北京生态涵养带主要树种基于树干液流的耗水规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北京生态涵养带常见树种的苗木、成林单株林木和林分为研究对象,采用小型蒸渗仪法和热扩散技术两种方法对7种盆栽苗木的耗水规律进行对比研究,同时采用热扩散技术对5种成林单株林木的树干液流规律进行研究,揭示了盆栽苗木和成林单株林木的耗水规律,并对成林单株林木树干液流与各微气象因子的关系分别进行拟合,建立了树干液流与各微气象因子关系的拟合模型。此外,为精确模拟林木树干的液流规律,建立了基于灰色关联分析与RBF人工神经网络的林木单株耗水预测模型。在此基础上,通过树干边材面积与胸径的关系研究,建立了基于树干液流的林分尺度耗水模型,为北京生态涵养带的森林建设、经营及改造提供了准确的基础数据和科学的理论支撑。研究结果表明:
     (1)小型蒸渗仪法具有操作简单并且便于应用的特点,包裹式茎流计法精度较高,但操作相对复杂且仪器较为贵重。采用小型蒸渗仪法和包裹式茎流计法均能揭示盆栽苗木的耗水规律,通过对两种方法求得的耗水量值进行两配对样本的T检验,发现结果并无显著差异。综合比较两种试验的研究结果,阔叶乔木苗木树种蒸腾速率大小为:盐肤木>元宝枫>刺槐>槲树;灌木苗木树种蒸腾速率大小为:荆条>黄栌;针叶乔木苗木树种采用小型蒸渗仪法测定蒸腾速率大小为:油松>侧柏。
     (2)通过包裹式茎流计对苗木的昼夜耗水特征研究发现,灌木树种的夜间耗水量占全天耗水量的比重最大,针叶乔木树种夜间耗水量占全天耗水量的比重次之,阔叶乔木树种夜间耗水量占全天耗水量的比重最小。
     (3)在对单株成林树干液流的研究中发现:针叶乔木中,油松和侧柏的液流速率在观测当日均呈现单峰型,且侧柏的树干液流速率在5个月中典型观测日中的表现均高于油松;阔叶乔木中,在典型晴朗天气条件下的日平均树干液流速率大小依次为:刺槐>槲树>栓皮栎。通过比较5个树种的耗水量发现,不仅是树干液流速率和蒸腾时间影响耗水总量,边材面积的大小也会直接对耗水的总量产生影响,油松的树干液流速率低于侧柏,但是因其边材面积较大,表现在耗水总量上,则是油松>侧柏。
     (4)在典型晴朗天气条件下,林木本身的生理结构和生态特性决定了其与各微气象因子的关系并不相同,但将林木的树干液流速率分别与空气温度、空气相对湿度、太阳辐射和土壤温度进行拟合,发现拟合方程相关系数很高,均在0.9以上,但与平均风速的关系均不显著。
     (5)选择在2008年8月份典型晴朗天气条件下,对油松的树干液流速率建立基于灰色关联分析与RBF人工神经网络的林木单株耗水预测模型,通过实测数据检验,该径向基函数网络模型预测的绝对误差最大为0.0577 cm/h,最小为0.0009 cm/h,平均为0.0111 cm/h;相对误差最大为1.6613%,最小为0.0557%,平均为0.6134%,显然预测效果较好。
     (6)本文从林木边材面积和胸径关系入手,建立了5个树种的边材面积和胸径关系的拟合方程,发现各树种的二者相关性很高。以油松为例,通过对不同胸径油松的树干液流速率进行研究,发现液流速率有随着胸径增大而增加的趋势,不同胸径油松的液流速率日变化趋势基本一致。此外,基于Richards生长模型,建立了不同胸径油松日累计耗水量的预测模型,并以此为基础,通过统计不同径级林木的株数,扩展到林分尺度耗水量的研究。通过对试验地的林分耗水量进行计算得出:油松林在典型晴朗天气条件下的日耗水量为17769.8 kg/hm2。
Seedlings and individual plants of common trees species and common stands in Eco-conservation Belt of Beijing were selected as the research objects in this article. A compared research that rules of water consumption of seedlings of seven tree species (Pinus tabulaeformis, Robinia pseudoacacia, Quercus. dentata, Acer truncatum, Rhus chinensis, Vitex negundo Var.heterophylla, cotinus coggygria) in pot experiment measured with micro-lysimeter and thermal dissipation technology was done and the rules of sap flow of individual plants five tree species(Pinus tabulaeformis, Platycladus orientalis, Q. variabilis, Robinia pseudoacacia, Acer truncatum) were studied to reveal the characters of transportation. The relationship between the sap flow of individual plants and per micro-meteorological factor was studied, and the fitting models between which were established. In addition, a prediction model for water consumption of individual plant based on grey relational analysis and RBF artificial neural network was founded to simulate the rules of sap flow accurately. Subsequently, the stand scale extended model based on sap flow was set up according to the relationship between sapwood area and DBH. The results above could provide exactly basic data and scientific theory support for the forest construction, management and reconstruction in Eco-conservation Belt of Beijing. The results showed that:
     (1) The character of micro-lysimeter method is simple to operate and convenient for application, on the contrary, the packaged stem sap flow gauge method has higher precision and complex operation relatively, and the instrument is more expensive. Both the micro-lysimeter method and the packaged stem sap flow gauge method can reveal the rules of transportation of seedlings, however, there is no significant differences between the two results according to the paired sample T test on the water consumption measured by two methods. The two experiment results were comprehensive comparative analyzed, which showed that the transportation ordination of broadleaf arbor seedlings was:Rhus chinensi> Acer truncatum> Robinia pseudoacacia> Quercus. dentata; the transportation ordination of shrub seedlings was:Vitex negundo Var.heterophylla> cotinus coggygria; the transportation ordination of coniferous arbor seedlings measured micro-lysimeter with was: Pinus tabulaeformis> Platycladus orientalis.
