基于WLAN技术的室内定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着以智能手机、笔记本电脑、平板电脑等为代表的智能移动设备的出现和发展,移动互联网得到了越来越广泛的应用,基于移动平台打造的工具软件和移动服务如雨后春笋般涌现,为各类行业用户和大众用户提供了丰富的服务。在移动互联网中,基于位置的服务是使用频率最高、应用最为广泛的服务之一,许多其它移动应用都直接或间接的使用到了LBS。借助于全球卫星定位系统,在户外等开放性场所,LBS已经能够为用户提供高精度、高稳定性的位置服务,其应用已渗入到各个行业领域和大众市场。然而在人类活动更多的室内场所,由于建筑物遮挡等问题,接收到的卫星信号往往已发生畸变,进而无法通过卫星定位系统准确地测量到目标在室内场所的准确位置。因此,研究适合室内环境的定位技术,开发满足行业用户和大众化应用需求的定位系统移动计算领域的研究热点之一。本文的研究工作是在近些年来无线局域网技术飞速发展和广泛普及的时代背景下,结合智能移动服务对定位导航技术、位置服务等新的需求而产生的。
     本文对这一基于时间测量的室内定位技术进行了较深入、系统的研究,并针对影响定位精度的关键因素加以归纳分析,并提出了相应的优化算法。通过与现有方法的比较分析,以及原型系统的实验验证,证明了本文的一系列优化算法具有一定的可行性。论文的主要研究内容和创新点归纳如下:
     (1)基于异步伪距差的室内定位方法的研究。本文提出了基于距离差的往返时间测量法,往返时间法(RTT)测量由目标终端主动发送的定位请求信号经过接入点处理返回的总的循环时间,以此避免对时钟同步的需求。同时采用伪距差法能够减少临近接入点因传播途中所受同源干扰造成的测量偏差。
     (2)往返时间算法中系统处理延时的实时测定。传统的系统延时测定往往采用预先测值法来求得,在以后的定位使用中,沿用预先测量到的系统处理延时。这种方法的特点是,初步测量的延时在以后的使用中保持不变,无法实时改变。本文所述的方法将在每次信号传递到接入点端时开始计时,在信号传递回给目标终端时将计时数据打包,同其它信息一起返回,终端根据收到的实时测定结果来计算位置,具有较高的定位精度。
     (3)以高斯“背景”模型的方式实现测量结果对动态环境的自适应。本文提出了一种“背景”建模的方法,解决测量数据变化后的自适应选取:将定位过程开始首段统计数据结果看作“背景”,“背景”为有效统计数据的合集。由于终端在室内场所的移动过程通常是缓慢的线性变化,当环境主动短时间变化,“背景”将保持不变,而当环境被动改变或长时间改变时,则将“新环境”(新的测试结果)线性的融入到“背景”中,形成新的“背景”数据,定位过程正是基于“背景”数据来测量终端的位置。
     (4)研究基于定位高程坐标来优化水平定位结果的方法。目标大多数情况下在室内的活动处于离散的平面空间内,高度值趋于稳定,往往在该楼层高度值的1-2米之内。有基于此,本文提出了一种基于高度误差来优化水平定位结果的方法,通过对多次测量结果的统计数据,予以评估,进一步剔除高度偏差较大的测量结果,以达到优化测试数据的目的。
     (5)研究以加权投票的方式实现定位信号接入点的实时选择。本文将研究一种加权投票方式来实现接入点的实时选取,其基本原理是选取信号传播途中,所受干扰相同的两个临近接入点,采用本文的距离差法计算两者信号传播的距离差,尽可能的保证信号传播途径中同源误差的去除。加权投票的方式主要用于接入点“临近”程度的判定。
In the mobile Internet, the location-based service is the highest frequency of use, one of the most widely used service application, and many other mobile applications are used directly or indirectly to LBS. By means of a global satellite positioning system, such as in outdoor open spaces, LBS has been able to provide users with high-precis ion, high stability location services, its application has been infiltrated into various industries and the mass market. However, indoor places more activity in humans, due to the building block and so on; the received satellite signals are often distorted, and thus can not accurately measure the exact position of the target in the indoor place through a satellite positioning system. Therefore, the study environment for indoor positioning technology, the development of one of the focus areas of mobile computing industry positioning system users and popular application requirements are met. Research work of this paper is in IEEE802.11wireless local area networks in recent years, the rapid development of technology and the promotion of a wide range of backgrounds, combined with mobile computing needs new positioning technology, location-based services, such as on arising.
