森林火灾对流域蒸散发和径流的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球气候变暖导致森林火险天气增加,森林火灾的发生机率呈上升的趋势。森林火灾通过影响植被、地表枯落物、土壤及生态环境等影响降雨截留、土壤蓄水量、蒸散发及径流量等流域水循环的各个环节。在气候变化的背景下,森林火灾水文响应的研究有助于揭示森林流域的水循环机制,为流域范围内森林资源和流域水资源的合理规划管理提供科学依据,促进陆地生态系统的可持续发展。目前,森林火灾的水文响应受到国内外学者的广泛关注。本文以发生在澳大利亚维多利亚州的1983和2003年的两场森林大火为例,采用统计分析与水文模型模拟相结合的方法,开展森林火灾对流域蒸散发和径流影响的研究,并尝试在降雨-径流模型中考虑土壤含水量和植被动态信息提高受火灾干扰流域的径流模拟精度。主要研究内容及结论如下:
     (1)研究流域的气候向有利于林火发生的方向演变。选取与林火发生条件密切相关的四个气象指标(气温(最高温、最低温及平均气温)、降水量、相对湿度及潜在蒸散发),采用5年滑动平均及距平分析相结合的方法,分析各气象指标在研究时段内的发展趋势,结果表明,研究流域的气候有变暖变干的趋势,有利于林火的发生,要做好林火的预防工作。
     (2)森林火灾烧毁地表植被,影响流域蒸散发的时空分布。森林火灾导致火灾当年流域平均叶面积指数和地表反照率骤减,而后,伴随植被的恢复逐渐恢复。地表反照率的变化反映了地表辐射平衡的变化,从而影响流域的蒸散发水平。对比火灾前后流域蒸散发时空分布的变化,发现森林火灾对流域蒸散发的影响与火烧的严重程度有关。火烧严重的区域,蒸散发的减少幅度较大,反之,较小。伴随植被的恢复流域的蒸散发有增加的趋势。
     (3)利用水文模型模拟并量化了森林火灾对流域径流量的影响。利用澳大利亚的AWRA-L、我国的新安江和法国的GR4J三个水文模型分别模拟火灾前后各流域的基准径流过程,进而估算森林火灾对流域径流量的影响。首先,考虑到火灾后气候有变暖变干的趋势,为了确保模型在火灾前率定的参数可以有效的应用到火灾后的研究时段,选择属性相似距离相近的未受火灾影响的四个流域进行参数移用的有效性验证;其次,将三个研究流域火灾前率定的参数应用于火灾后模拟森林火灾对流域径流过程的影响。分析发现,在火灾前后气候条件稳定的条件下,森林火灾是灾后短期内径流增加的主要原因,伴随植被的恢复森林火灾引起流域产水量增量的减小。
     (4)考虑火灾引起植被及土壤水动态的变化,模拟了森林火灾的径流响应过程。针对集总式降雨径流模型中很少考虑植被动态信息的不足,将土壤含水量与遥感植被动态信息与Penman-Monteith模型相结合,改进新安江模型,进而提高受火灾干扰流域的径流模拟精度。本文以新安江模型为例,采用考虑土壤含水量动态及植被动态信息的Penman-Monteith模型对新安江模型中的三层土壤蒸发模型进行改进。将改进的新安江模型在受2003年森林火灾影响的4个研究流域应用,改进新安江模型的率定期和验证期的模拟精度均有一定提高。为了进一步说明植被动态信息对径流过程的影响,本文设计了3个反映不同植被信息的实验方案在验证期对改进模型进行测试。对比3个实验方案发现,利用植被动态信息的实验方案径流模拟精度有所提高,纳什效率系数(NSE)提高了1%-7%,模拟误差降低了3%-11%,说明集总式降雨降雨径流模型中考虑植被动态信息可以提供径流模拟的精度。
     综上所述,本研究可以为我国在森林火灾对流域水文过程的影响研究方面提供借鉴和参考,并为我国森林火灾后水资源的合理规划利用提供科学依据。
Forest fires show an increase due to the increase in forest fire weather (low precipitation and relative humidity, high temperature and wind speed) caused by gobal warming. Forest fires affect catchment hydrological cycle, including reduced infiltration rates caused by changes in soil properties, reduced evapotranspiration rates caused by loss of vegetation and surface litter and destroyed ecological environment. The hydrological effects of forest fires have been recived wide attentions from scholarsathome and abroad. In the context of climate change, researches on hydrological response to forest fires help to reveal the water cycle mechanism, to rationally allocate forest and water resources and to promote the sustainable development of terrestrial ecosystems in forest catchments. Taken two forest fires (1983and2003bushfire) in the state of Victoria, Australia as examples, statistical method and hydrological modeling are used to evaluate forest fire impact on evapotranspiration and streamflow. In order to improve runoff estimates, this paper incorporates soil moisture and vegetation dynamic into rainfall runoff model. The main focus and conclusions of this study are as follows:
     (1) Forest fire weather is greatly affected by climate and weather conditions. Four meteorological indexes are selected to analyze climate change impact on the chances of a fire starting. They are temperature (maximum temperation, minimum temperature and mean temperature), precipitation, relative humidity and potential evapotranspiration, respectly. The5-year moving average method and anomaly analysis are used to test changing trend of the four indexes in the test period. The results show that the regional climate becomes warmer and drier. It shows an increase chance of a fire starting. Preventing work should be ready for forest fires.