     (2) According to the characters of diurnal water consumption measured by the packaged stem sap flow gauge, it is revealed that the proportion of night water consumption of shrub seedlings is the biggest, the proportion of coniferous arbor seedlings is lower than that of shrub seedlings, and the proportion of broadleaf arbor seedlings is the lowest.
     (3) During the research on the sap flow of individual plant, it is founded that both the diurnal change curves of the sap flow velocity of Pinus tabulaeformis and Platycladus orientalis were single peak type, and the sap flow velocity of Platycladus orientalis is higher than that of Pinus tabulaeformis in typical sunny day during the five months; the diurnal mean sap flow velocity ordination in typical sunny day is:Robinia pseudoacacia> Quercus. dentata> Q. variabilis. Compared with the transportation water consumption of five tree species, not only the sap flow velocity and the transportation time had influence on the water consumption, but also the sapwood area did. Although the sap flow velocity of Pinus tabulaeformis is lower than Platycladus orientalis, but the sapwood area of Pinus tabulaeformis is larger, so the total water consumption of Pinus tabulaeformis is higher than that of Platycladus orientalis.
     (4) In typical sunny days, the physiological structure and ecological characteristics of the individual plant leaded to the different relationship between the individual plant and each micro-meteorological factor. However, after fitting the sap flow velocity to air temperature, Air Relative Humidity, solar radiation, soil temperature, it is showed that the correlation coefficient of the fitting equation is more than 0.9, but the correlation coefficient of the fitting equation between the sap flow velocity and the average wind speed was not significant.
     (5) The water consumption prediction model of individual plant based on grey relational analysis and RBF artificial neural network was established by the measured data in typical sunny days in Aug.2008. According to the test by measured data, the biggest absolute error of this prediction model is 0.0577 cm/h, the minimum absolute error is 0. 0009 cm/h, and the average value is 0.0111 cm/h. And the biggest relative error of this prediction model is 1.6613%, the minimum absolute error is 0.0557%, and the average value is 0.6134%. Obviously the model has better prediction effect.
     (6) The fitting equations, the correlation coefficient of which is good, between sapwood area and DBH of five tree species (Pinus tabulaeformis, Platycladus orientalis, Q. variabilis, Robinia pseudoacacia, Acer truncatum) were established. Taking Pinus tabulaeformis for example, the sap flow velocity increases with DBH changing bigger, and the diurnal variation trend of the sap flow velocity of Pinus tabulaeformis was basically identical. In addition, the prediction model for daily cumulative water consumption of Pinus tabulaeformis with different DBH was established based on Richards growth model. Subsequently, this model was extended to predict the water consumption of the stand scale, according to the number of different diameter class trees. The results of the research on stand scale water consumption in the experimental field showed that:the water consumption of Pinus tabulaeformis stand is 17769.8 kg/hm2in typical sunny days.
引文
1. 蔡志全,齐欣,曹坤芳.七种热带雨林树苗叶片气孔特征及其可塑性对不同光照强度的影响[J].应用生态学报,2004,15(2)201-204.
    2. 曹文强,韩海荣,马钦彦,等.山西太岳山辽东栎夏季树干液流通量研究[J].林业科学,2004,40(2):174-177.
    3. 曹文强.山西太岳山主要树种树干液流研究[D].北京林业大学硕士论文,2003:1-14.
    4. 常学向,赵文智.荒漠绿洲农田防护树种二白杨生长季节树干液流的变化[J].生态学报,2004,24(7):1436-1441.
    5. 陈红卫,周明耀,瞿益民.非充分灌溉稻田墒情预测的人工神经网络模型[J].扬州大学学报,2005,(8):50-54.
    6. 陈建耀,刘昌明,吴凯.利用大型蒸渗仪模拟土壤—植物—大气连续体水分蒸散[J].应用生态学报,1999,10(1):45-48.
    7. 程维新,胡朝炳,张兴权.农田蒸发与作物耗水量研究[M].北京:气象出版杜,1994:42-73.
    8. 邓聚龙.灰色系统基础方法[M].武汉:华中理工大学出版社,1987.
    9. 丁日升,康绍忠,龚道枝.苹果树液流变化规律研究[J].灌溉排水学报,2004,23(2):21-25.