     In this paper, this time based on measured indoor positioning technology for a more in-depth study of the system, analyze and synthesize the key factors affecting the accuracy of positioning against, and the corresponding solutions. By comparison algorithm and experimental analysis proves the effectiveness and feasibility of the program. The main point of the paper work and innovation as follows:
     (1) Research asynchronous pseudorange differential based indoor positioning methods. In this paper, based on the distance difference between the round-trip time measurement, round trip time method (RTT) measurements to locate the target terminal sends a request to the total cycle time signal processing returns through the access point, thus avoiding the need for clock synchronization. While using pseudorange differential method can reduce the spread of the way near the access point due to interference caused by homologous suffered measurement bias.
     (2) Round-trip time measured based on delay system processing algorithms. Conventional systems often use a pre-determined time delay method to obtain the measured value, after the positioning of use; the system follows the process previously measured time delay. Feature of this method is that the delay in the preliminary measurement remains unchanged after use can not be changed in real time. The methods described herein will pass signals at each end of the start time to the access point; the signal is passed back to the timing data package to the destination terminal, returned along with other information, the terminal based on the real-time measurement results received to calculate the position, having a high positioning accuracy.
     (3) In this paper, the Gaussian "background" way to measure the results of the model to achieve adaptive dynamic environment. This paper proposes a "background" modeling approach to solve the adaptive changes in the measured data selection:The process begins with the first paragraph of positioning statistics results as a "backdrop",'background" for the collection of valid statistics. Since the mobile terminal in the indoor premises of the process is usually slow linear change when the environment changes the active short,"background" will remain unchanged, and when the environment changes or prolonged passive changed, the'New Setting"(New test results) into a linear "background", the formation of a new "background" data, the positioning process is based on the "background" data to measure the position of the terminal.
     (4) This article will coordinate research-based approach to optimize the positioning height horizontal positioning results. Activities indoors under most circumstances are within the target discrete flat space, height values stabilized, often highly value the floor within1-2meters. There Based on this, we propose a horizontal positioning to optimize the results based on height error method, the results of multiple measurements statistics evaluated further removed a large height deviation measurement results in order to achieve the purpose of optimizing the test data.
     (5) This paper will examine ways to achieve a weighted voting positioning signal in real time to select the access point. This article will examine ways to achieve a real-time weighted voting to select the access point, the basic principle is to select the signal propagation on the way, the interference suffered the same two adjacent access points, using the method of this paper is calculated from the difference between the signal propagation distance difference, as far as possible to ensure removal of signal propagation pathway homologous errors. The main method of weighted voting is used to determine the access point "near" level.
引文
[1]《国家中长期教育改革和发展规划纲要(2010-2020年)》
    [2]导航与位置服务科技专项总体专家组,地球观测与导航技术领域导航主题专家组《室内外高精度定位导航白皮书》.2013.
    [3]唐斌,董绪荣.基于简易差分相千积累的高灵敏度GPS软件接收机捕获算法[J].信号处理,2009,25(5):832-836.
    [4]李明江,张一,张中兆.多径干扰下一种新的有效的弱GPS信号处理算法[J].南京理工大学学报(自然科学版),2009,33(1):64-68.
    [5]杨静,郑南宁.一种基于SR-UKF的GPS/DR组合定位算法[J].系统仿真学报,2009,21(3):721-724.
    [6]焦瑞祥,茅旭初.基于DBZP方法的微弱GPS信号快速捕获[J].电子学报,2008,36(12):2285-2289.
    [7]Rachid E1 Assir.全球导航卫星系统及其广泛应用.《国外电子测量技术》2013年第7期.
    [8]陈忠贵,帅平,曲广吉.现代卫星导航系统技术特点与发展趋势分析.中国科学(E辑:技术科学.2009-04-15
    [9]田世君,皮亦鸣.基于气压表/GPS的数据融合算法研究[J].电子学报2008,36(4):800-803.