     (2) Forest fires show impacts on evapotranspiration through destroying vegetion cover. Forest fires result in a noticeably reduction of mean leaf area index (LAI) and surface albedo in the year of fires. Then, LAI and surface albedo gradually recover along with vegetation recovering. Changes in suface albedo reflect changes in the surface radiation balance, thus affecting evapotranspiration rates at catchment scale. The impact of forest fires on evapotranspiration is related to fire severity. The more severe the fires are, the more evapotranspiration reduces. Conversly, the less evapotranspiration reduces. Subsequently, the evapotranspiration increases along with vegetation recovering.
     (3) This paper presents the impact of forest fires on streamflow using hydrological modeling approach. The hydrological models are used including AWRA-L, Xinanjiang and GR4J model from Australia, China and France, respectively. Firstly, the applicability of hydrological modelling to quantify bushfire impact on streamflow mainly depends on how the model parameters are calibrated and how they are transferred from calibration period to simulation period. It is important to investigate the transposability of model parameters in time (i.e., to make sure that their estimation is not dependent on climate characteristics of the calibration periods). This can provide us with a better understanding of uncertainty associated with using hydrological models for quantifying bushfire impacts on streamflow. Four median-size catchments close to the three study catchments are selected to investigate the model transposability. Validation results provide confidence in the bushfire impact assessments based on hydrological modelling. Secondly, the three hydrological models are used to quantify the bushfire impact on streamflow. The results show that there is a substantial increase in streamflow after the immediate1983bushfires that is not attributable to climate. Then, the increment of streamflow is reduced due to plantation recovering.
     (4) Soil moisture and remotely sensed vegetion dynamic information are incorporated into Penman-Monteith (PM) equation. Xinanjiang model is modified by replacing the original three-layer with one-layer evapotranspiration sub model (PM equation) to improve runoff estimates for four south-east Australian catchments which experienced severe bushfire impacts. The three modeling experiments are designed for the modified Xinanjiang model (XAJ-ET) to investigate the simulation capability of the modified model in four forested catchments which were affected by extensive bushfires in January2003. The improvement is indicated by a slight increase (1%-7%) in the Nash-Sutcliffe efficiency of daily runoff and noticeable decrease (3%-11%) in volumetric errors. It indicates that incorporation of vegetation dynamic data into Xinanjiang model can improve runoff simulation efficiency.
引文
[1]冷慧卿.我国森林火灾风险评估与保险费率厘定研究[D].北京:清华大学,2011.
    [2]王明玉.气候变化背景下中国林火响应特征及趋势[D].北京:中国林业科学研究院,2009.
    [3]森林火灾情况.国家统计数据库[DB]. http://219.235.129.58/welcome.do
    [4]杨光.气候变化对中国北方针叶林森林火灾的影响[D].哈尔滨:东北林业大学,2010.
    [5]姜勇,诸葛玉平,梁超等.火烧对土壤性质的影响[J].土壤通报.2003,34(1):65-69.
    [6]Shakesby R.A., Doerr S.H. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews,2006,76:269-307.
    [7]Kuczera G.A. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt foreset [J]. Journal of Hydrology,1987,94:215-236.