    10.高甲荣,肖斌,张东升,等.国外森林水文研究进展述评[J].水土保持学报,2001,15(5):60-65.
    11.高宁,邵陆寿.基于MATLAB的BP神经网络在农作物虫情预测预测中的应用[J].计算机与农业,2003,(7):16-18.
    12.高西宁,陶向新,关德新.长白山阔叶红松林热量平衡和蒸散的研究[J].沈阳农业大学学报,2002,33(5):331-334.
    13.高岩,刘静,张汝民,等.应用热脉冲技术对小美旱杨耗水量的研究[J].内蒙古农业大学学报,2001,22(1):44-48.
    14.高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究[J].西北植物学报,2001,21(4):644-649.
    15.葛哲学,孙志强.神经网络理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
    16.关义新.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297.
    17.郭连生,田有亮.应用PV技术对7种针阔叶幼树抗早性的研究[J].应用生态学报,1999,1(2):110-114.
    18.郭庆荣,李玉山.植物根系吸水过程中根系水流阻力的变化特征[J].生态科学,1999,18(1):30-34.
    19.贺康宁.黄土半干旱区集水造林的水分生产潜力研究[D].北京林业大学博士学位论文,2000.
    20.贺庆棠.气象学[M].北京:中国林业出版社,1988.
    21.康博文,侯琳,王得样,等.几种主要绿化树种苗木耗水特性的研究[J].西北林学院学报,2005,20(1):29-33.
    22.康绍忠,刘晓明,熊运彰.土壤植物大气连续体水分传输理论及其应用[M].北京:水利水电出版社,1994.
    23.康绍忠.土壤—植物—大气连续体水流阻力分布规律的研究[J].生态学报,1993,13(2):157-163.
    24.雷泽湘,林鹏.秋茄蒸腾作用日变化及其与生态因子的相关分析[J].湖北农学院学报,1998,18(3):204-208.
    25.雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:185-205.
    26.李海涛,陈灵芝.暖温带山地森林生态系统主要树种树干液流量及树冠蒸腾的研究.见:陈灵芝主编,暖温带森林生态系统结构与功能的研究[M].北京:科学出版社,1997:1240-2641.
    27.李海涛.陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报,1998,20(1):1-6.
    28.李吉跃,翟洪波,刘晓燕.树木水力结构特征的昼夜变化规律[J].北京林业大学学报,2002,24(4):39-44.
    29.李吉跃,翟洪波.木本植物水力结构与抗旱性[J].应用生态学报,2000,11(2):301-305.
    30.李吉跃,张建国,姜金璞.侧柏种源耐旱特性及其机理研究[J].林业科学,1997,33(4):1-13.
    31.李吉跃,张建国,姜金璞.北方主要造林树种耐旱机理及其分类模型的研究[J].北京林业大学学报,1993,15(3):1-9.
    32.李吉跃,周平,招礼军.干早胁迫对苗木蒸腾耗水的影响[J].生态学报,2002,22(9):1380-1386.
    33.李文华,何永涛,杨丽韫.森林对径流影响研究的回顾与展望[J].自然资源学报,2001,16(5):398-406.
    34.李银芳,杨戈,蒋进,等.盆栽条件下不同供水处理对六个树种蒸腾速率的影响[J].干早区研究,1994,11(3):39-43.
    35.刘昌明,焚清晨.土壤—植物—大气连续体模型中的蒸散发计算[J].水科学进展,1992,3(4):255-263.
    36.刘昌明,于沪宁主编.土壤—作物—大气系统水分运动实验研究[M].北京:气象出版社,1997:12-28.
    37.刘昌明,张喜英,由懋正.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究[J].水利学报,1998,(10):36-39.
    38.刘昌明等.土壤水零通量面及其变化规律.见:水量转换[M],北京:科学出版社,1988.
    39.刘奉觉,Edwards W R N.用热脉冲测定速度记录仪(HPVR)测定树干液流[J].植物生理学
    通讯,1993,29(2):110-115.
    40.刘奉觉,郑世揩,巨关升.树木蒸腾耗水测算技术的比较研究.林业科学,1997, (2):117-126.
    41.刘奉觉,郑世锴,巨关升,等.用测定木质部液流速度的方法确定树木的蒸腾耗水量[J].林业科技通讯,1989,30(4).
    42.刘奉觉,郑世锴,臧道群.杨树人工幼林的蒸腾变异与蒸腾耗水量估算方法的研究[J].林业科学,1987,23(营林专辑):35-44.
    43.刘婧然,马英杰,雷晓云等.径向基函数人工神经网络在棉花耗水量预测中的应用[J].新疆农业大学学报,2009,32(1):85-88.
    44.刘静,布和,贾俊生.河套灌区节水型农田防护林建设与节水潜力[J].内蒙古林学院学报,1999,21(3):29-32.
    45.刘盛,宋全民.华北落叶松边材在树干中垂直分布的探讨[J].吉林林学院学报,1992,(2):57-60.
    46.刘世荣,温远光,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    47.刘淑明,孙丙寅,孙长忠.油松蒸腾速率与环境因子关系的研究[J].西北林学院学报,1999,14(4):27-30.
