GPS/MIMU嵌入式组合导航关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争的高技术特点表明,精确制导武器已经逐渐成为现代战争的主导,低成本导航与制导技术是消耗型制导武器的关键技术之一。卫星/MIMU嵌入式组合导航系统具有成本低、体积小、重量轻、功耗低、动态性能高和抗干扰能力强等优点,因而在精确制导武器等军事应用方面具有非常重要的应用价值。本文以GPS为实例,开展卫星/MIMU嵌入式组合导航一体化关键技术的研究,完成了MIMU辅助的GPS信号捕获、MMU辅助的GPS信号跟踪、MIMU辅助的导航定位算法和GPS/MIMU深组合导航算法的分析,并给出了具体解决方案。主要的工作包括以下几个方面:
     (1)从卫星信号的检测概率、虚警率和捕获时间方面对时域相干和非相干捕获算法进行了分析比较:非相干捕获算法不受导航数据位的影响,而且多普勒频率误差对其影响较小,但是非相干捕获算法增加了平方损失;而相干捕获算法获取相同的捕获灵敏度,仅需较短的积分时间,但其受多普勒频移估计偏差和码移估计偏差的影响较大,并且受导航数据位的影响。基于时域标准相干和非相干捕获算法的特点,针对快速捕获的应用要求,提出了基于辅助的(卫星历书和星历辅助、卫星/MIMU估计的多普勒频率辅助、位置和时间的辅助)时域相干捕获算法,分析结果表明该方法能有效地缩短捕获时间(从几百秒缩短到几秒)和提高捕获效率(在检测概率为95%的条件下,对GPS信号的捕获能力提高了4.5dB/Hz)。
     (2)对接收机DLL/PLL/FLL的鉴别器进行了分析和比较研究,在综合考虑接收机跟踪环路中的各种误差源(热噪声、晶振误差、动态牵引误差等)的基础上,设计了一种适合于高动态的GPS环路结构:码跟踪环采用载波辅助的结构,载波环路采用双模态结构——2阶FLL辅助的3阶PLL结构。针对不同的晶振类型,综合考虑各种误差因素,设计了MIMU辅助的GPS接收机环路结构及MIMU辅助3阶PLL的最小带宽和最优带宽。根据设计的MIMU辅助的GPS环路结构,分析了其抗干扰性能,分析结果表明MIMU辅助的卫星接收机比一般的GPS接收机抗干扰性能至少有1 1dB的提高。
     (3)分析了基于Kalman滤波器的纯GPS导航定位算法,为了减少系统的状态维数,观测量采用伪距单差和伪距率单差(星间差)来抵消用户钟差和钟差漂移的影响,试验结果表明Kalman滤波导航算法使得导航定位结果更平滑,定位精度更高;同时分析了MMU辅助的GPS导航定位算法,观测量采用伪距单差和伪距率单差来抵消用户钟差和钟差漂移的影响;针对低成本MIMU系统,设计了一种基于最大似然估计的自适应滤波算法,通过试验验证了该算法,静态试验结果表明:MIMU辅助GPS定位系统的位置精度优于5m,速度精度优于0.1m/s,俯仰角和滚动角精度优于0.2°,航向角精度优于0.2°(航向角辅助)。
     (4)为了提高系统的动态性能和抗干扰能力,论文进一步研究了GPS/MIMU深组合导航算法。首先论述了GPS/MMU嵌入式深组合导航算法的基础——矢量跟踪环结构,着重分析了三种基带测量信号预处理方法;接着分析了GPS/MIMU嵌入式深组合导航算法中的导航滤波器设计,为了提高导航滤波性能,采用了降维的导航滤波算法;最后针对基带信号预滤波的强非线性问题,提出了基于UKF的基带测量信号预滤波方法,并对其性能进行了分析比较。
     (5)论文最后给出了GPS/MIMU嵌入式导航系统的实现方案及试验结果,客观评价了系统的关键性能指标,进一步验证了论文提出的有关算法模型。系统主要性能指标为:
     1)在GPS/MIMU嵌入式组合导航系统中,当有星历辅助时GPS首次定位时间优于10s。
     2)在静态条件下,研制的GPS接收机的位置精度优于5m,速度精度优于0.1 m/s;在动态车载条件下,水平位置误差优于3米,高程优于10米,与商用GPS接收机精度大体相当。
     3) GPS/MIMU嵌入式组合导航系统在静态条件下的精度重复性为:位置精度优于5m,速度精度优于0.1m/s,俯仰角和滚动角精度优于0.2°,航向角精度优于0.2°(航向角辅助)。
     论文虽以GPS为实例,但是研究的成果同样适用于其它的卫星导航系统(如GLONASS、GALLIEO、北斗Ⅱ卫星导航系统等)。
High-tech modern wars declare that precision guided munitions have made a significant impact in recent armed conflicts, and the low-cost technology of navigation and guidance unit is a key in the consuming guided munitions. Having such advantages as high precision, low-cost, low-size, low-weight, low-power, powerful capability of anti-jamming and high dynamics, et al., embedded GPS/MIMU integrated navigation systems have extensive application value in the projectile and precision guided munitions. This dissertation addresses key technologies of embedded GPS/MIMU integration such as MIMU-aided GPS signal acquisition, MIMU-aided GPS signal tracking, MIMU-aided GPS navigation, GPS/MIMU ultra-tightly coupled navigation, proposing a full solution for the embedded GPS/MIMU integrated navigation system. The main contributions include the following aspects:
     (1) Benefits and drawbacks of non-coherent and coherent integration are analyzed from the aspects of probability of detection, probability of false alarm and the acquisition search time. Coherent integration requires a shorter integration time to achieve the same acquisition sensitivity versus a comparable non-coherent integration. Non-coherent integration is more tolerant to residual frequency errors and is not affected by the navigation data bits. According to their benefits and drawbacks, aided GPS signal coherent integration acquisition(ephemeris and almanac aiding, time and approximate user position aiding, GPS/MIMU estimated doppler aiding) is presented for the fast acquisition applications. The simulated results show that performance of the aided acquisition method can improve 4.5dB/Hz in the condition of 95% probability of detection than non-aiding GPS signal acquisition, and the time of aided acquisition is reduced from several hundred seconds to several seconds.