    [10]焦瑞祥,茅旭初.基于批处理的微弱GPS信号捕获[J].上海交通大学学报,2008,2(2):285-289.
    [11]陈忠贵,帅平,曲广吉.卫星导航系统技术进展(上).中国航天.2007-09.
    [12]高晓,戴吾蛟.GPS/GLONASS单频伪距单点定位的权比分析.《全球定位系统》2013年第3期.
    [13]杨春波,耿建平,纪元法.GLONASS接收机关键技术研究与实现.《计算机应用》2013年第A01期.
    [14]裴霄,陈俊平,王解先.利用GLONASS频间差改进用户导航定位精度《大地测量与地球动力学》CSCD 2013年第3期.
    [15]张勇,田林亚,徐君民,杨建中,产光杰.抗差方差分量估计在GPS/GLONASS组合导航中的应用《测绘科学技术学报》2013年第2期.
    [16]张杰.伽利略导航系统的特点与应用探讨.《现代商贸工业》.2010年第13期.
    [17]王敏.北斗:‘助推国力,导航生活.《半月谈》2013年第6期.
    [18]谭述森,周兵,郭盛桃,刘志俭.中国全球卫星导航信号基本框架设计.《中国空间科学技术》.2011年第4期.
    [19]谭述森.北斗卫星导航系统的发展与思考.《宇航学报》.2008年第2期.
    [20]褚静.无线局域网(WLAN)中WAPI安全机制分析[J].科技广场,2008,(10):81-83.
    [21]易卫兵.无线局域网的安全技术研究[J]_科技经济市场,2006,(2):169-170.
    [22]王远峰,李莉,周迅.两种典型无线局域网络的安全性能分析[J].中国数据通信,2002,(8):2 1-24.
    [23]赵军平,郑金州.无线局域网技术及其在医疗机构中的应用[J].医疗卫生装备,2006,27(4):43-45.
    [24]李东江,司凤山.基于数字签名的WLAN安全机制研究[J].网络安全技术与应用,2006(7):90-92.
    [25]刘垚峰,王相林.WLAN安全方案及802.11标准研究.计算机工程与设计,2006,27(13):2327-2330.
    [26]李建军,郎为民,吴帆.无线局域网(WLAN)安全问题研究.电子技术.2007,(z1):140-142.
    [27]吴友蓉,何蔚林.WLAN安全技术分析及对策[J].科技创新导报.2008,(7):177-178.
    [28]赵志毅.无线局域网安全性分析[J].忻州师范学院学报,2006,22(3):120-122.
    [29]范娟.浅析无线局域网的安全性[J].中国新技术新产品,2011,(11):17.133-136.
    [30]何薇.无线局域网的安全配置方法[J].科技信息,2010, (24):760-761.
    [31]陈月峰,李炳泉,彭凌西,谢冬青,钟秀玉.LBS移动社交资源共享平台的设计与实现.《电子技术应用》.2013年第9期.
    [32]何扬达,唐蔚.基于OSGi的LBS终端系统.《计算机应用与软件》.2012年第9期.
    [33]张懿瑶(导师:周继鹏).基于WLAN的室内定位方案研究.暨南大学硕士论文.2012.
    [34]梁元诚(导师:周世杰).基于无线局域网的室内定位技术研究与实现.电子科技大学硕士论文.2009.
    [35]宋震龙(导师:蒋刚毅;黄晁).基于WLAN的室内定位关键技术及应用研究.宁波大学硕士论文.2012.
    [36]张明华(导师:张申生).基于WLAN的室内定位技术研究.上海交通大学博士论文.2009.
