长江口外缺氧区及其邻近海域氧化还原敏感性元素的分布规律及环境指示意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江口外存在缺氧区,缺氧区对环境的影响日益引起科学家们的重视,2003年6月份973项目海洋调查也发现了这一事实。长江口外底层水溶解氧亏损中心位于东海陆架泥质区东经122°45′和123°00′之间的北纬30°50′附近。低氧区(海水溶解氧浓度小于2mg/L)的面积约13 700 km~2。长江口外缺氧区所在的泥质区是未次冰消期高海面以来的沉积中心和“物质汇”,也是人类活动排放入海污染物的主要载体,对东海物质通量和陆海相互作用的研究至关重要。
     本文以表层沉积物和沉积物岩心中的氧化还原敏感性微量元素Cu、Pb、Ni、U、Mo、Cd和V等为主要研究对象,结合研究区实测海水溶解氧数据和悬浮体中氧化还原敏感性元素丰度,比较详细地讨论了研究区底层海水溶解氧亏损对沉积物中氧化还原敏感性微量元素分布和富集的影响,探讨了长江口外缺氧区沉积物中氧化还原敏感性微量元素的环境指示意义。
     本论文首次讨论了长江口外缺氧区的缺氧环境对沉积物中氧化还原敏感性元素分布规律的影响,并对长江口外缺氧区的还原程度、分布规律、还原环境变化趋势和底层水开始出现溶解氧亏损的时间等一系列问题进行了探讨。因此,论文在研究内容,研究思路和结论等方面都具有一定的创新性。
     论文分析了长江口外泥质区沉积物组成的稳定性,认为长江口外缺氧区表层沉积物和沉积物岩心中的物质组成相对均一、稳定,长江口外泥质区的缺氧区和非缺氧区沉积物粒度和粘土矿物组成没有显著不同。“粒度控制效应”和粘土矿物的吸附作用对自生氧化还原敏感性元素组分分布的影响不大。可以排除多物源因素或沉积格局突变对沉积物中氧化还原敏感性元素富集特征的影响。
     长江口外缺氧区的存在对沉积物中氧化还原敏感性微量元素V、Cd、Mo等的分布规律和富集特征有明显的制约。V、Cd、Mo等元素在研究区分布不均匀,在长江口外缺氧区表层沉积物和沉积物岩心中,V、Cd、Mo等元素具有明显的富集,在近岸带溶解氧正常海区沉积物中,亏损特征明显,表明长江口外底层水缺氧在沉积物中有明显的记录。研究区沉积物中氧化还原敏感性元素V、Cd、Mo等的分布规律和富集特征可以反映底层海水缺氧的现状、变化趋势及底质的
The hypoxia zone near the Changjiang Estuary have been found, its influence on environment attract the attention of scientists. Bottom water dissolved oxygen depletion zone locate around 122° 45' -123° 00' E and 30° 50' N. The area of hypoxia zone where dissolved oxygen ≤ 2mg/l is about 13 700 km2. The mud off Changjiang Estuary area are the modern accumulative centers on the East China Sea shelf since Holocene epoch, their formative process and storage of pollutant materials are essential for understanding of martial flux,it is a important question of Land-Ocean Interactions in the Coastal Zone(LOICZ) in the East China Sea.Based on the concentrations and enrichment characteristic of redox sensitive elements, such as Cu, Pb, Ni, U, Mo, V and Cd of the surface sediments and sediments cores, combined with field survey data of water dissolved oxygen in June 2003 and the measured concentrations of redox sensitive elements of the suspension, the paper discusses the bottom water hypoxia's influence on the distribution and enrichment of the redox sensitive elements in sediments. This paper has studied the distribution, environment significance of redox sensitive elements and environmental changing trend of the Changjiang Estuary oxygen depletion zone.This is a first time researches on the relation of hypoxia zone and the distribution of redox sensitive elements in sediments and discusses the questions as follows: the reductive extent of the hypoxia zone, the changing trend of the hypoxia zone.The paper has analyzed the stability and uniformity of sediments, and believes that the components of the sediments are uniform and stable. So we can get rid of the influence of provenience and sediments pattern. There are no significant differences in grain size and clay minerals concentrations between the hypoxia zone and non-hypoxia zone off the Changjiang Estuary mud area. "Grain size effects" and