    [8]范建.森林与水的关系:问题在哪里?(二)[EB/OL].(2007,01,10)http://scitech.people.com.cn/GB/44995/71935/71939/5267196.html
    [9]郑焕能,胡海清.火在森林生态系统平衡中的影响[J].东北林业大学学报.1990,18(1):8-13.
    [10]狄丽颖,孙仁义.中国森林火灾研究综述[J].灾害学.2007,22(4):118-123.
    [11]蒋金荣.浅论森林火灾发生的原因和对策[J].中国林业.2008,2:33-33.
    [12]Scott D. F. The hydrological effects of fire in South African montain catchments [J]. Journal of Hydrology.1993,150:409-432.
    [13]Helvey J. D., Patric J. H. Canopy and litter interception of rainfall by hardwoods of eastern United States [J]. Water Resources Research,1965,1:193-206.
    [14]Gerrits A. M. J., Savenije, H. H. G., Hoffmann, L., et al. Measuring forest floor interception in a beech forest in Luxembourg [J]. Hydrol. Earth Syst. Sci. Discuss., 2006,3:2323-2341, doi:10.5194/hessd-3-2323-2006.
    [15]Asdak C., Jarvis P. G, Gardingen P., et al. Rainfall interception loss in unlogged and logged forest areas of Central Kaliman2 tan, Indonesia [J]. Journal of Hydrology, 1998,206:237-244.
    [16]Asdak C., Jarvis P., Gardingen P.V. Evaporation of intercepted precipitation based on an energy balance in unlogged and logged forest areas of central Kalimantan, Indonesia [J]. Agricultural and forest meteorology,1998,92 (3):173-180.
    [17]Gerrits A. M. J. The role of interception in the hydrological cycle [D]. Delft, The Netherlands,2010.
    [18]鲍文,包维楷,何丙辉等.森林生态系统对降水的分配与拦截效应[J].山地学报,2004,22(4),483-491.
    [19]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5),481-487.
    [20]张洪江,程金华,余新晓.贡嘎山冷杉纯林枯落物储量及其持水特性[J].林业科学,2003,39(5),147-151.
    [21]Rutter A. J., Kershaw K. A., Robins P. C., et al. A predictive model of rainfall interception in forests. Ⅰ. Derivation of the model and comparison with observations in a plantation of Corsican pine [J]. Agricultural Meteorology,1971,9:367-384.
    [22]Rutter A. J., Morton A. J., Robins P. C. A predictive model of rainfall interception in forests. Ⅱ Generalization of the model and comparison with observations in some coniferous and hardwood stands [J]. Journal of Applied Ecology,1975,12: 367-380.
    [23]Gash J. H. C., Wright I. R., Lloyd, C. R. Comparative estimates of interception loss from three coniferous forests in Great Britain [J]. Journal of Hydrology,1980,48: 89-105.
    [24]Fernandez, I., Cabaneiro, A., Carballas, T. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating [J]. Soil Biology and Biochemistry,1997,29,1-11.
    [25]Mataix-Solera J., Gomez I., Navarro-Pedreno J., et al. Soil organic matter and aggregates affected by wildfire in a Pinus halepensis forest in a Mediterranean environment [J]. International Journal of Wildland Fire,2002,11:107-114.
    [26]Chandler C., Cheney P., Thomas, P., et al. Fire in forestry. Volume Ⅰ:Forest fire behavior and effects [M]. John Wiley and Sons, New York, USA,1983, pp.171-202.
    [27]Arturo J.P. Granged, Antonio Jordan, Lorena M. Zavala et al. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia) [J]. Geoderma, 2011,167-168:125-134.
    [28]吕刚,吴祥云.土壤入渗特性影响因素研究综述[J].农业工程科学.2008,24(7):494-499.
    [29]Horton. Development of vegetation after fire in the chamise chaparral of Southern California [J]. Eco logy,1955, (36):244-262.
    [30]刘效雨,刘益军.火灾对毛竹林地土壤抗蚀性与渗透性的影响[J].西南师范大学学报(自然科学版).2007,32(6),114-118.
    [31]李金涛,刘文杰,卢洪健.土壤斥水性研究进展[J].西南林学院学报.2010, 30(5),82-87.