    48.刘树华,黄子琛,刘立超.土壤—植被—大气连续体中蒸散过程的数值模拟[J].地理学报,1996,51(2): 118-126.
    49.刘晓燕,李吉跃,翟洪波.从树木水力结构探讨植物耐早性[J].北京林业大学学报,2003,25(3):39-46.
    50.卢桂宾.环境条件对黄土丘陵区旱坡地枣树水分蒸腾的影响[J].东北林业大学学报,2001,29(4): 131-133.
    51.鲁小珍.马尾松、栓皮栎生长盛期树干液流的研究[J].安徽农业大学学报,2001,28(4):401-404.
    52.陆平,Laurent URBAN,赵平.应用Granier热消散探针(TDP)法测定树木的木质部液流:理论与实践[J].植物学报,2004,46(6):631-646.
    53.马长明,管伟,叶兵,等.利用热扩散式边材液流探针(TDP)对山杨(Populus davidiana)树干液流的研究[J].河北农业大学学报,2005,28(1):39-43.
    54.马李一,孙鹏森,马履一.油松、刺槐单木与林分水平耗水量的尺度转换[J].北京林业大学学报,2001,23(4):1-5.
    55.马亮,马英杰,赵经华.基于灰色关联分析与RBF神经网络的土壤浸提液电导率预测[J].节水灌溉,2009,(7):15-20.
    56.马玲,赵平,饶兴权,等.马占相思树干液流特征及其与环境园子的关系[J].生态学报,2005,25(9):2145-2151.
    57.马履一,王华田,林平.北京地区几个造林树种耗水性比较研究[J].北京林业大学学报, 2003,25(2):1-7.
    58.马履一,王华田.油松边材液流时空变化及其影响因子研究[J].京林业大学学报,2002,24(3):23-27.
    59.马雪华.森林水文学[M].北京:中国林业出版社.1993.
    60.孟凡荣,乔芳,张志强.北京城区3种绿化树种蒸腾耗水性比较[J].福建林学院学报,2005,25(2): 176-180.
    61.孟广涛,郎南军,方向京,等.滇中华山松人工林的水文特征及水量平衡[J].林业科学研究,2001,14(1):78-84.
    62.聂立水,李吉跃.应用TDP技术研究油松树干液流流速[J].北京林业大学学报,2004,26(6):49-56.
    63.阮宏华,郑阿宝,钟育谦,等.次生栎林蒸腾强度与蒸腾量的研究[J].南京林业大学学报,1999,23,(4):157-167.
    64.桑玉强.西北半干旱地区林草复合模式耗水特征的研究——以毛乌素沙地为例[D].北京:中国农业大学博士学位论文,2006.
    65.沈国舫,王礼先.中国生态环境建设与水资源保护利用[M].北京:中国水利水电出版社,2001.
    66.石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487.
    67.孙慧珍,周骁峰,赵惠勋.白桦树于液流的动态研究[J].生态学报,2002,22(9):1387-1391.
    68.孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报,2004,15(6):1074-1078.
    69.孙慧珍.东北东部山区主要树种树干液流动态及与环境因子关系[D].哈尔滨:东北林业大学博士论文,2002:1-14.
    70.孙龙.东北东部山区主要林型树木边材液流通量研究[D].哈尔滨:东北林业大学博士学位论文,2006.
    71.孙鹏森,马李一,马履一.油松、刺槐林潜在耗水量的预测及其与造林密度的关系[J].北京林业大学学报,2001,23(3):1-6.
    72.孙鹏森,马履一,蔡永茂.京北山区水源涵养性森林植被的现状与发展策略[J].北京林业大学学报,1999,21(6):58-65.
    73.孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报,2000,22(5):1-6.
    74.孙鹏森,马履一.水源保护林树种耗水特性研究研究与应用[M].北京:中国环境科学出版社,2002.
    75.孙鹏森.京北水源保护林格局及不同尺度树种蒸腾耗水特性研究[D].北京:北京林业大学博士学位论文,2000.
    76.腾文元,周湘红.植物气孔反应及其对叶水势的调控[J].干早地区农业研究,1993,11(4):
    61-64.
    77.田晶会.黄土半干旱区水土保持林主要树种耗水特性研究[D].北京:北京林业大学博士论文,2005.
    78.王安志,裴铁番.长白山阔叶红松林蒸散量的测算[J].应用生态学报,2002,13(12):1547-1550.
    79.王安志.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6):933-937.
    80.王安志.森林蒸散模型与模拟研究—以长白山阔叶红松林为例[D].北京:中国科学院研究生院博士学位论文,2003.
    81.王得祥,康博文,刘建军,等.城市主要绿化树种苗木耗水特性研究[J].西北林学院学报,2004,19(4):20-23.
    82.王海珍,梁宗锁,韩蕊莲,等.不同土壤水分条件下黄土高原乡土树种耗水规律研究[J].西北农林科技大学学报,2005,33(6):57-63.
    83.王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学,2002,38(5):31-37.