    adsorption by clay minerals have no effects on the distribution and enrichment of ihu redox sensitive elements in sediments.The paper believes that hypoxia zone off the Changjiang Estuary has important influence on the distribution of V, Cd, Mo in sediments. The distribution of redox sensitive element of V, Cd, Mo is not uniformity in the research area. They are significantly enriched in sediments of the hypoxia zone, and depleted in water dissolved oxygen normal zone off the Changjiang Estuary mud area. The results indicate that the distribution pattern and enrichment characteristic of V, Cd and Mo can be used as redox environment indicators of the bottom water hypoxia status, and can be used to study the redox status and changing trend of the environment.Redox sensitive elements, such as Pb, Cu, Ni, and U are also sensitive to redox conditions of bottom sediments theoretically. Many factors, such as the influence of adsorption by organic carbon^ scavenging by suspension and terrigenous component, can affect the distribution and enrichment of these redox sensitive elements, in that having no enrichment in hypoxia zone off the Changjiang Estuary, So the redox sensitive elements Pb, Cu, Ni, and U have no environment significance in the hypoxia zone of the research area.Based on the rules of the distribution and enrichment characteristic of redox sensitive elements of the surface and core sediments, compared with concentrations of V, Mo and Cd in the sediments from the different sea area in the world, the paper believes that Cd with low potential energy is enriched in hypoxia, V and Mo with high potential energy are also enriched in hypoxia zone. So the reductive extent of the Changjiang Estuary hypoxia zone is in moderate. It is weaker than that of Arabia Sea, but stronger than that of the Africa continental margin, the Northwest of American continental margin and the deposit environment of the shale.Environment of oxygen normal zone of the Changjiang Estuary approach to that of the Africa continental margin, and its reductive extent is weaker than that of Northwest of American continental margin. Compared with the deposit environment of shale, the environment of oxygen normal zone off the Changjiang Estuary is in oxidation state.
    The paper found the redox sensitive elements V\ Cd> Mo in core 17 begin to enrich at the depth of 28cm, and it is slightly enhanced in shallower depth. The paper concludes that the oxygen depletion zone off the Changjiang Estuary came into being since 1964, and its extent is enhanced these years.
引文
1.标准物质证书—水系沉积物成分分析标准物质[Z].国家质量监督检验检疫总局批准,地球物理地球化学勘查研究所.廊坊.1986年定值,2003年修订.
    2.陈松,廖文卓,潘皆再,长江口沉积相中Pb、Cu和Cd的行为和沉积机理[J],海洋学报.1984,6(2):180-185。
    3.陈松,许爱玉,骆柄坤等.长江口表层沉积物中Fe、Mn、Zn、Co、Ni的地球化学特征[J].台湾海峡.1987,6(1):13-18。
    4.陈松,廖文卓,许爱玉。河口重金属在沉积物-海水的界面转移[J].海洋学报.1989,11 (6):731-737.
    5.陈松等著.海洋沉积物.海水界面过程研究[M].北京:海洋出版社.1999.215-220.
    6.陈吉余,陈祥禄,杨启伦.上海海岸带和滩涂资源综合调查报告[C].上海:上海科技出版社.1988.114-116.
    7.陈吉余,陈沈良.中国河口海岸面临的挑战[J].海洋地质动态.2002(44):1-9.
    8.陈志华.北冰洋西部沉积物地球化学特征及环境指示意义[D],中国海洋大学博士论文.2004。
    9.成国栋,钱江初,Nittrourew,C.A.长江口及邻近陆架现代沉积构造[J].海洋地质与第四纪地质.1985,4(1/2):143-158.
    10.杜德文,石学法,孟宪伟等.黄海沉积物地球化学的粒度效应[J].海洋科学进展.2003.21:78-82.
    11.范德江,杨作升,毛登等.长江与黄河沉积物中粘土矿物与及地化成分的组成[J].海洋地质与第四纪地质.2001,21 (4):7-12.
    12.冯士笮,李凤歧,李少菁主编.海洋科学导论[M].北京:高等教育出版社.1999.
    13.龚子同,黄标.关于土壤中“化学定时炸弹”及其触爆因素探讨[J].地球科学进展,1998 2:184-191.
    14.顾宏堪.黄海溶解氧垂直分布中的最大值[J].海洋学报.1980,2:70-79.
    15.郭志刚.东海陆架泥质区的物质汇作用[D].中国海洋大学博士学位论文 2000.
    16.郭志刚,杨作升,范德江等.长江口泥质区的季节性沉积效应[J].地理学报,2003,58 (4):591-597.
    17.广东省海岸带和滩涂资源综合调查大队,广东省海岸带和滩涂资源综合调查领导小组办公室.广东省海岸带和滩涂资源综合调查报告[R].北京:海洋出版社.1987:158-184.