    [32]Mataix-Solera J., Cerda A., Arcenegui V., et al. Fire effects on soil aggregation:A review [J]. Earth-Science Reviews.2011,109:44-60.
    [33]Robichaud P.R., Hungerfordb R.D. Water repellency by laboratory burning of four northern Rocky Mountain forest soils [J]. Journal of Hydrology.2000,231-232: 207-219.
    [34]DeBano, L.F. Water Repellent Soils:A State-of-the-Art [R]. US Department of Agriculture Forest Service General Technical Report, PSW-46, Berkeley, CA,1981, p.21.
    [35]Garcia-Corona R., Benito E., De-Blas E., et al. Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils [J]. International Journal of Wildland Fire,2004,13:195-199.
    [36]Zavala L.M., Granged A.P., Jordan A., et al. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions [J]. Geoderma,2010,158:366-374.
    [37]Bryant R., Doerr S.H., Helbig M. Effect of oxygen deprivation on soil hydrophobicity during heating [J]. International Journal of Wildland Fire,2005,14: 449-455.
    [38]胡海清,刘洋,孙龙等.火烧对不同林型下森林土壤水分物理性质的影响[J].水土保持学报,2008,22(2):162-165.
    [39]王兵,魏文俊,冷泠.宁夏六盘山不同森林类型土壤贮水与入渗研究[J].内蒙古农业大学学报,2006,27(3):1-5.
    [40]刘霞,张光灿,李雪蕾等.小流域生态修复过程中不同森林植被土壤入渗与贮水特征[J].水土保持学报,2004,18(6):1-5.
    [41]李红霞,张永强,张新华等.遥感Penman_Monteith模型对区域蒸散发的估算[J].武汉大学学报(工学版),2011,44(4):457-461.
    [42]Cornish P.M., Vertessy, R.A. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest [J]. Journal of Hydrology,2001,242:43-63.
    [43]Vertessy R.A., Watson F.G.R., O'Sullivan, S.K. Factors determining relations between stand age and catchment water balance in mountain ash forests [J]. Forest Ecology and Management,2001,143:13-26.
    [44]Lane P.N.J., Feikema P.M., Sherwin C.B., et al. Modelling the long term water yield impact of wildfire and other forest disturbance in Eucalypt forests [J]. Environmental Modelling & Software,2010,25:467-478.
    [45]刘昌明,钟骏襄.黄土高原森林对年径流影响的初步研究[J].地理学报,1978, 33(2):112-126.
    [46]Roberts S., Vertessy R., Grayson, R. Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age [J]. Forest Ecology and Management,2001,143: 153-161.
    [47]Kuczera G.A. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt foreset [J]. Journal of Hydrology,1987,94:215-236.
    [48]Haydon S.R., Benyon R.G., Lewis, R. Variation in sapwood area and throughfall with forest age in mountain ash (Eucalyptus regnans F. Muell.) [J]. Journal of Hydrology,1996,187:351-366.
    [49]Bosch J.M., Hewlett J.D. A review of catchment experiments to determine the effect of vegetation change on water yield and evapotranspiration [J]. Journal of Hydrology,1982,55:3-23.
    [50]Marcar N.E., Benyon R.G., Polglase P.J. Predicting the hydrological impacts of bushfire and climate change in forested catchments of the River Murray Uplands:A review [R]. CSIRO:Water for a Healthy Country National Research Flagship,2006.
    [51]Watson F.G.R., Verteesy R.A., Grayson. R.B. Large-scale modeling of forest hydrological processes and their long-term effect on water yield [J]. Hydrological Processes,1999,13:689-700.
    [52]Helvey J.D. Effects of a north central Washington wildfire on runoff and sediment production [J]. Water Resources Bulletin,1980,16:628-634.
    [53]Scott D.F. The hydrological effects of fire in South African mountain catchments [J]. Journal of Hydrology,1993,150:409-432.
    [54]Lane P. N. J., Sheridan G. J., Noske P. J. Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia [J]. Journal of Hydrology,2006,331:495-510.
    [55]Tan K.S., Flower D.J.M., Flower D.M. An event runoff coefficient approach for assessing changes in short-term catchment runoff following bushfires [C]. Proceedings of the 33rd Hydrology and Water Resources Symposium, Brisbane, Engineers Australia,2011.
