kishimoto T. Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol, 2006,2:619-626.
    31 Cole N, Bao S, Stapleton F, et al. Pseudomonas aeruginosa keratitis in IL-6 deficient mice. Int Arch Allergy Immunol, 2003,130:165-172.
    1 Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ, 2001, 79: 214-221.
    2 Xie L, Dong X, Shi W. Treatment of fungal keratitis by penetrating keratoplasty. Br J Ophthalmol, 2001, 85: 1070-1074.
    3 Gopinathan U, Garg P, Feruandes M, et al. The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye care centre in South India. Cornea, 2002, 21: 555-559.
    4 Chowdhary A, Singh K. Spectrum of Fungal Keratitis in North India. Cornea, 2005, 24: 8-15.
    5 Leck AK, Thomas PA, Hagan M, et al. Aetiology of suppurative corneal ulcers in Ghana and South India, and epidemiology of fungal keratitis. Br J Ophthalmol, 2002, 86: 1211-1215.
    6 Upadhyay MP, Karmacharya PC, Koirala S, et al. Epidemiologic characteristics, predisposing factors, and etiologic diagnosis of corneal ulceration in Nepal. Am J Ophthalmol, 1991, 15: 92-99.
    7 Sun XG, Zhang Y, Li Y, et al. Etiological analysis on ocular fungal infection in the period of 1989-2000. Chin Med J, 2004, 117: 598-600.
    8 Dong X, Shi W, Zeng Q, et al. Role of adherence and matrix metalloproteinases in growth patterns of fungal pathogens in cornea. Curr Eye Res, 2005, 30(8):613-620.
    
    9 Latge JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev, 1999, 12:310-350.
    10 Sturtevant J, Latge JP. Interactions between conidia of Aspergillus fumigatus and human complement component C3. Infect Immun, 1992,60:1913-1918.
    11 Tronchin G, Esnault K, Renier G, et al. Expression and identification of laminin-binding protein in Aspergillus fumigatus conidia. Infect Immun, 1997, 65:9-15.
    12 Thau N, Monod M, Crestani B, et al. Rodletless mutants of Aspergillus fumigatus. Infect Immun, 1994, 62:4380-4388.
    13 Kuriakose T, Thomas PA. Keratomycotic malignant glaucoma. Indian J Ophthalmol, 1991,39:118-121. .
    14 Hogan LH, Klein BS, Levitz SM. Virulence factors of the medically important fungi. Clin Microbiol Rev, 1996, 9:469-488.
    15 San-Bias G, Travassos LR, Fries BC, et al. Fungal morphogenesis and virulence. Med Mycol, 2000, 38(Suppl. l):79-86.
    16 Thomas PA, Garrison RG, Jansen T. Intrahyphal hyphae in corneal tissue from a case of keratitis due to Lasiodiplodia theobromae. J Med Vet Mycol, 1991, 29:263-267.
    17 Kiryu H, Yoshida S, Suenaga Y, et al. Invasion and survival of Fusarium solani in the dexamethasone-treated cornea of rabbits. J Med Vet Mycol, 1991,29:395-406.
    18 Nelson PE, Dignani MC, Anaissie EJ. Taxonomy, biology and clinical aspects of Fusarium species. Clin Microbiol Rev, 1994,7:479-504.
    19 Raza SK, Mallett AI, Howell SA, et al. An in vitro study of the sterol content and toxin production of Fusarium isolates from mycotic keratitis. J Med Microbiol, 1994, 41:204-208.
    20 Naiker S, Odhav B. Mycotic keratitis: profile of Fusarium species and their mycotoxins. Mycoses, 2004,47(1-2):50-56.
    21 Sutton P, Newcombe NR, Waring P, et al. In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun, 1994, 62:1192-1198.
    22 Sutton P, Waring P, Mullbacher A. Exacerbation of invasive aspergillosis by the immunosuppressive fungal metabolite, gliotoxin. Immunol Cell, Biol, 1996, 74:318-322.
    23 Yang X, Moffat K. Insights into specificity of cleavage and mechanism of cell entry from the crystal structure of the highly specific Aspergillus ribotoxin, restrictocin. Structure, 1996,4:837-852.
    24 Fukuchi Y, Kumagai T, Ebina K, et al. Apolipoprotein B inhibits the hemolytic activity of Asp-hemolysin from Aspergillus fumigatus. Biol Pharm Bull, 1996,19:547-550.
    25 Gopinathan U, Pamakrishna P, Willcox M, et al. Enzymatic, clinical and histologic evaluation of corneal tissues in experimental fungal keratitis in rabbits. Exp Eye Res, 2001,72:433-442.
    26 Calera JA, Paris S, Monod M, et al. Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus. Infect Immun,1997,65:4718-4724.