     (2) In order to obtain the best DLL/PLL/FLL performance, we select discriminators and their normalization algorithms with the highest processing gain and the least linearization effect. Considering the total tracking errors such as thermal noise, oscillator phase noise, dynamic stress error, et al., we design the structure of GPS receiver tracking loop for high dynamic applications. Doppler frequency from carrier is proportional to that from code, so Doppler information from the carrier tracking loop is selected to aid the code tracking loop. Dual mode structure is adopted as the high dynamic GPS receiver carrier tracking loop. One is a FLL-assisted-PLL mode for high dynamics, and the other is a PLL mode for low dynamics. The mode is switched according to the lock status.
     Considering the total tracking errors and different oscillators, the structure of MIMU-aided GPS receiver tracking loop is also designed. The structure of Doppler information from the carrier aided code tracking loop is adopted. The optimal loop bandwidth of MIMU-aided PLL is designed based on different oscillators such as a 1.1 Hz loop bandwidth of the MIMU-aided 3rd order PLL for OCXO, and 2.14Hz for TCXO. Finally according to the designed MIMU-aided GPS receiver tracking loop, the anti-jamming simulation is performed. Simulation results show that anti-jamming performance of the MIMU-aided receiver has 11dB improvement at least, compared to traditional GPS receiver.
     (3) The GPS navigation filter is investigated. In order to eliminate the clock components, that is, the receiver clock offset and clock offset rate, the pseudorange measurements and Doppler measurements are differenced across satellites. Compared to the least square algorithm, the navigation filter adopted can improve the positioning precision. According to the GPS navigation filter, the MIMU-aided GPS navigation filter is designed, in which the measurements are the pseudorange and Doppler difference across satellites. Also the structure of the adaptive Kalman filter is designed for low-cost, low-precision MEMS IMU. Finally, Test results show that using adaptive Kalman filter, perfect performance can be achieved for the low-cost MIMU aided GPS navigation so that the positioning accuracy is better than 5m, velocity accuracy is better than 0.1 m/s on the static condition, the level attitude errors are better than 0.2°, heading attitude error is better than 0.2°(with heading aiding).
     (4) In order to improve the performance of dynamics and anti-jamming, the dissertation presents a GPS/MIMU ultra-tightly coupled navigaton algorithm. The vector-based tracking structure of GPS receiver which is the foundation of GPS/MIMU ultra-tightly coupled navigaton algorithm is introduced firstly. Three local pre-processing algorithms for GPS correlated sample signals are presented for GPS vector-tracking architecture:least mean square curve fitting, linear Kalman pre-filter and non-linear Kalman pre-filter. The GPS/MIMU ultra-tightly coupled navigaton algorithm can be achieved by replacing the GPS navigaton filter in GPS vector-tracking structure with an integrated GPS/MIMU navigation filter. The local pre-processing algorithm is used to update an GPS/MIMU navigation filter. The navigation solution together with GPS parameter corrections are used in a tracking predictor to generate high-sampling-rate carrier and code replicas. The structure of reduced-dimension Kalman filter is adopted for the GPS/MIMU navigation filter in order to improve the performacne of GPS/MIMU navigation filter. Finally, regarding the strong nonlinearity of GPS corrlelator output signal, UKF is first presented for GPS local pre-processing algorithm, and the performance of GPS local pre-processing algorithm using UKF is evaluated.
     (5) Test methods and results are presented and the system performance evaluation are given. The main performances are as follows:
     1) In the embedded GPS/MIMU integrated navigation system, TTFF(Time To First Fix) of ephemeris aiding GPS is better than 10s.
     2) The GPS positioning accuracy is better than 5m and velocity accuracy is better than 0.1 m/s on the static condition. On the dynamic condition, the accuracy of the designed GPS receiver is comparable to that of commercial GPS receiver.
     3) For the embedded GPS/MIMU integrated navigation system on the static condition, the positioning accuracy is better than 5m, velocity accuracy is better than 0.1 m/s, and the attitude errors are less than 0.2 degrees with yaw aiding.
     The contribution of this dissertation is not only applicable for GPS, but also for other GNSS such as GLONASS, GALLIEO, BDⅡ.
引文
[1]陈俊勇.GPS现代化和GPS信号重构技术的进展[J].全球定位系统,2005,30(1):1-4
    [2]Ganguly S, Jovancevic A, M Kirchner, et al. GPS Signal Reconstitution[A]. In: Proceeding of ION GNSS 2004[C]. Virginia VA:The Institute of Navigation, Inc.,2004
    [3]Lannelongue S, Delfour H, Flament D, et al. Towoards Dual Frequency L1-L5 GNSS Space Based Augmentation System[A]. In:Proceeding of ION GNSS 2004[C]. Virginia VA:The Institute of Navigation, Inc.,2004
    [4]张玉册,梁开龙.GPS的现代化计划与第三信号L5[J].测绘工程,2002,11(1):22~25
    [5]吴晓进.GPS现代化的背景、目标和措施[J].船用导航雷达,2005,75(4):1~4
    [6]魏二虎,柴华,刘经南.关于GPS现代化进展及关键技术探讨[J].测绘通报,2005(12):5-7
    [7]魏二虎,李征航,郭际明.全球定位系统卫星L2载波增加民用码的作用[J].测绘通报,2004,(6):1-4.