    [56]Buckley T.N, Turnbull T.L., Pfautsch S., et al. Differences in water use between mature and post-fire regrowth stands of subalpine Eucalyptus delegatensis [J]. Forest Ecology and Management,2012,270:1-10.
    [57]Langford K.J. Change in yield of water following a bushfire in a forest of Eucalypt regnans [J]. Journal of Hydrology,1976,29:87-114.
    [58]蔡体久,周晓峰,杨文华.大兴安岭森林火灾对河川径流的影响[J].林业科学,1995,31(5):403-407.
    [59]舒立福,田晓瑞,吴鹏超,等.火干扰对森林水文的影响[J].土壤侵蚀与水土保持学报,1999,5(6):82-85.
    [60]马雪华.森林水文学[M].北京:中国林业出版社,1993.
    [61]张建云,王国庆.气候变化对水文水资源影响研究[M].北京:科学出版社,2007.
    [62]李丽娟,姜德娟,李九一.土地利用、覆被变化的水文效应研究进展[J].自然资源学报,2007,22(2):211-224.
    [63]于静洁,刘昌明.森林水文学研究综述[J].地理研究,1989,8(1):88-98.
    [64]赵芳芳.植被变化和气候变异的生态水文响应研究[D].北京:北京师范大学,2009.
    [65]Crawford N. H. Linsley R K. Digital simulation in hydrology:Stanford watershed model Ⅳ [R]. California:Stanford University,1966.
    [66]Sugawara M. Tank model [M]. In:Singh V P. Computer models of watershed hydrology. Littleton, Colorado:Water Resources Publications.1995.
    [67]Zhao R. J. The Xinanjiang model applied in China [J]. Journal of Hydrology.1992, 135(1-4):371-381.
    [68]Burnash R. J. C., Ferral R. L., McGuire R. A. A general streamflow simulation system-conceptual modeling for digital computers [R]. Sacramento, California: Joint Federal State River Forecasts Center,1973.
    [69]Chiew F. H. S., Peel M. C., Western A. W. Application and testing of the simple rainfall-runoff model SIMHYD [M]. In:Singh V P and Frevert D K. Mathematical models of small watershed hydrology and application. Littleton:Water resources Publication,2002:335-367.
    [70]Bicknell B. R., Imhoff J. L., Kittle J. L., et al. Hydrologic simulation program-Fortran, User's manual for release 10 [R]. U.S. EPA Environmental Research Laboratory, Athens, Ga,1993.
    [71]Leavesley G. H., Markstrom S. L., Restrepo P. J., et al. A modular approach to addressing model design, scale, and parameter estimation issues in distributed hydrological modeling [J]. Hydrological Processes,2002,16:173-188.
    [72]Abbott M. B., Bathurst J. C., Cunge J. A., et al. An introduction to the European hydrological System-Systeme Hydrologique Europeen,'SHE',1:History and philosophy of a physically-based, distributed modeling system [J]. Journal of Hydrology,1986a,87(1-2):45-59.
    [73]Abbott M. B., Bathurst J. C., Cunge J. A., et al. An introduction to the European Hydrological System-Systeme Hydrologique Europeen,'SHE',2:Structure of aphysically-based, distributed modelling system [J]. Journal of Hydrology, 1986b,87 (1-2):61-77.
    [74]贾仰文,王浩,倪广恒等.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005.
    [75]李慧赞.森林植被变化与气候变化的径流响应研究[D].大连:大连理工大学,2011.
    [76]姚成.基于栅格的分布式新安江模型构建与分析[D].南京:河海大学,2007.
    [77]Souid M. A. Reliability Estimation of Rainfall-Runoff Models [M]. State University of New York,1999.
    [78]Vieux B. E. Distributed hydrologic modeling using GIS [M]. Dordrecht, The Netherlands:Kluwer Academic Publishers,2001.
    [79]McIver J.D., Starr, L. A literature review on the environmental effects of postfire logging [J]. Western Journal of Applied Forestry,2001,16:159-168.
    [80]Stephen J.J., John O. C., Keith, B. M., et al. Using spatial interpolation to construct a comprehensive archive of Australian climate data [J]. Environmental Modelling & Software,2001,16:309-330.
    [81]Mortorn, F.I. Operational estimates of areal evapo-transpiration and their significance to the science and practice of hydrology [J]. Journal of Hydrology, 1983,66(1-4):1-76.