    84.王华田.北京市水源保护林区主要树种耗水性研究[D].北京:北京林业大学博士学位论文,2002.
    85.王华田.邢黎峰.马履一.栓皮栎水源林林木耗水尺度扩展方法研究[J].林业科学,2004,40(6):170-175.
    86.王继强,李吉跃,刘娟娟.八个绿化树种水分状况与水力结构的季节变化[J].北京林业大学学报,2005,27(4):43-48.
    87.王礼先.植被生态建设与生态用水—以西北地区为例[J].水土保持研究,2000,7(3):5-7.
    88.王孟本,李洪建,柴宝峰,等.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    89.魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评[J].北京林业大学学报,1999,21(3):85-91.
    90.吴丽萍,王学东,尉全思,等.樟子松树干液流的时空变异性研究[J].水土保持研究,2003,10(4):66-68.
    91.吴擎龙,雷志栋,杨诗秀.求解SPAC系统水热输移的耦合迭代计算方法[J].水利学报,1996,(2):1-10.
    92.吴永波,薛建辉.岷江流域冷杉树干液流的动态变化规律[J].南京林业大学学报(自然科学版),2005,29(6):61-64.
    93.肖以华,陈步峰,陈嘉杰,等.马占相思树干液流的研究[J].林业科学研究,2005,18(3):331-335.
    94.熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应[J].林业科学,2003,39(2):1-7.
    95.严昌荣,Alec Downey,韩兴国,等.北京山区落叶阔叶林中核桃楸在生长中期的树干液 流研究[J].生态学报,1999,19(6):793-797.
    96.杨新兵.华北土石山区典型人工林优势树种及群落耗水规律研究[D].北京:北京林业大学博士学位论文,2007.
    97.姚德良,沈卫明,李家春.塔里木盆地陆气水热交换数值模拟[J].水利学报,1994,(5):3-37.
    98.叶兵.北京延庆小叶杨与刺槐林的蒸腾耗水特性与水量平衡研究[D].北京:中国林业科学研究院博士学位论文,2007.
    99.尹光彩,周国逸,王旭,等.应用热脉冲系统对桉树人工林树液流通量的研究[J].生态学报,2003,23(10):1984-1990.
    100.余清珠,王进鑫,高文秀,等.人工幼林蒸腾规律的研究[J].陕西林业科技,1991,(4):5-9.
    101.虞沐奎,姜志林,鲁小珍.火炬松树干液流的研究[J].南京林业大学学报,2003,27(3):55-60.
    102.岳春雷,江洪,朱隐湄.短柄五加蒸腾作用及其与生理生态因子相关性的初步研究[J].林业科学,2003,39(2):158-161.
    103.岳永杰.北京山区防护林优势树种群落结构研究[D].北京:北京林业大学博士学位论文,2008.
    104.翟洪波,李吉跃,姜金璞.干旱胁迫对油松侧柏苗木水力结构特征的影响[J].北京林业大学学报,2002,24(5/6):45-49.
    105.翟洪波,李吉跃,姜金璞.油松、侧柏苗木水力结构特征的对比研究[J].生态学报,2002,22(11):1890-1895.
    106.翟洪波,李吉跃,聂立水.油松的水力结构特征[J].林业科学,2003,39(2):14-20.
    107.翟洪波,李吉跃.元宝枫苗木水力结构特征[J].应用生态学报,2003,14(9): 1411-1415.
    108.翟洪波.李吉跃.姜金璞.元宝枫栓皮栋苗木水力结构特征的对比研究[J].北京林业大学学报,2002,24(4):45-50.
    109.张建国.中国北方主要造林树种耐早特性及其机理研究[D].北京:北京林业大学博士论文,1993.
    110.张金池,黄夏银,鲁小珍.徐淮平原农田防护林带杨树树干液流研究[J].中国水土保持科学,2004,4(2):21-25.
    111.张锦春,赵明,张应昌,等.灌溉植被梭梭、白刺光合蒸腾特性及影响因素研究[J].西北植物学报,2005,25(1):70-76.
    112.张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述[J].世界林业研究,2001,14(2):23-28.
    113.张娜,于振良,赵士洞.长白山植被蒸腾量空间变化特征的模拟[J].资源科学,2001,23(6):91-96.
    114.张宁南,徐大平,Jim Morris,等.雷州半岛尾叶桉人工林树干液流特征的研究[J].林业科
    学研究,2003,16(6):661-667.
    115.张岁岐,山仑.根系吸水机理研究进展[J].应用与环境生物学报,2001,7(4): 396-402.
    116.张卫强.黄土半干旱区主要树种光合生理与耗水特性研究[D].北京:北京林业大学博士学位论文,2006.
    117.张小由,龚家栋,周茂先.应用热脉冲技术对胡杨和柽柳树干液流的研究[J].冰川冻土2003,25(5):585-590.
    118.张小由,康尔泗,张智慧,等.沙枣树干液流的动态研究[J].中国沙漠,2006,26(1):146-151.
    119.张小由,康尔泗,张智慧.黑河下游天然胡杨树干液流特征的试验研究[J].冰川冻土,2005,7(5):742-746.