    18.韩舞鹰,林烘瑛,吴兴林等.大亚湾和珠江口的碳循环[M].北京:科学出版社.1991.
    19.韩舞鹰,吴兴林,林烘瑛等.香港及邻近海域养殖水化学初步研究[J].海洋通报.1990,9(3):37-45.
    20.胡敦欣,韩舞鹰,章申等著.长江、珠江口及邻近海域陆海相互作用[M].北京:海洋出版社.2001.195-208.
    21.何良彪.中国海及其邻近海域的粘土矿物[J].中国科学(D).1989,1:75-83.
    22.何良彪,刘秦玉.黄河与长江沉积物中粘士矿物的化学特征[J].科学通报.1997,42(7):730-734.
    23.海洋图集编委会.渤海 黄海 东海海洋图集[M].北京:海洋出版社,1990.12.
    24.金翔龙主编.东海海洋地质.北京:海洋出版社.1991.
    25.金秉福.末次冰期东海南部沉积物特征利物源分析[D].中国海洋大学博士论文.2003.
    26.蓝先洪.海洋地球化学若干领域的研究进展[J].海洋地质动态.2002,18(4):6-11.
    27.刘振夏,Bernes,S.,中更新世以来东海陆架的古环境[J].海洋地质与第四纪地质.1999,19(2):1-10.
    28.李道季,张经,黄大吉等.长江口外氧亏损[J].中国科学(D辑).2002 32:686-694.
    29.李绪录,吴英霞.夏季珠江口海区贫氧现象的初步分析[C].广东海岛调查研究文集(Ⅰ).1992.广东科技出版社.10-16.
    30.李柚霞,东海陆架沉积物的中子活化分析和地球化学研究[J].海洋学报.1986,8 (2):566-572.
    31.刘苍字,吴立成,华木隶.长江水下三角洲沉积构造、构造特征及沉积作用机制[C].华东师范大学学报.长江河口最大浑浊带和河口锋研究论文集.1995:159-164.
    32.刘瑞玉,胡敦欣.中国的海岸带陆海相互作用(LOICZ)研究[J].地学前缘.1997,4:194.
    33.廖文卓,陈松,潘皆再等,长江口腐殖质对重金属的吸附作用[J].环境科学.1986,7(2):31-35
    34.廖文卓,陈松.厦门篔筜湖疏浚沉积物对海水中Pb、Cu、Cd吸附的动力学[J].台湾海峡.1989.8(4):389-394.
    35.林烘瑛,韩舞鹰.珠江口河口湾水交换初步探讨[J].科学通报.1990,5:366-369.
    36.楼如云,袁耀初,卜献卫.1999年6月南黄海和东海东北部的水文及环流特征[J].海洋学报.2002,24.suppl:42-52.
    37.南京大学地质系教研室.粉晶X射线物相分析[M].北京:地质出版社.1980.
    38.秦蕴珊,赵一阳、陈丽蓉等主编.东海地质[M].北京:科学出版社.1987.
    39.秦蕴珊,郑铁民.东海大陆架沉积物分布特征的初步探讨[M].黄、东海地质.中国科学院海洋研究所海洋地质研究室编.北京:科学出版社.1982,31-51.
    40.青岛海洋大学地质系“沉积物分析”编写组编写.沉积物分析[Z].1991:20-39.
    41.任明达.王乃梁.现代沉积环境概论[M].北京:科学出版社.1985.8-32.
    42.沈焕庭著.长江河口物质通量[M].北京:海洋出版社,2001.3-7.
    43.沈焕庭,潘定安著.长江河口最大浑浊带[M].北京:海洋出版社,2001.163-169.
    44.沈焕庭,贺松林,潘定安等.长江口最大浑浊带研究[C].华东师范大学学报,长江口外最大浑浊带和河口锋研究论文集体.1995,15-21.
    45.沈焕庭,朱建荣.论我国海岸带陆海相互作用研究[J].海洋通报,1999,18:11-17.
    46.沈华悌,粱居廷,王秀昌.东海残留沉积的改造[J].海洋地质与第四纪地质.1984,4(2):67-76.
    47.沈华悌.东海陆架残留沉积时代和成因模式[J].海洋学报.1985,7(1):67-77.
    48.宋金明著.中国近海沉积物-海水界面化学[M].北京:海洋出版社.1997.
    49.宋金明,李鹏程.渤海南部沉积物中的活性铁及氧化还原环境[J].海洋科学,1997,4:32-37.
    50.腾格尔,刘文汇,徐永昌等.缺氧环境及地球化学判识标志的探讨——以鄂尔多斯盆地为例[J].沉积学报.2004,22(2);365-372.