    [82]Van Dijk A. I. J. M. The Australian Water Resources Assessment System [R]. Technical Report 3. Landscape Model (version 0.5) Technical Description. CSIRO: Water for a Healthy Country National Research Flagship,2010.
    [83]赵人俊.流域水文模拟——新安江模型和陕北模型[M].北京:水利电力出版社,1984.
    [84]Zhao R. J. The xinanjiang model applied in china [J]. Journal of Hydrology.1992, 135(1-4):371-381.
    [85]Cheng C. T., Ou C. P., Chau K. W. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration [J]. Journal of Hydrology.2002,268(1-4):72-86.
    [86]Li H. X., Zhang Y. Q., Chiew F. H. S., et al. Predicting runoff in ungauged catchments by using xinanjiang model with modis leaf area index [J]. Journal of Hydrology.2009,370(1-4):155-162.
    [87]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社,2000.
    [88]Edijatno, Michel, C. Un modele pluie-debit journalier a trios parametres [J]. La Houille Blanche,1989,2:113-121.
    [89]Perrin, C., Michel, C., Andreassian, V. Improvement of a parsimonious model for streamflow simulation [J]. Journal of Hydrology,2003,279 (1-4):275-289.
    [90]Flannigan M., Stocks B., Wotton B. Climate change and forest fires [J]. Science of the Total Environment,2000,262(3):221-229.
    [91]Grenier D. J., Bergeron Y., Kneeshaw D., et al. Firefrequeney for the transitional mixed wood forest of Timiskaming, Quebec, Canada [J]. Candian Jounal of forest research,2005,35:655-656.
    [92]Danielle C. V., Anthony S. K. Nature and causes of protracted droughts in southeast Australia:Comparison between the Federation, WWII, and Big Dry droughts [J]. Geophysical Research Letters,2009,36, L22707, doi:10.1029/2009GL041067.
    [93]IPCC. Climate Change 2001:The Scientific Basis [R]. Cambridge, U. K.: Cambridge University Press,2001.
    [94]DelGenio A. D., Lacis A. A., Ruedy R. A. Simulations of the effect of a warmer climate on atmospheric humidity [J]. Nature,1991,351,382-385.
    [95]孙福宝.基于Budyko水热耦合平衡假设的流域蒸散发研究[D].北京:清华大学,2007.
    [96]芮孝芳.水文学原理[M].北京:中国水利水电出版社,2004.
    [97]Cleugh H. A., Dunin F. X. Modeling sensible heat fluxes from a wheat canopy-An evaluation of the resistance energy-balance model [J]. Journal of Hydrology,1995, 164:127-152.
    [98]Nishida K., Nemani R. R., Running S. W., et al. An operational remote sensing algorithm of land surface evaporation [J]. Journal of Geophysical Research,2003, 108(D9),4270, doi:10.1029/2002 JD002062.
    [99]Kustas W. P., Norman J. M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover [J]. Agricultural and Forest Meteorology,1999,94:13-29, doi:10.1016/S0168-1923(99)00005-2.
    [100]Bastiaanssen W. G. M., Menenti M., Feddes R. A., et al. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation [J]. Jouranl of Hydrology,1998,212-213:198-212.
    [101]Su Z.. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes [J]. Hydrology and Earth System Sciences,2002,6:85-99.
    [102]McVicar T. R., Jupp D. L. B. Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models [J], Agricultural and Forest Meteorology,1999,96:219-238, doi:10.1016/S0168-1923(99)00052-0.
    [103]Zhang Y. Q., Wegehenkel M. Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration [J]. Remote Sensing of Environment,2006,104:393-408, doi:10.1016/j.rse.2006.05.011.
    [104]Mu Q. Z., Zhao M. S., Running S. W.. Improvements to a MODIS global terrestrial evapotranspiration algorithm [J]. Remote Sensing of Envrionment,2011,115: 1781-1800.
    [105]Leuning R., Cleugh H. A., Zegelin S. J., et al. Carbon and water fluxes over a temperate eucalyptus forest and a tropical wet/dry savanna in Australia: Measurementsa and comparison with MODIS remote sensing estimates [J]. Agricultural and Forest Meteorology,2005,129:151-173.