    [8]EDMOND T N. Tracking New Signals from Space-GPS Modernization and Trimble R-Track Technology[DB/OLl. http://tr1.trimble.com/docushare/dsweb/ Get/Document-163893/r-track-wp/022543-078-0304-lr.pdf,2004-09-16
    [9]平述.俄罗斯“全球导航卫星系统”一瞥[J].国际太空,2005,5:8~10
    [10]杨光,李勇.俄罗斯的GLONASS系统[J].国防科技,2005,3:32~34
    [11]钱桂山.欧洲伽利略卫星导航系统[J].国外卫星动态,2006,6:1~10
    [12]刘群燕,王举,王孝禹.伽利略卫星导航系统简介[J]. 气象水文装备,2006,17(4):32~34
    [13]边际.伽利略(GALILEO)系统[J].测绘科学与工程,2006,26(2):62~62
    [14]李铁,孙贵新.“伽利略”卫星导航系统综述[J].国外电子测量技术,2005,24(11):5-8
    [15]曾庆化,刘建业,彭文明,等.我国卫星导航系统相关技术发展分析[J].航天控制,2006,24(4):91~96
    [16]赵国栋.“中国特设”GPS系统-“北斗”卫星系统的战略应用[J].国际展望,2004,489(4):32~35
    [17]逯亮清.基于载波相位干涉测量的双星定向技术研究[D].博士学位论文,长沙:国防科学技术大学,2005
    [18]Hopkins R E, Borestein J T, et al. The silicon oscillating accelerometer:A MEMS inertial instrument for strategic missile guidance[A]. In:AIAA. Reprinted, with permission from the missile Sciences Conference held in Monterey [C]. Nov. 7-9,2000,California, USA
    [19]Anderson R S, Hanson D S, Kourepenis A S. Evolution of low-cost MEMS inertial system technologies [A]. In:ION GPS 2001 [C]. Fairfax VA:U S Institute of Navigation, Inc.,2001.1332~1342
    [20]Kourepenis A, Connelly J, Sitomer J. Low cost MEMS inertial measurement unit[A]. In:ION NTM 2004[C]. Fairfax VA:U S Institute of Navigation, Inc.,2004.246-251
    [21]Hanse J G. Honeywell MEMS inertial technology & product status [A]. In:ION NTM 2004[C]. Fairfax VA:U S Institute of Navigation, Inc.,2004.239~245
    [22]Kuhlmann B. Noise of High-Performance Si-Micro-Machined Yaw Rate Sensors[A]. In:H Song. SYMPOSIUM GYRO TECHNOLOGY 2006[C]. Stuttgart:University of Stuttgart,2006.6.0-6.9
    [23]Trachtler M, Link T, Manoli Y. A New Approach for Multi-Axis Inertial Sensor Units on a Single Silicon Die Based on SOI-Technology[A]. In:H Song. SYMPOSIUM GYRO TECHNOLOGY 2006[C]. Stuttgart:University of Stuttgart,2006.7.0~7.10
    [24]Zimmermann S, Bartholomeyezik J, Breng U, et al. Single Axis Gyroscope Prototype Based on a Micromechanical Coriolis Rate Sensor [A]. In:H Song. SYMPOSIUM GYRO TECHNOLOGY 2006[C]. Stuttgart:University of Stuttgart,2006.9.0-9.9
    [25]Salychev O, Voronov V V, Cannon M E, et al. Low cost INS/GPS integration: concepts and testing[A]. In:Proceedings of ION NTM 2000[C]. Fairfax VA:U S Institute of Navigation, Inc.,2000.98~105
    [26]Jau-Hsiung Wang. Intelligent MEMS INS/GPS Integration For Land Vehicle Navigation[D]. PhD thesis, Calgary:Department of Geomatics Engineering, University of Calgary,2006
    [27]Nayak R A. Reliable and Continuous Urban Navigation Using Multiple GPS Antennas and a Low Cost IMU[D]. PhD thesis, Calgary:Department of Geomatics Engineering, University of Calgary,2000
    [28]Mathur N G, Grass F V. Feasibility of using a Low-Cost Inertial Measurement Unit with Centimeter-Level GPS[A]. In:Proceedings of ION AM 2000[C]. Fairfax VA:U S Institute of Navigation, Inc.,2000.712~720
    [29]马云峰,周百令,万振刚等.MIMU/GPS组合导航系统数据同步与融合方法研究[J].中国惯性技术学报,2004,12(3):28-31
    [30]单茂华,周百令,黄丽斌.联合H∞滤波算法及其在组合导航系统中的应用研究[J].数据采集与处理,2003,18(4):418~422
    [31]YUE Xiao kui,YUAN Jian ping. Hoo Sub-optimal Filter for Low cost Integrated Navigation System[J]. CHINESE JOURNAL OF AERONAUTICS,2004, 17(4):200~206
    [32]万振刚,周百令,马云峰等.自适应联合H∞滤波器及其在组合导航系统中的 应用[J].东南大学学报(自然科学版),2004,34(5):623~626
    [33]尚捷,顾启泰.MIMS/GPS组合导航系统中卡尔曼滤波器设计与实验研究[J].中国惯性技术学报,2005,13(2):45~48
    [34]马云峰,孟昭民.MIMU/GPS组合导航系统在制导弹药中的应用[J].潍坊学院学报,2005,5(2):4-7
    [35]龚真春,李平,宋执环.超小型无人机GPS/MIMU组合导航定位系统研究[J].航空电子技术,2004,35(3):13~18
    [36]黄丽斌,周百令.低成本MINS/GPS组合导航中卡尔曼滤波算法的综合应用研究[J].中国惯性技术学报,2005,13(5):16~19
    [37]黄丽斌,周百令,单茂华.基于DSP的MIMU/GPS组合导航系统研究[J].中国惯性技术学报,2003,11(3):12~15
    [38]龚真春,宋执环.嵌入式GPS/MIMS组合导航系统的设计与应用[J].计算机工程与应用,2005,9:108~110
    [39]Hide C D. Integration of GPS and Low Cost INS Measurements[D]. PhD thesis, UK:Institute of Engineering, Surveying and Space Geodesy, University of Nottingham,2003
    [40]Brown A, Lu Y. Performance test results on an integrated GPS/MEMS inertial navigation package[A]. In:Proceedings of ION GNSS 2004[C]. Fairfax VA:U S Institute of Navigation, Inc.,2004.825~832
    [41]Hide C, Moore T. GPS and low cost INS integration for positioning in the urban environment[A]. In:Proceedings of ION GPS 2005[C]. Fairfax VA:U S Institute of Navigation, Inc.,2005.1007~1015
    [42]Jaffe R, Bonomi S, Madni A M. Miniature MEMS quartz INS/GPS description and performance attributes [A]. In:Proceedings of ION GNSS 2004[C]. Fairfax VA:U S Institute of Navigation, Inc.,2004.852~863
    [43]Vicki C LeFevre, Lynne K Rider, David W Panhorst. MEMS IMU-Common Guidance[A]. In:40th Annual Armament Systems:Guns-Ammunition-Rockets-Missiles Conference [C].2005
    [44]Vicki LeFevre, David Panhorst. Common Guidance Common Sense[A]. IN: NDIA Firepower Symposium[C].2004