    [37]Tummala D.Indoor Propagation Modeling at 2.4GHz for IEEE 802.11 Networks. Texas, USA:Department of Engineering Technology, University of North Texas,2005
    [38][Smailagic A, Siewiorek D P, Anhalt J, et al. Location Sensing and Privacy in a Context Aware Computing Environment. IEEE Wireless Communications Magazine,2002,10-17
    [39]NI W, WANG Z-x. Indoor Location Algorithm Based on the Measurement of the Received Signal Strength. Frontiers of Electrical and Electronic Engineering in China,2006,1(1),48-52
    [40]Robinson M, Psaromiligkos I. Received Signal Strength Based Location Estimation of a Wireless LAN Client. In Proceedings of the IEEE Wireless Communications and Networking Conference,2005,2350-2354
    [41]Li X. RSS-Based Location Estimation with Unknown Pathloss Model. IEEE Transactions on Wireless Communications,2006,5(12),3626-3633
    [42]Pahlavan K, Levesque A. Wireless Information Networks. John Wiley & Sons,1995
    [43]Hatami A. Application of Channel Modeling for Indoor Localization using TOA and RSS. Worcester, Mass.:Electrical and Computer Engineering, Worcester Polytechnic Institute,2006
    [44]Hatami A, Pahlavan K. Comparative Statistical Analysis of Indoor Positioning Using Empirical Data and Indoor Radio Channel Models. In Proceedings of the 3rd IEEE Consumer Communications and Networking Conference,2006,1018-1022
    [45]Ji Y, Biaz S, Pandey S, et al. ARIADNE:a Dynamic Indoor Signal Map Construction and Localization System. In Proceedings of the 4th International Conference on Mobile systems, Applications and Services, Uppsala, Sweden: 2006,151-164
    [46]Ward A, Jones A,Hopper A. A new location technique for the active office [J]. IEEE Personal Communications,1997,4(5):42-47.
    [47][Bahl P,Padmanabhan V. RADAR:An in-building RF-based user location and tracking system [C]. In IEEE Infocom 2000. Tel Aviv:IEEE,2000:775-784.
    [48]Youssef M A. HORUS:A WLAN-based indoor location determination system [D]. University of Maryland,2004.
    [49]DEASY T P, SCANLON W G. Simulation or Measurement:The Effect of Radio Map Creation on Indoor WLAN-Based Localisation Accuracy. Wireless Personal Communications:An International Journal,2006,42(4),563-573
    [50]Moraes L F M d, Nunes B A A. Calibration-free WLAN Location System Based on Dynamic Mapping of Signal Strength. In Proceedings of the International Workshop on Mobility Management and Wireless Access, Terromolinos, Spain:2006,92-99
    [51]Widyawan, Klepal M, Pesch D. Influence of Predicted and Measured Fingerprint on the Accuracy of RSSI-based Indoor Location Systems. In Proceedings of the 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany:2007,145-151
    [52]Kwon J, Dundar B, Varaiya P. Hybrid Algorithm for Indoor Positioning Using Wireless LAN. In Proceedings of the IEEE 60th Vehicular Technology Conference, 2004,4625-4629
    [53]Tsai T-C, Li C-L, Lin T-M. Reducing Calibration Effort for WLAN Location and Tracking System using Segment Technique. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing,2006, 46-5
    [54]Krishnan P, Krishnakumar A S, Ju W-H, et al. A System for LEASE: Location Estimation Assisted by Stationary Emitters for Indoor RF Wireless Networks. In Proceedings of the INFOCOM,2004,1001-1011
    [55]Bahl P, Padmanabhan V N. RADAR:an In-building RF-based Location and Tracking System. In Proceedings of the IEEE INFOCOM, Tel-Aviv, Israel:2000, 775-784
    [56]Castro P, Chiu P, Kremenek T, et al. A Probabilistic Room Location Service for Wireless Networked Environments. In Proceedings of the International Conference
    [57]Tappero, F., Merminod, B. and Ciurana, M. (2010):"IEEE 802.11 Ranging and Multi-lateration for Software-Defined Positioning Receiver", Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN), September 15-17,2010 Campus Science City, ETH Zurich, Switzerland.
    [58]M.Ciurana, F.Barcelo, F.Izquierdo, "A ranging system with IEEE 802.11 data frames", IEEE Radio and Wireless Symposium 2007.
    [59]Rainer Mautz, "Indoor Positioning Technologies", Institute of Geodesy and Photogrammetry, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich,2012.
    [60]Elliott D. Kaplan and Christopher J. Hegarty, "Understanding GPS Principles and Applications second edition", the USA, Artech House,2006.