    27 Crameri R, Hemmann S, Jaussi R, et al. Humoral and cell-mediated autoimmunity in allergy to Aspergillus fumigatus. J Exp Med, 1996,184:265-270.
    28 Birch M, Robson G, Law D, et al. Evidence of multiple extracellular phospholipase activities of Aspergillus fumigatus. Infect Immun, 1996,64:751-755.
    29 Williamson J, Gordon AM, Wood R, et al. Fungal flora of the conjunctival sac in health and disease. Br J Ophthalmol, 1968,52:127-137.
    30 Sehgal SC, Dhawan S, Chhiber S, et al. Frequency and significance of fungal isolations from conjunctival sac and their role in ocular infections. Mycopathologia, 1981,73:17-19.
    31 Ando N, Takatori K. Fungal flora of the conjunctival sac. Am J Ophthalmol, 1982, 94:67-74.
    32 Stern GA, Buttross M. Use of corticosteroids in combination with antimicrobial drugs in the treatment of infectious corneal disease. Ophthalmology, 1991,98:847-853.
    33 O'Day DM, Ray WA, Head WS, et al. Influence of corticosteroid on experimentally induced keratomycosis. Arch Ophthalmol, 1991,109:1601-1604.
    34 Kenyon KR. Inflammatory mechanisms in corneal ulceration. Trans Am Ophthalmol Soc, 1985,83:610-663.
    35 Carubell R, Nordquist RE, Rowsey JJ. Role of active oxygen species in corneal ulceration: effect of hydrogen peroxide generated in situ. Cornea, 1990,9:161-169.
    36 Vemuganti GK, Garg P, Gopinathan U, et al. Evaluation of agent and host factors in progression of mycotic keratitis: a histologic and microbiologic study of 167 corneal buttons. Ophthalmology, 2002,109:1538-1546.
    37 Gillette TE, Chandler JW, Greiner JV. Langerhans cells of the ocular surface. Ophthalmology, 1982,89:700-711.
    38 Thomas PA.Current perspectives on ophthalmic mycoses. Clin Microbiol Rev, 2003,16(4): 730-797.
    39 Takeda K, Akira S. TLR signaling pathway. Semin Immunol, 2004,16:3-9.
    40 Zhang D, Zhang G, Hayden MS, et al. A toll-like receptor that prevents infection by uropathogenic bacteria. Science, 2004,303:1522-1526.
    41 Song PI, Abrabam TA, Park Y, et al. The expression of functional LPS receptor proteins CD14 and toll-like receptor 4 in human corneal cells. Invest Ophthal Vis Sci, 2001,42:2867-2877.
    42 Zhang J, Xu K, Ambati B, et al. Toll-like receptor 5-mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin. Invest Ophthal Vis Sci, 2003,44:4247-4254.
    43 Johnson AC, Heinzel FP, Diaconu E, et al. Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci, 2005,46(2):589-595.
    44 Netea MG, Sutmuller R, Hermann C, et al. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol, 2004, 172(6):3712-3718.
    45 Mambula SS, Sau K, Henneke P, et al. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem, 2002,277(42):39320-39326.
    46 Luster AD. Chemokines—chemotactic cytokines that mediate inflammation. N Engl J Med, 1998,338(7):436-445.
    47 Chensue SW. Molecular machinations: chemokine signals in host-pathogen interactions. Clin Microbiol Rev, 2001,14(4):821-835
    48 Wallace GR, John CS, Wloka K, et al. The role of chemokines and their receptors in ocular disease. Prog Retin Eye Res, 2004,23(4):435-448.
    49 McClellan SA, Huang X, Barrett RP, et al. Macrophages restrict Pseudomonas aeruginosa growth, regulate polymorphonuclear neutrophil influx, and balance pro-and anti-inflammatory cytokines in BALB/c mice. J Immunol, 2003, 170(10):5219-5227.
    50 Hazlett LD. Corneal response to Pseudomonas aeruginosa infection. Prog Retin Eye Res, 2004,23(1): 1-30.
    51 Hazlett LD, Rudner XL, McClellan SA, et al. Role of IL-12 and IFN-gamma in Pseudomonas aeruginosa corneal infection. Invest Ophthalmol Vis Sci, 2002, 43(2):419-424.
    52 Huang X, Hazlett LD. Analysis of Pseudomonas aeruginosa corneal infection using an oligonucleotide microarray. Invest Ophthalmol Vis Sci, 2003, 44(8):3409-3416.
    1 Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med, 2006, 354: 610-621.
    2 Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, 12: 121-127.
    3 D'Ambrosio D, Panina-Bordignon P, Sinigaglia F. Chemokine receptors in inflammation: an overview. J Immunol Methods, 2003, 273: 3-13.