    [45]MDA03T-006. Ultra Tight Coupling for High Anti-Jam GPS/INS[EB/OL]. http://www.nttc.edu/resources/funding/dod/sttr2003/mda03.doc,2003
    [46]李荣彬,刘建业,曾庆化等.基于MEMS技术的微型惯性导航系统的发展现状[J].中国惯性技术学报,2004,12(6):88~94
    [47]Gustafson D, Dowdle J, Flueckiger K. A high Anti-Jam GPS-Based Navigator[A]. In:ION NTM 2000[C]. Fairfax VA:U S Institute of Navigation, Inc.,2000.438-446
    [48]L-3 Communications, Interstate Electronics Corporation. New Generation of Deeply Integrated Anti-jamming Software and Hardware [EB/OL]. http://www.1-3com.com/, July 2005
    [49]Timothy M Buck, Jason Wilmot, Michael J Cook. A High G, MEMS Based, Deeply Integrated, INS/GPS, Guidance, Navigation and Control Flight Management Unit[A]. In:IEEE/ION PLANS 2006[C],2000.772~794
    [50]Van Diggelen F, Abraham C. Indoor GPS Technology[M]. Dallas:CTIA Wireless-Agenda,2001
    [51]Zhodzishsky M, Yudanov S, Veitsel V, et al. Co-Op Tracking for Carrier Phase[A]. In:Proceedings of ION GPS1998[C]. Fairfax VA:Institute of Navigation, Inc.,1998.653~664
    [52]Andrey Soloviev, Frank Van Grass, Sanjeev Gunawardena. Implementation of Deeply Integrated GPS/Low-Cost IMU for Reacquistion and Tracking of Low CNR GPS Signals[A]. In:Proceedings of ION NTM2004[C]. Fairfax VA:U S Institute of Navigation, Inc.,2004.923~934
    [53]Soloviev A, Gunawardena S, Graas F V. Deeply Integrated GPS/Low-Cost IMU for Low CNR Signal Processing:Flight Test Results and Real Time Implementation [A]. In:Proceedings of ION GNSS2004[C]. Fairfax VA:Institute of Navigation, Inc.,2004.1598~1608
    [54]Alban S, Akos D M, Rock S M. Performance Analysis and Architectures for INS-Aided GPS Tracking Loops[A]. In:Proceedings of ION National Technical Meeting (NTM)2003[C]. Fairfax VA:U S Institute of Navigation, Inc.,2003. 611~62
    [55]Beser J, Alexander S, Crane R, et al. A Low-Cost Guidance/Navigation Unit Integrating A SAASM-Based GPS And MEMS IMU In A Deeply coupled Mechanization[J]. In:Proceedings of ION GNSS2002[C]. Fairfax VA:U S Institute of Navigation, Inc.,2002.545-555
    [56]Kreye C, Eissfeller B, Winkel J O. Improvements of GNSS Receiver Performance Using Ultra-tightly coupled INS Measurements [A]. In:Proceedings of ION GPS/GNSS[C]. Fairfax VA:U S Institute of Navigation, Inc., 2000.844~854
    [57]Sennott J. Robustness of Tightly Coupled Integrations for Real-Time Centimeter GPS Positioning[A]. In:Proceedings of ION GPS[C]. Fairfax VA:U S Institute of Navigation, Inc.,1997.655~663
    [58]Guojiang Gao, Gerard Lachapelle. INS-Assisted High Sensitivity GPS Receivers for Degraded Signal Navigation[A]. In:Proceedings of ION GNSS 2006[C]. Fairfax VA:U S Institute of Navigation, Inc.,2006
    [59]陈家斌,袁信.动态用户惯性速度辅助的GPS接收机码环稳定性研究[J].中国惯性技术学报,1994,2(3)
    [60]何秀凤,刘建业,袁信.惯性系统速度辅助的GPS接收机性能分析[J].航天控制,1996,3:40~46
    [61]胡德风.一种提高低动态GPS接收机动态适应能力的方法[J].导弹与航天运载技术,1995,6:17~21
    [62]秦永元. GPS载波环的惯性速度辅助及SA建模探讨[J].航空电子技术,1995,2:8-13
    [63]JAMES BAO-YEN TSUI. Fundamentals Global Positioning System Receivers: A Software Approach[M]. Second Edition. New York:A JHN WILEY & SONS, INC.,2005
    [64]Akopian D. A fast satellite acquisition method[A]. In:Proc. ION GPS 2001 [C]. Virginia VA:The Institute of Navigation, Inc.,2001.2871~2881
    [65]David M Lin, James B Y Tsui. Comparison of Acquisition Methods for Software GPS Receiver[A]. In:ION GPS2000[C]. Virginia VA:The Institute of Navigation, Inc.,2000.2385~2390
    [66]Driscoll C O, Murphy C C. Performance Analysis of an FFT Based Fast Acquisition GPS Receiver[A]. In:ION NTM2005[C]. Virginia VA:The Institute of Navigation, Inc.,2005.1014~1025
    [67]WEIHUA ZHANG, JAMES TRANQUILLA. Modeling and Analysis for the GPS Pseudo-range Observable[J]. IEEE Transactions on Aerospace and Electronic Systems,1995,31(2):739~751
    [68]Zhengdi Q. Optimal Gain in the Process of GPS Signal Acquisition[A]. In: Proceedings of ION GPS-2000[C]. Virginia VA:The Institute of Navigation, Inc.,2000.891~894
    [69]van Diggelen F. Global Locate Indoor GPS Chipset & Services[A]. In: Proceedings IONGPS-01[C]. Virginia VA:The Institute of Navigation, Inc., 2001.1515~1521
    [70]Sudhir N S, Vimala C, Ray J K. Receiver Sensitivity Analysis and Results[A]. In: Proceedings ION GPS-2001[C]. Virginia VA:The Institute of Navigation, Inc., 2001.1420~1426
    [71]Shewfelt J L, Nishikawa R, Norman C, Cox G F. Enhanced Sensitivity for Acquisition in weak Signal Environments through the use of Extended Dwell Times[A]. In:Proceedings ION GPS-01[C]. Virginia VA:The Institute of Navigation, Inc.,2001.155~162
    [72]Thomas Pany, Bernd Eissfeller. A Theoretical Analysis of Acquisition Algorithms for Indoor Positioning[A].2nd ESA Workshjop Stellite Navigation User Equipment Technologies NAVITEC'2004[C],2004