    51.王成善,胡修棉,李祥辉.古海洋溶解氧与缺氧和富氧问题研究[J].海洋地质与第四纪地质.1999,19:39-47.
    52.王文正,张经.欧洲罗纳河与中国几条主要河流悬浮物的矿物学组成分析[J].海洋与湖沼.1994,25(3):319-327.
    53.王贤觉.东海大陆架海底沉积物稀土元素地球化学[J].地球化学.1982,1:56-65.
    54.王永红.长江河口涨潮槽的形成机理与动力沉积特征[D].华东师范大学博士论文.2003.
    55.王争鸣.缺氧沉积环境的地球化学标志[J].甘肃地质学报.2003,12(2):55-58.
    56.王正方.长江口海域铜的地球化学初步探讨[J].地球化学.1990,1:90-96.
    57.韦刚健,李献华,陈毓蔚等.NS93-5钻孔沉积物高分辨率过渡金属元素变化及其古海洋记录[J].地球化学.2001,30(5):450-458.
    58.辛春英,何良彪,王慧艳.黄河口及其近岸区的粘土矿物[J].黄渤海海洋.1998,16(4):23-27.
    59.颜佳新,张海清.古氧相——一个新的沉积学研究领域[J].地质科技情报.1996,15(3):7-13.
    60.杨作升.黄河,长江,珠江沉积物中粘土矿物的组合,化学特征及其与物源区气候的关系[J].海洋与湖沼.1988,19(4):336-346.
    61.庄国顺,陈松,艾宏韬等.水合氧化铁吸附Pb、Cu、Cd的动力学[J].海洋学报.1984,6 (4):453-458.
    62.郑铁民,徐凤山.东海大陆架晚更新世底栖贝类遗壳及其古地理环境的探讨[J].黄东海地质.北京:科学出版社.1982,198-207.
    63.周晓静,高抒,贾建军.长江粘土矿物示踪标记稳定性的初步研究[J].海洋与湖沼.2003,34:683-682.
    64.赵全基.从粘土矿物特征分析初步探讨苏北辐射状沙洲的沉积特征[J].沉积学报.1984,1:125-135.
    65.赵其渊等编.海洋地球化学[M].北京:地质出版社.1989,17-29.
    66.张经,应时理.长江口中的颗粒态重金属.中国主要河口的生物地球化学研究[M].北京:海洋出版社.1996:146-159.
    67.赵一阳,鄢明才,李安春等.中国近海沿岸泥的地球化学特征及其指示意义[J].中国地质.2002,29(2):181-185.
    68.赵一阳.鄢明才.黄河、长江、中国浅海沉积物化学元素丰度比较[J].科学通报.1992,13:1202-1204.
    69.赵一阳,鄢明才.中国浅海沉积物地球化学[M].北京:科学出版社.1994.
    70.赵一阳.中国海大陆架沉积物地球化学的若干模式[J].地质科学.1983,4:307-314.
    71.中国科学院地球化学研究所编.高等地球化学[M].北京:科学出版社.2000.
    72.中国科学院地理研究所,长江水利水电科学研究院,长江航道局规划设计研究院.长江中下游河道特性及其演变[R].北京:科学出版社.1985.29-48.
    73.中日黑潮合作调查研究课题组.黑潮调查研究综合报告[R].北京:海洋出版社.1995,
    ??115.
    74. Adelson, J. M., Helz, G. R., and Miller, C. V., Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments [J]. Geochim. Cosmochim. Acta, 2001, 65:237-252.
    75. Aller, R. C. The sedimentary manganes cycle in Long Island Sound; Its role as intermediate oxidant and the influence of bioturbation, O2, and Corgflux on diagenetic reaction balances [J], Journal of Marine Research, 1994, 52: 259-195.
    76. Anderson, R, F., Lehuray. A. P., and Fleisher, M. Q., et al,, Uranium deposition in Saanich Inlet sediments, Vancouver Island [J]. Geochim. Cosmochim, Acta. 1989, 53: 2205-2213.
    77. Barnes, C. E., and Cochran, j. K,, Uranium geochemistry in estuary sediments: Controls on removal and release processes [J]. Geochimica Cosmochimica Acta. 1993, 57: 555-569.
    78. Barnes, C. E., and Cochran, J. K., Uranium removal in oceanic sediments and the oceanic U balance [J]. Earth and Planetaty Science Letters. 1990, 97: 94-101.
    79. Beardsley, R. C, Limebumer, R., and Yu, H., et al., Discharge of the Changjiang (Yangtze River) into the East China Sea [J]. Continental Shelf Research. 1985, 4: 57-76.