    4 Cameron MJ, Kelvin DJ. Cytokines and chemokines—their receptors and their genes: an overview. Adv Exp Med Biol, 2003,520:8-32.
    5 Chensue SW. Molecular machinations: chemokine signals in host-pathogen interactions. Clin Microbiol Rev, 2001,14:821-835.
    6 Luster AD. Chemokines-chemotactic cytokines that mediate inflammation. N Engl J Med, 1998,338:436-445.
    7 Horuk R, Chitnis CE, Darbonne WC, et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science, 1993, 261:1182-1184.
    8 Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996,382:833-835.
    9 Bourcier T, Berbar T, Paquet S, et al. Characterisation and functionality of CXCR4 chemokine receptor and SDF-1 in human corneal fibroblasts. Mol Vis, 2003,9:96-102.
    10 Kernacki KA, Barrett RP, Hobden JA, et al. Macrophage inflammatory protein-2 is a mediator of polymorphonuclear nertrophil influx,in ocular bacterial infection. J Immunol, 2000,164:1037-1045.
    11 Kenacki KA, Barrett RP, McClellan S, et al. MIP-1a regulates CD4~+ T cell chemotaxis and indirectly enhances PMN persistence in Pseudomonas aeruginosa corneal infection. J Leuk Biol, 2001,70:911-919.
    12 Xue ML, Thakur A, Willcox MDP, et al. Role and regulation of CXC-chemokines in acute experimental keratitis. Exp Eye Res, 2003,76:221-231.
    13 Cole N, Hume E, Khan S, et al. Interleukin-4 is not critical to pathogenesis in a mouse model of Pseudomonas aeruginosa corneal infection. Curr Eye Res, 2005, 30:535-542.
    14 McClellan SA, Huang X, Barrett RP, et al. Matrix metalloproteinase-9 amplifies the immune response to Pseudomonas aeruginosa corneal infection. Invest Ophthalmol Vis Sci, 2006,47:256-264.
    15 Hume EB, Cole N, Khan S, et al. A Staphylococcus aureus mouse keratitis topical infection model: cytokine balance in different strains of mice. Immunol Cell Biol, 2005, 83: 294-300.
    16 Zheng M, Klinman M, Gierynska M, et al. DNA containing CpG motifs induces angiogenesis. Proc Natl Acad Sci U S A, 2002, 99: 8944-8949.
    17 Lee S, Zheng M, Deshpande S, et al. IL-12 suppresses the expression of ocular in. amatory lesions by effects on angiogenesis. J Leuk Biol, 2002, 71: 469-476.
    18 Carr DJJ, Chodosh J, Ash J, et al. Effect of anti-CXCL10 monoclonal antibody on herpes simplex virus type-1 keratitis and retinal infection. J Virol, 2003, 77: 10037-10046.
    19 Banerjee K, Biswas PS, Kim B, et al. CXCR2-/- mice show enhanced susceptibility to herpetic stromal keratitis: a role for IL-6-induced neovascularization. J Immunol, 2004, 172: 1237-1245.
    20 Shirane J, Nakayama T, Nagakubo D, et al. Corneal. epithelial cells and stromal keratocytes efficently produce CC chemokine-ligand 20(CCL20) and attract cells expressing its receptor CCR6 in mouse herpetic stromal keratitis. Curr Eye Res, 2004, 28: 297-306.
    21 Hurt M, Apte S, Leher H, et al. Exacerbation of Acanthamoeba keratitis in animals treated with anti-macrophage inflammatory protein 2 or antineutrophil antibodies. Infect Immun, 2001, 69: 2988-2995.
    22 钟文贤,谢立信,史伟云,等.真菌性角膜炎654例感染谱分析.中华医学杂志,2006,86:1681-1685.
    23 Vemuganti GK, Garg P, Gopinathan U, et al. Evaluation of agent and host factors in progression of mycotic keratitis: a histologic and microbiologic study of 167 corneal buttons. Ophthalmology, 2002, 109: 1538-1546.
    24 Mehrad B, Stricter RM, Moore TA, et al. CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J Immunol, 1999, 163: 6086-6094.
    25 Huang C, Levitz SM. Stimulation of macrophage inflammatory protein-lalpha, macrophage inflammatory protein-1 beta, and RANTES by Candida albicans and Cryptococcus neoformans in peripheral blood mononuclear cells from persons with and without human immunodeficiency virus infection. J Infect Dis, 2000,181:791-794.
    26 Peeters D, Peters IR, Clercx C, et al. Quantification of mRNA encoding cytokines and chemokines in nasal biopsies from dogs with sino-nasal aspergillosis. Vet Microbiol, 2006,114:318-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700