    [73]Jose Angel Avila Rodriguez, Vincent Heiries, Thomas Pany, et al. A HEORETICAL ANALYSIS OF ACQUISITION ALGORITHMS FOR INDOOR POSITIONING[A]. In:2nd ESA Workshop Satellite Navigation User Equipment Technologies NAVITEC[C]. Noordwijk, The Netherlands,2004
    [74]Zarrabizadeh M H, Sousa E S. A Differentially Coherent PN Code Acquisition Receiver for CDMA Systems[J]. IEEE Transactions on Communication,1997, 45(11):1456~1465
    [75]Jari Iinatti, Ari Pouttu. Probability of Acquisition with Noncoherent and Differentiallly Coherent Code Acquisition in Doppler[A]. In:IEEE 6th Int. Symp. On Spread-Spectrum Tech.&Appli.[C].2000.254~258
    [76]Shin O, Lee K. Differentially coherent combining for double-dwell code acquisition in DS/CDMA systems[J]. IEEE Trans. Communication,2003, 51(7):1046~1050
    [77]Choi H, Cho D J, Yun S.J, et al. A Novel Weak Signal Acquisition Scheme for Assisted GPS[A]. In:Proceedings of ION GPS/GNSS[C]. Virginia VA:The Institute of Navigation, Inc.,2002.177~183
    [78]Harald Elders-Boll, Uwe Dettmar. Efficient Differentially Coherent Code/Doppler Acquisition of Weak GPS Signals[A]. In:ISSSTA2004[C]. 2004.731~735
    [79]Jwo D J. Optimisation and sensitivity analysis of GPS receiver tracking loops in dynamic environment[J]. IEE Proc.-Radar, Sonar Navig.,2001,148(4):241~250
    [80]Jovancevic A, Brown A, Ganguly S, et al. Real-Time Dual Frequency Software Receiver[A]. In:Proceeding of ION GPS 2003 [C]. Virginia VA:The Institute of Navigation, Inc.,2003.2572~2583
    [81]Krumvieda K, Madhani P, Cloman C, et al. A Complete IF Software GPS Receiver:A Tutorial about the Details[A]. In:Proceeding of ION GPS 2001 [C]. Virginia VA:The Institute of Navigation, Inc.,2001.789~811
    [82]Ping Lian. Improving Tracking Performance of PLL in High Dynamic Applications[D]. MSc thesis, Calgary:The University of Calgary,2006
    [83]Legrand F, Macabiau C. Improvement of Pseuforange Measurements Accuracy By Using Fast Adaptive Bandwidth Lock Loops[A]. In:Proceeding of ION GPS 2001 [C]. Virginia VA:The Institute of Navigation, Inc.,2000.2346~2356
    [84]Legrand F, Macabiau C. Results of the implementation of the Fast Adaptive Bandwidth Lock Loops on a real GPS receiver in a high dynamics context[A]. In: GNSS 2001 International Symosium[C],2001.1-6
    [85]Legrand F, Macabiau C. Real-time minimization of the total tracking error in phase and delay lock loops-a second approach of the Fast Adaptive Bandwidth Algorithm[A]. In:Proceeding of the ION 57th Annual Meeting & Cigtf 20th Biennial Guidance Test Symposium[C].2001
    [86]Demoz G E, Razavi A, Enge P, et al. Doppler Aided Tracking Loops for SRGPS Integrity Monitoring [A]. In:Proceeding of ION GPS 2003 [C]. Virginia VA:The Institute of Navigation, Inc.,2003.2515~2523
    [87]Gold K, Brown A. Architecture and Performance Testing of a Software GPS Receiver for Space-based Applications[A]. In:Proceeedings of IEEEAC[C], 2004.1~12
    [88]Alban S, Gebre-Egziabher D. Performance Analysis and Architectures for INS-Aided GPS Tracking Loops[A]. In:Proccedings of the ION NTM-03[C]. Virginia VA:The Institute of Navigation, Inc.,2003
    [89]Santiago Alban. DESIGN AND PERFORMANCE OF A ROBUST GPS/INS ATTITUDE SYSTEM FOR AUTOMOBILE APPLICATIONS[D]. Ph.D Dissertation. Palo Alto, California, USA:Stanford University,2004.111~151
    [90]Spilker J J. GPS signal structure and performance characteristics[J]. Navigation, 1978,25(2):121~146
    [91]Richard B L. The mathematics of GPS[J]. GPS World,1991, No.7:45~50
    [92]Richard B L. The GPS error budget[J]. GPS World,1997, No.3:51~56
    [93]Abel J, Chauffe J. Existence and uniqueness of GPS solutions[J]. IEEE Trans. on AES.,1991,27(4):952~956
    [94]Chauffe J, Abel J. On the exact solution of the pseudo-range equations[J]. IEEE Trans. on AES.,1994,30(10):1021~1030
    [95]Josseph L. An Alternative closed-form solution to the GPS pseudo-range equation[J]. IEEE Trans. on AES.,1996,32(4):1430~1439
    [96]Hatch R. The synergism of GPS code and carrier measurements [A]. In: Proceedings of the third international symposium on satellite Doppler positioning[C]. New Mexico State,1982.1213~1231
    [97]Elezabeth M. High-accuracy GPS semikinematic positioning:modeling and results[J]. Navigation,1990,37(1):53~64
    [98]Sally L F, Stephen R D. Real-time on-the-fly kinematic GPS system results[J]. Navigation.1994,41(2):175~186
    [99]宋文尧,张牙.卡尔曼滤波[M].北京:科学出版社,1991
    [100]Hwang P Y C, Brown R G. Introduction to random signals and applied kalman filtering[M].2nd ed. New York:Wiley Inc.,1992
    [101]Rap K D, Narayana J L. An approach for a faster GPS tracking extended kalman filter[J]. Navigation,1995,42(4):619~630
    [102]Thomas John Ford. POSITION AND VELOCITY KALMAN FILTER FOR USE WITH GLOBAL NAVIGATION SATELLITE SYSTEM RECEIVERS[P]. United States Patent:No.6664923, Dec.16,2003