    120.招礼军,李吉跃,于界芬,等.干早胁迫对苗木蒸腾耗水日变化的影响[J].北京林业大学学报,2003,25(3):42-47.
    121.赵林明,胡浩云,魏德华,等.多层前向人工神经网络[M].郑州:黄河水利出版社,1999.
    122.赵平,饶兴权,马玲,等.Granier树干液流测定系统在马占相思的水分利用研究中的应用[J].热带亚热带植物学报,2005,13(6):457-468.
    123.周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,24(5/6):50-55.
    124. Agren GI. McMurtrie RE, Parton WJ, Pastor J & Shugart HH State-of-Art Models of Production-Decomposition Linkages in Conifer and Grassland Ecosystems. Ecological Applications,1991, (1):118-138.
    125. Ansley RJ, Dugas WA, Heuer ML, et al Stem Flow and Porometer Measurements of Transpiration from Honey Mesquitr. J Exp Bot,1994, (45):847-856.
    126. Arnel NW. Climate Change and Global Water Resources. Global Environmental Change-Human and Policy Dimensions. Supplement S,1999, S31-S49.
    127. Aston, M. J., D. W. Lawlor. The Relationship between Transpi-ration, Root Water Uptake, and Leaf Water Potential. J. Exp. Bot,1979, (30):169-181.
    128. Barrett, D. J., T. J. Hatton, J. E. Ash and M. C. Ball. Transpiration by Trees from Contrasting Forest Types. Aust. J Bot,1996, (44):249-263.
    129. Breda N, Cochard H, Dreyer E, et al. Water transfer in a mature oak stand (Quercus pet raea): Seasonal evolution and effects of a severe drought. Can J For Res,1992, (23):1136-1143.
    130. Brud, L, A. C., Dantas-Antonino, M. Vauclin, J. L. Thony,1'. Ruelle, A simple soil-plant-atmosphere transfer model (SISPAT) development and field verification, J. Hydol. 1995,166:213-250.
    131. Buttle J M, Creed I F and Pomeroy J W. Advances in Canadian forest hydrology: 1995-1998[J]. Hydrol Process,2000,14(9):1551-1578.
    132. Cermak J, Cienciala E, Kucera J, et al Individual variation of sap2flow rate in large pine and spruce trees and stand transpiration:a pilot study at the central NOPEX site. Journal of Hydrology,1995,168:17-27.
    133. Cermak J, Deml M, Penka M A new method of sap flow rate determination in trees. Biol Plant, 1973,15:171-178.
    134. Cermak J, Kucera J. Transpriation of mature stand of spruce(Picea abies(L.) Karst.) as estimated by tree-trunk heat balance method. Forest Hydrology and Watershed Mtnagement,1987,167: 311-317.
    135. Cienciala E., Kucera J, Lindroth A, et al. Canopy transpiration from a boreal forest in Sweden during a dry year. Agric For Meteorol,1997,86:157-167.
    136. Cienciala E., Kucerab J, Maimer A. Tree sap flow and stand transpiration of two Acaciamangium plantations in Sabah, Borneo. Journal of Hydrology,2000,236:109-120.
    137. Cienciala, E., A Lindroth. Gas-exchange and sap flow measurements of Salix viminalis trees in short-rotation forest. I. Transpiration and sap flow. Trees,1995,9:289-294.
    138. Cochard H, N Breda, A Granier. Whole tree hydraulic conductance and water loss regulation in Quercus during drought:evidence for stomatal control of embolism? Ann Sci. For,1996,53: 197-206.
    139. Cochard H, Rodolphe M, Patrick G et al. Temperature effects on hydraulic conductance andwater relations of Quercus robnrL. J Exp Bot,2000,51(348):1255-1259
    140. Cohen Y. Thermoelectric methods for measurement of sap flow in plants. StanhillG. Advances in Bioclimatology Vol 3. New York:Springer-Verlag,1994,63-89.
    141. David W, Fred TDJ. Water use, water use efficiency and growth analysis of selected woody ornamental specieces under a non-limiting water regime[H]. Sci. Horticulturae,1993,53: 213-223
    142. Denmead, O. T. Plant physiological methods for studying evaportanspiration:problems of telling the foerst from the trees. Agric. Water Manag.,1984,8:167-189.
    143. Devitt DA, Sala A, Mace KA, et al. The effect of applied water on the water use of saltcedar in a desert riparian Environment. J Hydrol,1997,192(1/4):223-246.
    144. Dickinson, R. E., Modeling evapotranspiration for three-dimensional global climate models, climate processes and climate sensitivity, Geophysical monograph,1984,29(5):58-72.
    145. Dixon RK, Meldahl RS, Ruark GA & Warren WC Process Modeling of Forest Growth Responses to Environmental Stress. Timber Press, Portland, OR Source:Baldocchi & Harley(1995).
    146. Do F, Rocheteau A. Influence of natural temperature gradients on measurements of xylem sap flow with thermal dissipation probes.1. Field observations and possible remedies. Tree Physiol, 2002a,22:641-648.