    80. Berner, R. A., Raiswell, R., C/S method for distinguishing fresh water from marine sedimentary rocks [J]. Geology. 1984,12: 365-368.
    81. Berhard, J. M., Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene [J]. Journal of Foraminifer Research.1986, 16:207-205.
    82. Bonatti, E., Metallogenesis at oceanic spreading centers [A]. Annu. Rev. Earth and Planetary Science Letters. 1975, 3: 401-431.
    83. Brumsack, H. J., Geochemistry of Cretaceous black shales from the Atlantic Ocean (DSDP11, 14, 36 ) [J], Chem. Geol, 1980,31: 1-25.
    84. Calvert, S. E., Karlin, R. E., Relationships between sulfur, organic carbon and iron in the modern sediments of the Black Sea [J]. Geochim. Cosmochim. Acta. 1991, 55: 2483-2490.
    85. Calvert, S. E., Pedersen, T. F., Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record [J]. Marine Geology. 1993, 113; 67-88.
    86. Chen, C. T. A., Bychkov, A.S., Wang. S.L., An anoxia Sea of Japan by the year 2200? [J]. Mar. Chem. 1999, 67: 249-265.
    87. Chaillou, G, Anschutz P., and Lavaux, G, et al. The distribution of Mo, U and Cd in relation to major redox species in muddy sediments of the Bay of Biscay [J]. Mar. Chem.2002,80:41-59.
    88. Chen Z. Y., Yoshiki Saito, Kazuaki Hori, et a!., Early Holocene mud-ridge formation in the
    ??Yangtze River, China: a tidal-controlled estuarine pattern and sea-level implications [J]. Marine Geology. 2003, 198: 245-257.
    89. Chen Z. Y., Yoshiki Saito, Yutaka Kanai, et al., Low concentration of heavy metals in the Yangtze estuary sediments, China: a diluting setting [J]. Estuary, Coastal and Shelf Science. 2004,60:91-100.
    90. Crusius, J., and Thomson, J., Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent lomg-term burial in marine sediments [J]. Geochimica et Cosmochimica Acta. 2000,64 (13): 2233-2242.
    91. Crusius J., Calvert S., Pedersen T., et al., Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition [J]. Earth and Planetary Science Letters. 1996, 145: 65-78.
    92. Dean, W., Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin [J]. Geochim. Cosmochim. Acta, 1997, 61: 4507-4518.
    93. Detnaster, D. J., Mckee, B. A. and Nittrouer, C. et al., Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea [J]. Continental Shelf Research. 1985, 4: 143-158.
    94. Edzwald, J. K.,O Melia, C. R. Clay distribution in recent estuarine sediments [A], clay mineral. 1975,23:29-44.
    95. Emerson, S., and Huested, S. S., Ocean anoxia and the concentration of molybdenum in sea water [J]. Mar. Chem. 1991, 34: 177-196.
    96. Epping, E. H., Schoemann, V., de Heij. H. Manganese and Iron Oxidation during benthic oxygenic photosynthesis [J], Estuarine, Coastal and Shelf Science. 1998, 47: 753-767.
    97. Evans, N. J., Gregoire, D. C, and Goodfellow, W.D., et al., Ru/Ir ratios at the Cretaceous-Tertiary boundary: Implications for PGE source and fractionation within the eject cloud [J]. Geochimica cosmochimica Acta. 1993a, 57: 3149-3158.
    98. Evans, N. J., Gregoire, D. C, and Grieve, R. A. F, et al., The use of platinum-group elements for mpactor identification: Terrestrial impact craters and Cretaceous-Tertiary boundary [J]. Geochimica cosmochimica Acta. 1993b, 57: 3737-3748.
    99. Evans, N. J., Ahren, T. J., and Gregoire, D. C, Fractionation of ruthenium from iridium at the Cretaceous-Tertiary boundary [J]. Earth and Planetary Science Letters. 1995, 134: 141-153.
    100. Fang, T. H. and Eason, H., Mechanisms infuencing the spatial distribution of trace metals in surficial sediments off. the South-WesternTaiwan [J] Marine Pollution Bulletin. 1999, 38:1026-1037.
    101. Francois, R., The study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Cu, V, Cr, Ni, Mn and Mo) in Saanich inlet sediments, British Columbia, Canada [J]. Marine Geology. 1988, 83: 285-308.
    102. Froelich, P. N., Klinkhammer, G. P., and Bender, M. L,, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis [J], Geochim. Cosmochim. Acta. 1979,43: 1075-1090.