    [103]Kai-Wei Chiang, Semah Nassar, and Naser El-Sheimy. A Constructive and Autonomous Integration Scheme of Low-Cost GPS/MEMS IMU for Land Vehicular Navigation Application[A]. In:IEEE/ION PLANS 2006[C], 2006.235~243
    [104]El-Sheimy N, Abdel-Hamid W. An Adaptive Neuro-Fuzzy Model to Bridge GPS Outages in MEMS-INS/GPS Land Vehicle Navigation[A]. In:Proceedings of ION GNSS 2004[C]. Fairfax VA:U S Institute of Navigation, Inc.,2004
    [105]Hide C, Moore T, Smith M J. Adaptive Kalman filtering for low-cost INS/GPS[J]. The Journal of Navigation,2003,56(1):143~152
    [106]Karatsinides S P. Enhancing filter robustness in cacaded GPS/INS integrations [J]. IEEE Transactions on Aerospace and Electronic Systems,1994,30(4): 1001-1008
    [107]Loebis D,Sutton R, Chudley J. A fuzzy Kalman filter optimized using a genetic algorithm for accurate navigation of an autonomous underwater vehicle[A]. In: Proceedings of MCMC2003 conference[C].2003.19~24
    [108]Mohamed A H, Schwarz K P. Adaptive Kalman filtering for INS/GPS [J]. Journal of Geodesy,1999,73:193~203
    [109]Rahbari R, Leach B W, Dillon J, et al. Expert system for an INS/DGPS integrated navigator installed in a Bell 206 helicopter [J]. Engineering Applications of Artificial Intelligence,2005,18(3):353~361
    [110]Salycheva A. Medium Accuracy INS/GPS Integration in Various GPS Environments[D]. MSc Thesis,Calgary:The University of Calgary,2004
    [111]Sasiadek J Z,Wang Q, Zermba M B. Fuzzy adaptive Kalman filtering for INS/GPS data fusion[A]. In:Proceedings of the 15th IEEE international Symposium on Intelligent Control[C].2000.181~196
    [112]Swanson S R. A fuzzy navigational state estimator for GPS/INS integration[A]. In:IEEE Position Location and Navigation Symposium[C].1998.541~548
    [113]王艳东.智能组合导航系统[D].博士学位论文,北京:北京航空航天大学,2001
    [114]Eun-Hwan Shin. Estimation Techniques for Low-Cost Inertial Navigation[D]. Ph.D thesis, Calgary:The University of Calgary,2005
    [115]Rudolph van der Merwe, Wan E A. Sigma-Point Kalman Filters for Integrated Navigation[A]. In:Proceedings of ION 60th Annual Meeting[C]. Fairfax VA:U S Institute of Navigation, Inc.,2004.641-654
    [116]李涛.非线性滤波方法在导航系统中的应用研究[D].博士学位论文,长沙:国防科学技术大学研究生院,2003
    [117]Kreye C, Eissfeller B, Winkler J O. Improvement of GNSS Receiver Performance Using Deeply Coupled INS Measurement[A]. In:Proceedings of ION GPS[C]. Fairfax VA:U S Institute of Navigation, Inc.,2000.844-854
    [118]Jorvancevic A, Brown A, Ganguly S, et al. Ultra Tightly Coupling Implementation Using Real Time Software Receiver[A]. In:Proceeding of ION GNSS 17th[C]. Fairfax VA:U S Institute of Navigation, Inc.,2003.1575~1586
    [119]Ravindra Babul, Jinling Wang. Dynamics Performnance of Carrier and Code Tracking Loops in Ultra-Tight GPS/JNS/PL Integration[A]. In:IEEE Indicon 2005 Conference[C].2005
    [120]Jeong Won Kim, Dong-Hwan Hwang, Sang Jeong Lee. A Deeply Coupled GPS/INS Integrated Kalman Filter Design Using a Linearized Correlator Output[A]. In:IEEE/ION PLANS 2006[C],2006.300~305
    [121]Di Li, Jinling Wang. System Design and Performance Analysis of Extended Kalman Filter-Based Ultra-Tight GPS/INS Integration[A]. In:IEEE/ION PLANS 2006[C],2006.291~299
    [122]Babu R, Wang J. Ultra-tight GPS/INS/PL Integration:A System Concept and Performance Analysis[EB/OL]. http://www.gmat.unsw.edu.au/snap/publications/ babu etal2005c.Ddf/,2005
    [123]Spilker J J. Delay-lock tracking of binary signals[J]. IEEE Trans. On SET, 1963,9(3):1-8
    [124]Spilker J J. Vector delay lock loop-position estimation[P]. United States Patent: No.5398034,1995
    [125]Ohlmeyer Ernest J. Analysis of an Ultra-Tightly Coupled GPS/INS System in Jamming[A]. In:IEEE/ION PLANS 2006[C],2000.44-53
    [126]Sanjeet Singh. Comparison of Assisted GPS and High Sensitivity GPS in Weak Signal Conditions[D]. MSc thesis, Calgary:The University of Calgary,2006
    [127]孙礼.GPS接收机系统的研究[D].博士学位论文,北京:北京航空航天大学,1998
    [128]Guojiang Gao. INS-Assisted High Sensitivity GPS Receivers for Degraded Sigal Navigation[D]. PhD thesis, Calgary:The University of Calgary,2007
    [129]Hung Seok Seo, Π Heung Choi et al. Extended Multiple Correlator for GPS Receiver[A]. In:ION GPS2002[C]. Virginia VA:The Institute of Navigation, Inc.,2002.1612~1618
    [130]Glenn D MacGougan. High Sensitivity GPS Performance Analysis in Degraded Signal Environments[D]. MSc thesis, Calgary:The University of Calgary,2003
    [131]Lin D M, Tsui J B Y, Liou L L. Sensitivity Limit of A Stand-Alone GPS Receiver and An Acquisition Method[A]. In:Proceedings of ION GPS 2002[C]. Fairfax VA:U S Institute of Navigation, Inc.,2002.1663~1667