    147. Dragutin, T. Mihailovic., A resistance representation of schemes for evaporation from bare and partly plant-covered surfaces for use in atmospheric models, Journal of applied meteorology,
    1993,32:1038-1054.
    148. Dye, et al. A comparison of heat pulse method and deuterium tracing method for measuring transpiration from Eucalyptus grandis trees. J. Exp. Bot,1992,43:337-343.
    149. Edwards. W. R. N. Precision weighing lysimeter for trees, using a simplified tared-balance design. Tree physiol,1986,1:127-141.
    150. Farquhar, GD. Feedforward responses ofstomata to humidity. Aust. J. Plant. Physical., 1978,5:787-800.
    151.Franeno, C. M., and Magalhaes, A. C. Techniques for the measurement of transpiration of individual plants. Arid Zone Res,1965,25:211-224.
    152. Giorio P, Giorio G. Sap flow of several O live trees estimated with the heat pulse technique by continuous monitoring of a single gauge. Envi. Exp. Bot.,2003,49:9-20.
    153. Granier A, Claustres J P Water relations of a Norway spruce(Picea abies)tree growing in natural condition:Variation within the tree. Acta Oecol,1989,10(3):295-310.
    154. Granier A, Huc R, Barigah S T. Transpiration of natural rain forest and its dependence on climatic factors[J]. Agri For Meteorol,1996,78:19-29.
    155. Granier A. Evaluation oftranspiration in a Douglas fir stand by means ofsap flow Measurement[J]. Tree Physiology,1987,7(3):309-320.
    156. Granier. A New Method for Measure Sap Flow, Ann. Sci. For,1985,42:193-200.
    157. Green S R, ClothierB E, Jardine B J. Theory and practical application of heat-pulse to measure sap flow. Agron J、 2003,95:1371-1379.
    158. Greenwood et al. Evaporation from vegetation in landscape developing secondnary salinity using the ventilated·chamber technique I comparative transpiration from juvenile Eucalyptus above saline ground-water seeps. J. Hydrol,1979,42:369-382.
    159. Hatton TJ, Moore SJ&Reece PH Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method:measurement errors and sampling strategies. Tree Physiology,1995,15:219-227.
    160. Hatton TJ, Vertessy RA. Transpiration ofplantation Pinusradiata estimated by the heat pulse method and the bowen ratio. Hydrol Proc,1990,4:289-298.
    161. HeeMyong, R. Water use of young"Tuji" apple trees at the soil moisture regions in drainage lysimeters. Agricultural. Water Management,2001,50(3):185-196.
    162. Hinckley, TM., J. R. Brooks, et al. Water flux in a hybrid poplar stand. Tree Physiol,1994, 14:1005-1018.
    163.IPCC. Climate Change 2001:The Science Basis. Impact Adaptation and Vulnerability, United Kingdom and New York NY. USA:Cambridge University Press.2001 a.
    164. Jarvis EG., MeNaughton K. G, Stomatal control of transpiration:sealing up from leaf to region. Advances in eco-logieat Research, Acadernic Press, London,1986,15:1-49.
    165. Kaufmann, M R Automatic determination of conductance, transpiration and environ—mental conditons in forest trees. For. Sci.1981.27:817-827.
    166. Kelliher FM, Kostner BM, Hollinger DY, et al. Transpiration. xylem sap flow, and tree transpiration in a New Zealand broad leaved forest. A gric For Meteorol,1992,62:53-73.
    167. Knight, et al. Transpiration from 100-year-old lodge pole pine forests estimated with whole-tree potometers. Ecology,1981,62:717-726.
    168. Kozlowski, T. T. Waterd eficits and plant growth. New York:Academic press,1967.
    169. Kucera J, Cermak J, Penka M. Improved thermal method of continual recording the transpiration flow rate dynamics. Biol Plant(Paraha),1977,19:413-420
    170. Ladefoged K. Transpiration of forest trees in closed stand. Physiologic Plantarum,1963,16: 378-414.
    171. Ladefoged, K. A Method for measuring the water consumption of large intact Tree. Physiological plantarum,1960,13:648-658.
    172. Landsberg, J. J., T. w Blanehard, B. Warrit. Studies on the movement of water through apple trees. J. Exp. Bot.1976,27:579-596.
    173. Lankreijer HJM. The Water Balance of Forests under Elevated Atmospheric CO2. PhD thesis, State University of Groningen,1998:137-138.
    174. Liu Shuhua, Yue Xu, et. al., Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to simulated the interaction between land surface processes and atmospheric boundary layer in semi-arid regions, Advances in Atmospheric Sciences,2004,21:245-259
    175.Loustau. D., Granier A, Hadj Moussa FEI. Seasonal variations of sap flow in a maritime pine stand. Ann For Sci.1990.21:599-618.
    176. Loustau. D., P, Berbigier, P. et al. Transpiration of a 64-year-old maritime pine stand in Portugal.1. Seasonal course of water flux through maritime pine. Oecologia,1996,107:33-42.