    [106]Finnigan J. J., Clement R., Malhi Y., et al. A re-evaluation of long-term flux measurement techniques:Part I. Averaging and coordinate rotation [J]. Boundary-Layer Meteorology,2003,107(1):1-48.
    [107]Lane P.N.J., Feikema P.M., Sherwin C.B., et al. Modelling the long term water yield impact of wildfire and other forest disturbance in Eucalypt forests [J]. Environmental Modelling & Software,2010,25:467-478.
    [108]Vertessy R., Watson F. G. R., O'Sillivan S., et al. Predicting water yield from mountain ash forest catchments [R]. Cooperative Research Centre of Catchment Hydrology, April 1998.
    [109]Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models part I-A discussion of principles [J]. Journal of Hydrology,1970,10 (3):282-290.
    [110]Viney N.R., Perraud J., Vaze J., et al. The usefulness of Bias constraints in model calibration for regionalisation to ungauged catchments [C].18th World IMACS/MODSIM Congress, Cairns, Australia,2009.
    [111]Boughton W.C. The Australian water balance model [J]. Environmental Modelling & Software,2004,19:943-956.
    [112]Croke B. F. W., Jakeman A. J. A catchment moisture deficit module for the IHACRES rainfall-runoff model [J]. Environmental Modelling & Software,2004, 19:1-5.
    [113]Burnash R. J. C., Ferral R. L., McGuire R. A. A generalized streamflow simulation system-conceptual modeling for digital computers [R]. Sacramento:Joint Federal and State River Forecast Center,1973.
    [114]Tan B. Q., O'Connor K. M. Application of an empirical infiltration equation in the SMAR conceptual model [J]. Journal of Hydrology,1996,185:275-295.
    [115]Vaze J., Cheiew F. H. S., Perraud J. M., et al. Rainfall-runoff modelling across southeast Australia:datasets, models and results [J]. Australian Journal of Water Resources,2010,14(2):101-116.
    [116]Eberhart R.C., Kennedy J. A new optimizer using particle swarm theory [C]. Piscataway, New Jersey:IEEE Press,1995.
    [117]Chau K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mum River [J]. Journal of Hydrology,2006,329:363-367.
    [118]Gill M.K., Kaheil Y.H., Khalil A., et al. Multiobjective particle swarm optimization for parameter estimation in hydrology [J]. Water Resources Research,2006,42, W07417,doi:10.1029/2005 WR004528.
    [119]Zhang Y.Q., Chiew F.H.S. Relative merits of different methods for runoff predictions in ungauged catchments [J]. Water Resources Research,2009,45: W07412, doi:10.1029/2008WR007504.
    [120]Chiew F. H. S., Mcmahon T. A. Assessing the adequacy of catchment streamflow yield estimates [J]. Australian Journal of Soil Research,1993,31(5):665-680.
    [121]Chiew F. H. S., Teng J., Vaze J., et al. Estimating climate change impact on runoff across southeast Australia:Method, results, and implications of the modeling method [J]. Water Resources Research,2009,45, W10414, doi:10.1029/2008 WR007338.
    [122]G6rgen K., et al. Assessment of Climate Change Impacts on Discharge in the Rhine River Basin:Results of the RheinBlick 2050 Project [R]. Lelystad, Netherlands:Int. Comm. for the Hydrol. of the Rhine Basin,2010.
    [123]Vaze J., Post D. A., Chiew F. H. S., et al. Climate non-stationarity-Validity of calibrated rainfall-runoff models for use in climate change studies [J]. Journal of Hydrology,2010,394:447-457.
    [124]Coron L., Andreassian V., Perrin C, et al. Crash testing hydrological models in contrasted climate conditions:an experiment on 216 Australian catchments [J]. Water Resources Research.2012,48, W05552, doi:05510.01029/02011WR011721.
    [125]Merz R., Parajka J., Bloschl G. Time stability of catchment model parameters: Implications for climate impact analyses [J]. Water Resources Research.2011,47, W02531.
    [126]Lane P. N. J., Sheridan G. J., Noske P. J. Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia [J]. Journal of Hydrology,2006,331:495-510.
    [127]Scott D. F. The hydrological effects of fire in South African mountain catchments [J]. Journal of Hydrology,1993,150:409-432.
    [128]Smith H. G., Sheridan G. J., Lane P. N. J., et al. Wildfire and salvage harvesting effects on runoff generation and sediment exports from radiata pine and eucalypt forest catchments, south-eastern Australia [J]. Forest Ecology and Management, 2011,261(3):570-581.