    [132]Andrey Solo view, Frank van Graas. Sanjeev Gunawardena. Implementation of Deeply Integrated GPS/Low-Cost IMU for Reacquisition and Tracking of Low CNR GPS Signals[A]. In:ION NTM 2004[C]. Virginia VA:.The Institute of Navigation, Inc.,2004.923~935
    [133]Bastide F, Julien O, Macabiau C, et al. Analysis of L5/E5 Acauisition, Tracking and Data Demodulation Thresholds[A]. In:ION GPS2002[C]. Virginia VA:The Institute of Navigation, Inc.,2002.2196~2207
    [134]Wei Yu. Selected GPS Receiver Enhancements for Weak Signal Acquisition and Tracking[D]. PhD thesis, Calgary:The University of Calgary,2007
    [135]Syrjarinne J. Possibilities for GPS Time Recovery with GSM Network Assistance[A]. In:Proceedings of ION GPS-2000[C]. Virginia VA:The Institute
    of Navigation, Inc.,2000.955~966
    [136]Kaplan E D, Hegarty C J. Understanding GPS:Principles and Applications[M]. Norwood:Artech House Inc.,2006
    [137]Simon D, El-Sherief H. Fuzzy logic digital phase-locked loop filter design[J]. IEEE Trans. Fuzzy Systems.1995,3(2):211-218.
    [138]Spilker J J. Global Positioning system:theory and applications[M]. Washington: AIAA, Washington DC.1996
    [139]王广雄.控制系统设计[M].北京:宇航出版社,1992.103-112
    [140]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社,1997
    [141]Mao W L, Tsao H W, Chang F R. Intelligent GPS Receiver for robust carrier phase tracking in kinematic environments [J]. IEE Proc.-Radar, Sonar Navig., 2004,151(4):171~180
    [142]Stephens S A, Thomas J B. Controlled-Root Formation for Digital Phase-Locked Loops[J]. IEEE Transactions on Aerospace and Electronic Systems 1995,31(1):78~95
    [143]Kaplan E D. Understanding GPS:Principles and Applications[M]. Boston: Artech House,Boston MA,1996
    [144]Julien O. Design of Galileo L1F Receiver Tracking Loops[D]. PhD Thesis, Calgary:The University of Calgary,2005
    [145]Mitel Semiconductor. GP2000-GPS Chipset Designer's Guide. Global Positioning Products Handbook,1998
    [146]Ma C, Lachapelle, Cannon M E. Implementation of a Software GPS Receiver[A]. In:Proceedings of ION GNSS 2004[C]. Virginia VA:The Institute of Navigation, Inc.,2004.956-970
    [147]NovAtel Inc.. Millenium GPS CardTM command descriptions manual[M]. Canada:Calgary,1998
    [148]Markus Irsigler, Bernd Eissfeller. PLL Tracking Performance in the Presence of Oscillator Phase Noise[J]. GPS Solutions,2002,5(4):45~57
    [149]Filler R L. The Acceleration Sensitivity of Quartz Crystal Oscillators:A Review[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1988,35(3):297~305
    [150]Hegarty, Christopher J.Analytical Derivation of Maximum Tolerable In-Band Interference Levels for Aviation Applications of GNSS[J]. Journal of the Instititute of Navigation,1997,44(1):25~34
    [151]Knight M, Finn A. The Effects of Ionospheric Scintillations on GPS[A]. In: Proceedings of ION_GPS 1998[C]. Fairfax VA:U S Institute of Navigation, Inc., 1998.673~685
    [152]Conker R S, EI-Arini M B, Hegarty C J and et al. Modeling the Effect of Ionospheric Scintillation on GPS/SB AS Availability [A]. In:the IAIN 25th Anniversary World Congress[C]. Fairfax VA:U S Institute of Navigation, Inc. 2000
    [153]Secan J A, Bussey R M, Rremouw E J. High-Latitude Upgrade to the Wideband Ionospheric Scintillation Model [J]. Radio Science,32(4),1997:1567~1574
    [154]Son S B, Kim Π K, Oh S H, etc. Commerical GPS Receiver Design for High Dynamic Launching Vehicles[A]. In:The 2004 International Symposium on GNSS/GPS[C],2004
    [155]Tsung-Yu Chiou, Santiago Alban, Sarah Atwater and et al. Performance Analysis and Experimental Validation of a Doppler-Aided GPS/INS Receiver for JPALS Applications[A]. In:Proceedings of ION GNSS 2004[C]. Virginia VA:The Institute of Navigation, Inc.,2004.1609-1618
    [156]US Department of Defencse. Global Positioning System Standard Positioning Service Signal Specification[M],2nd Edition, June,1995
    [157]Gebre-Egziabher, Demoz, Razavi A, et al. Doppler Aided Tracking Loops for SRGPS Integrity Monitoring[A]. In:Proceedings of the ION GPS-03[C]. Virginia VA:The Institute of Navigation, Inc.,2003.2562~2571
    [158]董绪荣张守信华仲春.GPS/INS组合导航定位及应用[M].长沙:国防科技大学出版社,1998
    [159]Lachapelle G, Cannon M E, Lu G. High-Precision GPS Navigation with Emphasis on Carrier-Phase Ambiguity Resolution[J]. Marine Geodesy, 1992,15:253~269
    [160]胡小平.自主导航理论与应用[M].长沙:国防科技大学出版社,2002
    [161]Titterton D H, Weston J L. Strapdown Inertial Navigaton Technology[M]. United Kingdom:PeterPeregrinus Ltd.,1997
    [162]程向红,郑梅.捷联惯性系统初始对准中Kalman参数优化方法[J].中国惯性技术学报,2006,14(4):12~17
    [163]Franz D Busse. Precise Formation-state Estimation in Low Earth Orbit Using Carrier Differential GPS[D]. Ph.D Dissertation, Stanford University, Dept. of Aeronautics and Astronautics, March,2003.152-172
    [164]Maybeck P. Stochastic Models, Estimation, and Control [M]. Volume 2. New York:Academic Press,1982.