    [61]Kupper A. Location-based Services. John Wiley & Sons Ltd., Chichester,2005
    [62]Patterson C A, Muntz R R, Pancake C M. Challenges in Location-Aw are Computing. IEEE Pervasive Computing,2003,2(2),80-89 CA, USA:2003,11-20
    [63]Latvala J, Syrjarinne J, Niemi S, et al. Patient Tracking in a Hospital Environment Environment Using Extended Kalman-filtering. In Proceedings of 1999 Middle East
    [64]Rodriguez M D, Favela J, Martinez E A, et al. Location-aware Access to Hospital Information and Services. IEEE Transactions on Information Technology in Biomedicine,2004,8(4),448-455
    [65]Weiser M. The Computer for the 21st Century. Scientific American,1991,265(3),66-75
    [66]MIT Oxygen Project, http://oxygen.lcs.mit.edu/,2007
    [67]Garlan D, Siewiorek D, Smailagie A, et al. Porjeet Aura:Toward Distraction-Free Pervasive Computing. IEEE Pervasive Computing,2002,1(4-6),22-31
    [68]Syatanarayanall M. Pevrasive Computing:Vision and Challenge. IEEE Personal Communieations,2001,8(8),10-17
    [69]UbiComp. http://www.ubicomp.org,2007
    [70]Enge P, Misra P. Special Issue on Global Positioning System. Proceedings of the IEEE, 1999,87(1),3-15
    [71]Cinar T, Ince F. Contribution of GALILEO to Search and Rescue. In Proceedings of the 2nd International Conference on Recent Advances in Space Technologies, Turkish Air Force Acad., Istanbul, Turkey:2005,254-259
    [72]Zagami J M, Parl S A, Bussgang J J, et al. Providing Universal Location Services Using a Wireless E911 Location Network. IEEE Communications Magazine,1998,36(4),66-71
    [73]FCC, FCC Acts to Promote Competition and Public Safety in Enhanced Wireless 911 Services, www.fcc.gov/911/enhanced,1999
    [74]Weiss A J. On the Accuracy of a Cellular Location System Based on RSS Measurements. IEEE Transactions on Vehicular Technology,2003,52(6),1508-1518
    [75]Lin D B, Juang R T, Lin H P. Robust Mobile Location Estimation Based on Signal Attention for Cellular Communication Systems. Electronics Letters,2004,40(25),1-2
    [76]Sun G, Guo W. Robust Mobile Geo-location Algorithm Based on LS-SVM. IEEE Transactions on Vehicular Technology,2005,54(3),1037-1041
    [77]Wu Z, Li C, Ng J K, et al. Location Estimation via Support Vector Regression. IEEE Transactions on Mobile Computing,2007,6(3),311-321
    [78]Hightower J, Borriello G. Location Systems for Ubiquitous Computing. IEEE Computer,2001,34,57-66
    [79]Ward A, Jones A, Hopper A. A New Location Technique for the Active Office. IEEE Personal Communications,1997,4(5),42-47
    [80]MIT CSAIL, The Cricket Indoor Location System, http://nms. lcs.mit. edu/projects/cricket/#overview,2007
    [81]Pahlavan K, Li X, Makela J P. Indoor Geolocation Science and Technology. IEEE Communications Magazine,2002,40,112-118
    [82]Griswold W G, Shanahan P, Brown S W, et al. ActiveCampus: Experiments in Community-oriented Ubiquitous Computing. Computer,2004,37(10), 73-81
    [83]Gartner, Emerging Technologies Hype Cycle Highlights Key Technology Themes. http://www.gartner.com/it/page.jsp?id=495475,2006
    [84]Zhao F, Yao W, Logothetis C C, et al. Comparison of Super-resolution Algorithms for TOA Estimation in Indoor IEEE 802.11 Wireless LANs. In Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China:2006,1-5
    [85]Li X, Pahlavan K. Super-resolution TOA Estimation with Diversity for Indoor Geolocation. IEEE Transactions on Wireless Communications,2004,3(1),224-234
    [86]Tummala D.Indoor Propagation Modeling at 2.4GHz for IEEE 802.11 Networks. Texas, USA:Department of Engineering Technology, University of North Texas,2005
    [87]Smailagic A, Siewiorek D P, Anhalt J, et al. Location Sensing and Privacy in a Context Aware Computing Environment. IEEE Wireless Communications Magazine,2002,10-17