    [129]李昌峰,高俊峰,曹慧.土地利用变化对水资源影响研究的现状和趋势[J].土壤,2002,(4):191-205.
    [130]Lane P.N.J., Sheridan G.J., Noske P.J. Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia [J]. Journal of Hydrology.2006,331:495-510.
    [131]Lane P.N.J., Feikema P.M., Sherwin C.B., et al. Modelling the long term water yield impact of wildfire and other forest disturbance in Eucalypt forests [J]. Environmental Modelling & Software.2010,25:467-478.
    [132]Monteith J. L. Evaporation and environment [J]. Symposia of the Soeiety for Experimental Biology.1965,19:205-234.
    [133]Leuning R., Zhang Y. Q., Rajaud A., et al. A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman-Monteith equation [J]. Water Resources Research,2008,44, W10419, doi: 10.1029/2007WR006562.
    [134]Isaac P. R., Leuning R., Hacker J. M., et al. Estimation of regional evapotranspiration by combining aircraft and ground-based measurements [J]. Boundary-layer meteorology,2004,110:69-98, doi:10.1023/A:1026054317990.
    [135]Wang Y. P., Leuning R., Isaac P., et al. Scaling the estimate of maximum canopy conductance from patch to region and comparison of aircraft measurements, in Forestsatthe Land-Atmosphere Interface [M]. CAB Int., Wallingford, U. K.,2004, 175-188.
    [136]Tuzet A., Perrier A., Leuning R. A coupled model of stomatal conductance, photosynthesis and transpiration [J]. Plant Cell & Environment,2003,26: 1097-1116.
    [137]Zhang Y. Q., Chiew F. H. S., Zhang L., et al. Estimating catchment evaporation and runoff using MODIS leaf area index and the Peman-Monteith equation [J]. Water Resources Research,2008,44, W10420, doi:10.1029/2007WR006563.
    [138]Li H.X., Zhang Y.Q., Chiew F.H.S., et al. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index [J]. Journal of Hydrology, 2009,370:155-162.
    [139]Li H.Y., Zhang Y.Q., Vaze, J., et al. Separating effects of vegetation change and climate variability using hydrological modeling and sensitivity-based approaches [J]. Journal of Hydrology,2012,420-421:403-418.
    [140]Zhang Y.Q., Vaze J., Chiew F.H.S., Liu Y. Incorporating vegetation time series to improve rainfall-runoff model predictions in gauged and ungauged catchments [C]. Perth:Modelling and Simulation Society of Australia and New Zealand,2011
    [141]McMichael C.E., Hope A.S. Loaiciga H.A. Distributed hydrological modeling in California semi-arid shrublands:MIKE SHE model calibration and uncertainty estimation [J]. Journal of Hydrology,2006,317:307-324.
    [142]Yildiz O., Barros A.P. Elucidating vegetation controls on the hydroclimatology of a mid-latitude basin [J]. Journal of Hydrology,2007,333:431-448.
    [143]Zhang Y.Q., Chiew F.H.S. Relative merits of different methods for runoff predictions in ungauged catchments [J]. Water Resources Research,,2009,45, W07412,doi:10.1029/2008 WR007504.
    [144]Butts B.B., Payne J.T., Kristensen M., et al. An evaluation of the impact of model structure on hydrological modeling uncertainty for streamflow simulation [J]. Journal of Hydrology,2004,298:242-266.
    [145]Beven K., Freer J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology [J]. Journal of Hydrology,2001,249:11-29.
    [146]Gourley J.J., Vieux B.E. A method for identifying sources of model uncertainty in rainfall-runoff simulations [J]. Journal of Hydrology,2006,327:68-80.
    [147]Clark J., Matheny N. Management of Mature Trees [J]. Journal of Arboriculture, 1991,17:173-184.
    [148]Becker P., Meinzer F. C., Wullschleger, S. D. Hydraulic limitation of tree height:a critique [J]. Functional Ecology,2000,14:4-11.
    [149]Becker P., Tyree M. T., Tsuda M. Hydraulic conductances of angiosperms versus conifers:similar transport sufficiencyatthe whole-plant level [J]. Plant Physiology, 1999,19:445-452.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700