    177. Loustau. D. and A. Granier. Environmental control of water flux through Marritime pine(Pinus pinaster Ait.). In water transport in Plants Under Climate Stress[M]. Eds. M. Borghetti, J. Grace and A Raschi. Cambrige University Press, pp 1993:205-218.
    178. Martin TA Winter season tree sap flow and stand transpiration in an intensively2managed loblolly and slash pine plantation. J S ustai nable For,2000,10(1/2):155-163.
    179. Martin TA, Brown KJ, Cermak JR, et al Crown conductance and tree and stand transpiration in a second2growth Abies amabilis forest. Can J For Res,1997,27(6):797-808.
    180. McMurtrie RE & Wang YP. Mathematical Models of the Photosynthetic Response of Tree Stands tO Rising C02 Concentrations and Temperature. Plant, Cell and Environment,1993(16): 1-13.
    181. Mcnaughton K. G, Black, T. A. A Study of evaportanspiration from a Douglas fir forest using the energy balance approach. Water Res.,1973,9(10):1579-1590.
    182. Meinzer, F. C., DA. Grantz. Stomatal and hydraulic conduc-tance in growing sugarcane: stomata adjustment to water transport capacity. Plant Cell Environ,1990,13:383-388.
    183. Meinzer, F. C., G. Goldstein, P. Jackson, N. M Holbrook, M. V. Gutier-rez and J. Cavelier Environmental and physiological regulation of transpiration in tropical forest gap species: theinfluence of boundary layer and hydraulic properties. Oecologia,1995,101:514-522.
    184. Monteith, J. L. and M. H. Unsworth. Principles of environmental physics. Edward Arnold, New York,1990.291 P.
    185. Moren A S, Lindroth A, F lower Ellis J, et al. Branch transpiration of pine and spruce tO tree and canopy using needle biomass distributions. Tree,2000,14:384-397.
    186. Morikawa Y, Hattori S, Kiyono Y Transpiration of a 31 year old Chamaecyparis obt usaEndl stand before and after thinning. Tree Physiol,1986,2(1/3):105-114.
    187. Nobel, PS. Physiochemical and environmental plant physiology. Academic Press, San Diego, 1991.635 P.
    188. O'Grady AP, Eamus D, Hutley B. Transpiration increases during the dry season:Patterns of tree water use in eucalypt open Northern Australia. Tree Physiol.1999.19:591-597.
    189. Oren, R., B. E. Ewers, P. Todd, N. Phillips and G. Katul. Water balance delineates the soil layer in which moisture affects canopy conductance. Ec01. Appl,1998a,8:990-1002.
    190. Phillips, N and R. Oren. A comparison of daily representations of canopy conductance based on two conditional time—averaging methods and the dependence of daily conductance on environmental factors. Ann. Sci. For,1998,55:217-235.
    191. Roberts, J. The use of tree-cutting techniques in the study of the water relations of pinus sylvestris. L. J. Exp. Bot.,1977,28:751-767.
    192. Running SW & Hunt Jr. ER Generalization of a Forest Ecosystem Process Model for Other Biomes. BIOME-BGC and an Application for Global Seal Models. In:Ehleringer J & Field CB(Eds.)Scaling Processes Between Leaf and Landscape Levels. Academic Press, London, 1993,77-114.
    193. Schaeffer S M, Williams D G, Goodrich D C Transpiration of cottonwood willow forest estimated from sap flux. Agricultural and Forest Meteorology,2000,105:257-270.
    194. Schiller, G., Y. Cohen. Water regime of a pine forest under a Mediterranean climate. Agric. For Meteorol,1995,74:181-193.
    195. Schuepp, EH. Leaf boundary layers:Tansley Review No.59. New Physical.1993,125: 477-507.
    196. Schulze E. D., Matyssek, M et al. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees-a comparison of xylem flow, porometer and cuvette measurements Oecologia,1985,66:475-483.
    197. Schulze E. D. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu. Rev. Plant Physiol.1986,37:247-274.
    198. Smith D H, Allen S J. Measurement of sap flow in plant stem S, J. Exp. Bot.,1996,47: 1833-1844.
    199. Swanson R H. Significant historical developments in thermal methods for measuring sap flow in trees. Agricultural and Forest Meteorology,1994,72:113-132.
    200. Teskey RO, Sheriff DW. Water use by Pinus radiata trees in a plantation. TreePhysiol,1996, 16:273-279.
    201.Thorburn PJ, Hatton TJ, Walker GR. Combining measurements of transpiration and stable isotopes of water to determine ground water discharge from forests. J Hydrol,1993,50: 563-587.
    202. UNESCO. Plant-water relationships in arid and semi-arid conditions, Arid zone research,1960.
    203. Vertessy R A, Benyon R G, O'sullivan S K et al.. Leaf area and tree water use in a 15-year-oldmountain ash forest. Central Highlands,1994,31p.
    204. Waring, et al. Estimating water flux thorugh stems of Scot pine with tirated water and phosphous-32. J. Exp. Bot.,1979,30:459-471.
    205. Wullschleger S, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in trees. Treephysiology,1998,18:499-512.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700