    [88]Bahl P, Padmanabhan V N. RADAR:an In-building RF-based Location and Tracking System. In Proceedings of the IEEE INFOCOM, Tel-Aviv, Israel:2000, 775-784
    [89]Seidel S Y, Rapport T S.914 MHz Path Loss Prediction Model for Indoor Wireless Communications in Multi-floored Buildings. IEEE Transactions on Antennas and Propagation,1992,40(2),207-217
    [90]Robinson M, Psaromiligkos I. Received Signal Strength Based Location Estimation of a Wireless LAN Client. In Proceedings of the IEEE Wireless Communications and Networking Conference,2005,2350-2354
    [91]Roos T, ki P M, Tirri H. A Statistical Modeling Approach to Location Estimation. IEEE Transactions on Mobile Computing,2002,1(1),59-69
    [92]Li X. RSS-Based Location Estimation with Unknown Pathloss Model. IEEE Transactions on Wireless Communications,2006,5(12),3626-3633
    [93]Pahlavan K, Levesque A. Wireless Information Networks. John Wiley & Sons,1995
    [94]Hatami A, Pahlavan K. Comparative Statistical Analysis of Indoor Positioning Using Empirical Data and Indoor Radio Channel Models. In Proceedings of the 3rd IEEE Consumer Communications and Networking Conference,2006,1018-1022
    [95]Niculescu D, Nath B. VOR Base Stations for Indoor 802.11 Positioning. In Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, Philadelphia, PA, USA:2004,58-69
    [96]LaMarca A, Chawathe Y, Consolvo S, et al. Place Lab:Device Positioning Using Radio Beacons in the Wild. In Proceedings of the third International Conference on Pervasive Computing, LNCS 3468,2005,116-133
    [97]Small J, Smailagic A, Siewiorek D P. Determining User Location for Context Aware Computing Through the Use of a Wireless LAN Infrastructure. Carnegie Mellon University, Project Aura Report,2000
    [98]Sepp?nen A, Ikonen J, Porras J. Extracting and Using Positioning Information in WLAN Networks. In Proceedings of the 1st Workshop on Applications of Wireless Communications, Lappeenranta University of Technology, Finland:2003,1-11
    [99]Rigney C, Willens S, Rubens A, et al., Remote Authentication Dial in User Service, IETF, Editor, http://www.ietf.org/rfc/,2000
    [100]Brunato M, Battiti R. Statistical Learning Theory for Location Fingerprinting in Wireless LANs. Computer Networks,2005,47,825S845
    [101]Bahl P, Padmanabhan V N. Enhancements of the RADAR User Location and Tracking System. Technical Report MSR-TR-2000-12,2000
    [102]Prasithsangaree P, Krishnamurthy P, Chrysanthis P. On Indoor Position Location with Wireless LANs. In Proceedings of the 13th IEEE International Symposium on
    [103]Personal, Indoor and Mobile Radio Communications,2002,720-724
    [104]Kushki A, Plataniotis K N, Venetsanopoulos A N. Kernel-based Positioning in Wireless Local Area Networks. IEEE Transactions on Mobile Computing,2007,6(6),689-705
    [105]Martinez E A, Cruz R, Favela J. Estimating User Location in a WLAN Using Backpropagation Neural Networks. In Proceedings of the IBERAMIA, LNAI 3315,2004,737-746
    [106]Nerguizian C, Despins C, Affs S. Indoor Geolocation with Received Signal Strength Fingerprinting Technique and Neural Networks. In Proceedings of the ICT, 2004,866-875
    [107]Krumm J, Platt J. Minimizing Calibration Effort for an Indoor 802.11 Device Location Measurement System. MSR-TR-2003-82,2003
    [108]Ahmad U, Gavrilov A, Nasir U, et al. In-building Localization Using Neural Networks. In Proceedings of the IEEE International Conference on Engineering of
    [109]Battiti R. Location-aware Computing:A Neural Network Model for Determining Location in Wireless LANs. University of Trento,#DIT-02-0083,2002
    [110]Battiti R, Villani A, Nhat T L. Neural Network Models for Intelligent Networks: Deriving the Location from Signal Patterns. In Proceedings of the First Annual Symposium on Autonomous Intelligent Networks and Systems, UCLA:2002,1-13