    103. Gao, A. G, Cai, D, L., and Gao, S. L. Geochemical characteristics of the elements in the sediment of the Yangtze Estuary [C]. Proceeding of the Japan-China workship on the cooperative study of the marine environment. Eddited by M. Watanabe and M. Y. Zhu, Research report from the national institute of environmental studies, Japan, 2000, 151:151-158.
    104.Gibbs, R, J. Clay mineral segregation in the marine sediments [J]. Journal of Sedimentary Petrology. 1977,25:194-200,
    105. Gingele, F.X., Muller, P. M., and Schneider, R. R. Orbital forcing of freshwater input in the Zaire Fan area —clay mineral evidence from the last 200 kyr [J]. Paleogeography, Paleoclimatology. Paleoecology. 1998, 138: 17-26,
    106. Gobeil, C, Maedonald, R. W., and Sundby, B., Diagenetic separation of cadmium and manganese In suboxic continental margin sediments [J], Geochimica cosmochimica Acta.1997,21:4647-4654.
    107. Graham, I. J., Glasby, G. P., and Churchman, GJ. Provenance of the detrital component of deep-sea sediments from the SW Pacific Ocean based mineralogy, geochemistry and Sr isotopic composition [J]. Marine Geology. 1997, 140: 75-96.
    108. Hastings, D,, Emerson S., and Mix A., Vanadium in foraminiferal calcite as a tracer for changes in the areal extent of reducing sediments [J]. Paleoceanog. 1996, 11: 665-678.
    109. Hathon, E. G, and Underwood, M, B, Clay mineralogy and chemistry as indicators of hemipelagic sediments dispersal south of the Aleutian arc [J]. Marine Geology, 1991, 97:145-166.
    110. Helz, G. R., Miller, C, V.f and Charnock, J. M,, Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence [J]. Geochim. Cosmochim. Acta. 1996,60:3631-3642.
    111. Jacobs, L,, Emerson, S., Trace metal solubility in an anoxia fjord. Earth and Planetary Science Letters. 1982, 60: 237-252.
    112. Jacobs, L., Emerson, S., and Skei, J., Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway [J]. Geochimica cosmochimica Acta. 1985,49: 1433-1444.
    113. Jacobs, L., Emerson, E., and Huested, S. S., Tracd metal geochemistry of the Cariaco Trench [J]. Deep-Sea Research. 1987, 34: 965-981.
    114. Jelinowska, A., Tuckolka, P., Guichard, F., Mineral magnetic study of late Quaternary south Caspian Sea sediments: palaeoenvironmental implications [J]. Geophysical Journal International. 1998, 133(2): 499-509.
    115. Jennifer L. Morford and Steven E., The geochemistry of redox sensitive trace metals in sediments [J]. Geochimica cosmochimica Acta. 1999, 63: 1735-1750.
    116. Joachimski, M. M, Buggisch, W., Anoxic events in the late Frasnina——Causes of the Frasnian-Famennian faunal crisis? [J]. Geology. 1993, 21: 675-678.
    117. Jones, B. J., Manning, A.C., Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mud stone [J]. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994,111:111-129.
    118. Kaiho, K., Benthic foraminifera! dissolved-oxygen index and dissolved-oxygen levels in the modern ocean [J]. Geology. 1994a, 22: 719-722.
    119. Klinkhammer, G. P., and Palmer, M. R., Uranium in the oceans: where it goes and way [J]. Geochimica Cosmochimica Acta. 1991,55: 1799-1806.
    120. Koide. M., Determination of rhenium in marine waters and sediments by graphite furnace atomic absorption spectrometry [J]. Anal. Chem. 1987, 59: 1802-1805.
    121. Koschinsky, A., Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments [J]. Deep-Sea research Ⅱ. 2001, 48:3757-3777.
    122. Kyte, F.T., Leinen, M., Heath, G. R. et al., Cenozoic sedimentation history of the central North Pacific: inferences from the elemental geochemistry of core LL44-GPC3 [J]. Geochimica cosmochimica Acta. 1993,57: 1719-1740.
    123. Lee, C. H., Fang, M. D., and Hsieh, M.T., Characterization and distribution of metals in surficial sediments in southwestern Taiwan [J]. Marine Pollution Bulletin. 1998, 36 (6):464-471.
    124. Lirneburner R, Beardsley, R. C. Zhao, J. Water Masses and Circulation in the East China Sea [C]. Proceedings of International symposium on sedimentation on the continental shelf, with special reference to the East China sea, April 12-16, Hangzhou, China, Vol.l.Beiiing: China Ocean Press. 1983, 285-294.