    [165]吴晓进,谢洪华,刘乾富等(译).GPS理论与应用[M].第一卷(上),西安:西安导航技术研究所,1996.243~253
    [166]Abbott A S, Lillo W E. Global Positioning Systems and Inertial Measuring Unit Ultratight Coupling Method[P]. United States Patent:No.6516012, Feb.4,2003
    [167]Jovancevic A, Brown A, Ganguly S, et al. Ultra tight Coupling Implementation Using Real Time Software Receiver[A]. In:Proceedings of ION GNSS 2004[C]. Fairfax VA:U S Institute of Navigation, Inc.,2004.1575~1586
    [168]Kim H S, Bu S C, Jee G I, et al. An Ultra-Tightly Coupled GPS/INS Integration
    Using Federated Kalman Filter[A]. In:Proceedings of ION GPS/GNSS 2003 [C]. Fairfax VA:U S Institute of Navigation, Inc.,2003.2878~2885
    [169]Ohlmeyer E J. Analysis of an Ultra-Tightly Coupled GPS/INS System in Jamming[A]. In:IEEE/ION PLANS 2006[C]. Fairfax VA:U S Institute of Navigation, Inc.,2006.44~53
    [170]Psiaki M L. Extended Kalman Filter Methods for Tracking weak GPS Signals[A]. In:Proceedings of ION GNSS 2002[C]. Fairfax VA:U S Institute of Navigation, Inc.,2002.2539~2553
    [171]Psiaki M L. Smoother-based GPS signal Tracking in a software Receiver[A]. In: Proceedings of ION GNSS 2001 [C]. Fairfax VA:U S Institute of Navigation, Inc.,2001.2900~2913
    [172]Hanching Grant Wang, Bruce Cordell Detterich. Ultra-tightly Coupled GPS and Inertial Navigation System for Agile Platforms[P]. United States Patent: No.US20070118286, May,24,2007
    [173]Petovello M G, Lachapelle G. Comparison of Vector-Based Software Receiver Implementations with Application to Ultra-tight GPS/INS Integration[A]. In: Proceedings of ION GNSS 2006[C]. Fairfax VA:U S Institute of Navigation, Inc.,2006
    [174]Chun Yang. GPS Signal Tracking with Kalman Filter Based on Joint Code Delay and Carrier Phase and Frequency Error Discriminator [A]. In:ION 60th Annual Meeting 2004[C]. Fairfax VA:U S Institute of Navigation, Inc.,2004.631-640
    [175]Jee G I, Kim H S, Lee Y J, et al. A GPS C/A Code Tracking Loop Based on Extented Kalman Filter with Multipath Mitigation[A]. In:Proceedings of ION GNSS 2002[C]. Fairfax VA:U S Institute of Navigation, Inc.,2002.446~451
    [176]Paul Y Kim. GPS Navigation with Integrated Phase Track Filter[P]. United States Patent:No.7151486, Dec.19,2006
    [177]Julier S J, Uhlmann J K. A General Method for Approximating Nonlinear Transformations of Probability Distributions[R]. DOX13PJ UK,1996
    [178]Julier S J, Uhlmann J K. Reduced Sigma Point Filters for the Propagation of Means and Covariances through Nonlinear Transformations [A]. In:Proceedings of the IEEE American Control Conference[C]. Anchorage AK, USA,2002. 887~892.
    [179]Julier S J. The Spherical Simplex Unscented Transformation[A]. In:Proceedings of the IEEE American Control Conference[C]. Denver, Colorado, 2003.2430~2434.
    [180]Wan E A, van der Merwe R. Kalman Filtering and Neural Networks[M]. New York:John Wiley & Sons,2001
    [181]Julier S J, Uhlmann J K. The Scaled Unscented Transformation[A]. In: Proceedings of the IEEE American Control Conference[C]. Anchorage AK, USA, 2002.4555-4559
    [182]Zarlink Semiconductor. Product Specifications for GP2015 RF Front End[EB/OL]. http://products.zarlink.com/product profiles/GP2015.htm,2003.
    [183]Zarlink Semiconductor. Product Specifications for GP202112-Channel Correlator[EB/OLl.http://products.zarlink.com/product rofiles/GP2021.htm,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700