    [111]Vapnik V N. Statistical Learning Theory. New York, NY:John Wiley & Sons,1998
    [112]Pan J J, Kwok J T, Yang Q, et al. Multidimensional Vector Regression for Accurate and Low-Cost Location Estimation in Pervasive Computing. IEEE Transactions on Knowledge and Data Engineering,2006,18(9),1181-1193
    [113]ITO S, KAWAGUCHI N. Bayesian Based Location Estimation System Using Wireless LAN. In Proceedings of the 3rd International Conference on Pervasive Computing and Communications Workshops,2005,273-278
    [114]Pahlavan K, Krishnamurth P. Principles of Wireless Networks:A Unified Approach. Upper Saddle River, NJ:Prentice Hall PTR,2001
    [115]The Institute of Electrical and Electronics Engineers Inc., IEEE Standard 802.11-Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.1999,
    [116]Sklar B. Rayleigh Fading Channels in Mobile Digital Communication Systems:I. Characterization. IEEE Communications Magazine,1997,35,90-100
    [117]Youssef M, Agrawala A. Handling Samples Correlation in the Horus System I IEEE INFOCOM, Hong Kong, China:2004,1-9
    [118]Ladd A M, Bekris K E, Rudys A, et al. Robotics-based Location Sensing Using Wireless Ethernet. In Proceedings of the Eighth Annual International Conference on Mobile Computing and Networking (MOBICOM), Atlanta, GA:2002,227-238
    [119]Kaemarungsi K, Krishnamurthy P. Properties of Indoor Received Signal Strength for WLAN Location Fingerprinting. In Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems:Networking and Services,2004,
    [120]Youssef M, Agrawala A. The Horus WLAN Location Determination System. In Proceedings of the Third International Conference on Mobile Systems, Applications and Services, Seattle, Washington:2005,205-218
    [121]Rappaport T S. Wireless Communications:Principles and Practice. Upper Saddle River, New Jersey:Prentice Hall PTR,1996
    [122]Janssen G J, Prasad R. Propagation Measurements in an Indoor Radio Environment at 2.4 GHz,4.75 GHz and 11.5 GHz. In Proceedings of the IEEE VTC, Denver, Colorado:1992,617-620
    [123]Varshney P K. Multsensor Data Fusion. Electronics & Communication Engineering Journal,1997,9(6),245-253
    [124]E. Waltz, J.Linas. Multisensor Data Fusion. Boston:Artech House,1990
    [125]Kushki A, Plataniotis K N, Venetsanopoulos A N. Location Tracking In Wireless Local Area Networks With Adaptive Radio Maps. In Proceedings of the ICASSP,2006, V741-V744
    [126]Hghtower J, Borriello G. Particle Filters for Location Estimation in Ubiquitous Computing:A Case Study. In Proceedings of the 6th International Conference on Ubiquitous Computing, UbiComp 2004, Nottingham, UK:2004,88-106
    [127]Z'aruba G V, Huber M, Kamangar F A, et al. Indoor Location Tracking Using RSSI Readings From A Single Wi-Fi Access Point. Wireless Networks,2006,13(2),221-235
    [128]Youssef M, Agrawala A, Shankar A U. WLAN Location Determination via Clustering and Probability Distributions. In Proceedings of the IEEE International Conference on Pervasive Computing and Communications, Fort Worth, Texas: 2003,23-26
    [129]Chen Y, Yang Q, Yin J, et al. Power-Efficient Access-Point Selection for Indoor Location Estimation. IEEE Transactions on Knowledge and Data Engineering,2006,18(7), 877-888
    [130]Shafer G. A Mathematical Theory of Evidence. Princeton, NJ:Princeton Univ. Press, 1976
    [131]Julier S, Uhlmann J. Unscented filtering and nonlinear estimation [C]. IEEE: Proceeding of the IEEE,2004,92(3):401-422.
    [132]Kay S, Fundamentals of Statistical Signal Processing, Volume I; Estimation Theory [M]. Prentice Hall,1993.
    [133]Dissanayake M, Newman P, Clark S. et al. A solution to the simultaneous localization and map building (SLAM) problem [J]. IEEE Transactions of Robotics and Automation, 2001,17(3):229-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700