    125. Mangani, A. Jung, M. and Laukenmann, S., What do we learn from peaks of uranium and of manganese in deep sea sediments? [J] Marine Geology. 2001, 177: 63-78.
    126. McKee, B. A., Demaster, D. J., and Nittrouer, C.A., Uranium geochemistry on the Amazon shelf: Evidence for uranium release from bottom sediments [J]. Geochim. Cosmochim. Acta.
    ??1987,51: 1779-1786,
    127. Miller, C. V,, Sediemntary molybdenum: A geochemical indicator of anoxia in Chesapeake Bay [D]. Ph. D. Dissertation, University of Maryland. 1992.
    128. Morford, J. L,, and Emeson, S., The geochemistry of redox sensitive trace metals in sediments [J]. Geochimica cosmoehimica Acta. 1999, 63: 1735-1750.
    129. Morse, J. W., and Luther 111, G. W., Chemical influences on trace metal-sulfide interaction in anoxic sediments [J]. Geochim. Cosmochim. Acta. 1999, 63: 3373-3378,
    130. Naidu, A, S., Creager, J. S, and Mowatt, T.C. et al,, Clay mineral dispersal patterns in the north Bering and Chukchi Seas [J]. Marine Geology, 1982,47: 1-15,
    131. Naidu, A. S. and Mowatt, T. C, Source and dispersal patterns of Clay mineral in surface sediments from the western continental shelf area of Alaska [J]. Geol. Soc. Amer, Bull, 1983,94:841-854.
    132. Naidu, A.S., Han, M.W., and Mowatt, T.C. et al. Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic [J], Marine Geology, 1995, 127: 87-104.
    133. Nameroff, T. J., Suboxic trace metal geochemistry and paleo-recorder in continental margin sediments of the Eastern Tropical North pacific [D]. PhD thesis, University Washington.1996.
    134. Olaffson J., and Rliey, J. P., Some data on the marine geochemistry of rhenium [A]. Chemical Geology. 1972,9:227-230.
    135. Oliverira, A. Rocha, F. and Rodrigues, A., et al. Clay minerals from the sedimentary cover from the Northwest Iberian shelf [J]. Progress in oceanography. 2002,32: 233-247.
    136. Petschick, R., Kuhn, G, and Gingele, F. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport and relation to oceanography [J]. Marine Geology. 1996, 130:203-229,
    137. Prithvirag, M,, and Prakash, T, N. Distribution and geoehemical association of clay minerals on the inner shelf of Central Kerala.India [J]. Marine Geology. 1990, 92; 285-290.
    138. Raiswell, R., Burner, R.A., Pyrite formation in exilic an semi-euxinicsediments [J]. Amer. J. Sci. 1985,285:7]0-724.
    139. Raiswell, R., Buckley, F, Berner, R. A., and Anderson, T.F. Degree of pyritization of iron as a palaeo environmental indicator of bottom-water oxygenation [J], J. sediment. Petrol. 1988,58:812-819,
    140. Ravizza, G., Turekian, K. K., and Hay, B. J., The geochemistry of rhenium and osmium in recent sediments from the Black Sea [J], Geochim. Cosmochim. Acta, 1991, 55: 3741-3752,
    141. Riedel, G. F., Sanders, J.G., and Osman, R.W., Biogeochemical control on the flux of trace elements from estuarine sediments: effects of seasonal and short-term Hypoxia [J]. Marine Environmental Research. 1999, 47: 349-372.
    142. Rosenthal, Y., Boyle, E.A., and Labeyrie, L., et al, Glacial enrichments of authigenic Cd and U in subantarctia sediments: a climatic control on the elements' oceanic budget? [J]. Paleoceanography. 1995a, 10:395-413.
    143. Rosenthal, Y., Lam, p., and Boyle, E. A. et al., Authigenic cadmium enrichments in suboxic sediments: precipitation and post depositional mobility [J]. Earth and Planetary Science Letters. 1995b, 132:99-111.
    144. Russell, A. D., and Morford, J. L., The behavior of redox-sensitive metals across a laminated-massive- laminated transition in Saanich Inlet, British Columbia [J]. Marine Geology. 2001, 174:341-354.
    145. Satyanarayana, D. and Ramana, Y. V., Distribution of minor elements in the shelf and deep sea sediments of the northern Arabian Sea [J]. Marine Chemistry. 1994, 47: 150-226.
    146. Schulte, S., Rostek, F., and Bard, E., et al. Variation of oxygen-minimum and primary productivity recorded in sediments of the Arabian Sea [J]. Earth and Planetary Science Letters. 1999, 173:205-221.
    147. Shaw T, J., Gieskes, J.M., and Jahnke, R.A., et al. Early diagenesis in differing depositional environments: the response of transition metals in pore water [J]. Geochim. Cosmochim. Acta. 1990,54: 1233-1246.
    148. Sundby, B., Martinez, P., and Gobeil, C, Comparative geochemistry of cadmium, rhenium, uranium, and molybdenum in continental margin sediments [J]. Geochimica et Cosmochimica Acta. 2004, 68: 2458-2493.
    149. Taylor, S. R. The abundance of chemical elements in the continental crust- a new table [A]. Geochim. Cosmochim. Acta. 1964,28: 1273-1285.
    150. Thomson, J., Carpenter, M.S., Jarvis, I., et al., Metal accumulation rates in Northwest Atlantic pelagic sediments [J]. Geochimica cosmochimica Acta. 1984, 48: 1935-1948.
    151. Thomson, J., Higgs, N. C, and Colley, S., A Geochemical investigation of reduction haloes developed under turbidities in brown clay [J]. Marine Geology. 1989, 89: 315-330.
    152. Thomson, J., Ian Jarvis, and Darryi. R. H. Green, et al., Mobility and immobility of redox-sensitive elements in deep-sea turbidities during shallow burial [J]. Geochimica et Cosmochimica Acta. 1998, 62 (4): 643-656.
    153. Tian, R. C, Hu, F. X., and Martin, J. M., Summer nutrient fronts in the Changjiang (Yangtze River) Estuary [J]. Estuarine, Coastal and Shelf Science. 1993, 37: 27-41.
    154. Turner, R. E., Rabalais, N. N., Coastal eutrophication near the Mississippi river delta [J].
    ??Nature. 1994, 168:619-621.
    155. Van Der Sloot, Hoede, H. A., and Wijkstra, D., et al., Anionic species of V, As, Se, Mo, Sb, Te, and W in the Scheldt and Rhine estuary and the Southern Bight (North Sea) [J], Estuarine Coastal Shelf Science. 1985, 21: 633-651.
    156. Van Geen A., McCorkle D. C, and Klinkhammer G. P., Sensitivity of the phosphate-cadmium-carbon isotope relation in the ocean to cadmium removal by suboxic sediments [J]. Paieoceanography. 1995, 10: 159-169.
    157. Wallace, M. W., Gostin, V. A., and Keays, R. R., Acraman impact ejecta and host shales: Evidence for low-temperature mobilization of iridiumand other platinoids [J]. Geology. 1990, 18: 132-135.
    158. Wang, C. S., Hu, X, M., Jansa, L., et al. The Cenomanian- Atauronian anoxia event in southern Tibet [J]. Cretaceous Research. 2001, 22: 481-490.
    159. Wignall, P. B., Oceanic Anoxia and the end Permian mass extinction [J]. Science. 1996. 272 (24): 1155-1158.
    160. Wilkin, R.T, H. L, Barnes, S. L. Brantley. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions [J]. Geochimica et Cosmochimic Acta. 1996, 60: 3897-3912.
    161. Wilkin, R.T., M.A. Arthur, W.E. Dean. History of water-column anoxia in the Black Sea indicated by pyrite framboid size distribution [J], Earth and Planetary Science Letters. 1997, 148:517-525.
    162. Yang, Z, S., Saito, Y., Guo, Z. G, et al. Distal mud area as a material sink in the East China Sea [C]. K. Iseki, I .Koike, S.Tsunogai, et al., eds. Proceedings of International Symposium on Global Fluxes of Carbon and its Related Substances in the Coastal-Ocean-Atmosphcre System. Sapporo; Hokkaido University. 1994: 1-6.
    163. Zhang, C. S., Lijun Wang, L. J., and Li, G. S., et al., Grain size effect on multi-element concentrations in sediments from the intertidal flats of Bohai Bay, China [J]. Applied Geochemistry. 2002, 17: 59 - 68.
    164. Zheng, Y., Anderson, R. F., and van Geen A., et al., Authigenic molybdenum formation in marine sediments: a link to pore water sulfid in the Santa Barbara Basin [J]. Geochim. Cosmochim. Acta. 2000, 64: 4165-4178.
    165. Zheng, Y, Weinman, B., and Cronin, T., et al., A rapid procedure for the determination of thrium, uranium, cadmium and molybdenum in small sediment samples by inductively coupled plasma-mass spectrometry: application in Chesapeake Bay [J]. Applied Geochemistry. 2003, 18: 539-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700