金沙江支流龙川江流域河流输沙特征及其对气候和地表覆被变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流输沙变化是流域气候与地表覆被格局变化的结果之一,一方面会导致河道的冲淤过程随之发生改变,对所处流域的水利工程、农业生产、水资源分配和河道管理带来影响;同时也表征着与流域产输沙有密切关联的各种环境要素改变的趋势。
     论文以自然地理学和水文动力学为理论基础,集成空间信息技术、建模以及数学分析方法,探讨了河流输沙过程与气候和地表覆被变化之间的相互影响及其关系,主要结论有:
     1、河流输沙的时间序列特征与流域降雨的时序特征基本一致,而趋势性特征由地表覆被变化决定。输沙和降雨量在1970-2002年间波动上升,2003-2008年间下降。河流输沙与降雨受强降雨事件的影响不明显。输沙量在1992和2002年出现的增加与减少跃变,与地表覆被变化高度一致。
     2、以1974、1992、2002和2007年的卫星影像为数据源,研究了流域地表覆被、土壤侵蚀特性以及河流输沙与地表覆被变化的相互关系。地表覆被以有林地、耕地和灌木林地为主,其中1974年占99.69%,1992年占99.13%,2002年占98.64%,2008年占96.75%。地表覆被类型间的转移主要发生在有林地、灌木林地、耕地之间,如1974-1992年,灌木林地减少了1901.3km2,耕地总量减少了204.1km2,但陡坡耕地增加了24.3 km2,有林地则增加了2094.4km2;1992-2002年,耕地增加了83.4km2,其中陡坡耕地增加了23.4 km2,有林地则减少了730.1km2;2002-2008年,灌木林地减少了558.4km2,耕地减少了725.8km2,其中陡坡耕地减少了82.5km2,有林地则增加了1846km2。
     土壤侵蚀变化的时间特性与地表覆被变化有很好的关联,表现为土壤侵蚀量和土壤侵蚀模数与地表覆被变化趋势的一致性,如土壤侵蚀量在1974年为2.31×107t,1992年为2.15×107t,2002年为2.84×107t,2008年为2.11×107t;侵蚀模数在1974年为2497t/(km2·a),1992年为2331t/(km2·a),2002年为3077 t/(km2·a),2008年为2286 t/(km2·a)。流域内各地表覆被类型内部的转化对土壤侵蚀特性的影响不大,地表覆被类型间的转化以有林地、灌木林地和耕地间相互转换对土壤侵蚀特性影响最大。有林地、灌木林地变为耕地,尤其是陡坡耕地,侵蚀强度会增加50-70%,而耕地,尤其是坡耕地向有林地、灌木林地的变化,会大大降低土壤侵蚀强度。
     河流输沙变化与地表覆被变化之间是间接的因果关系。1974-2002年,地表覆被向使土壤侵蚀强度增加的方向转化,河流输沙量呈增加趋势;2002-2008年,地表覆被向使土壤侵蚀强度降低的方向转化时,河流输沙量即呈减少趋势。
     3、应用空间信息技术、土壤侵蚀和水文动力学理论建立河流输沙模型对龙川江流域的河流输沙过程进行了有效地模拟。1981-1987、1994-2000和2002-2008年三个时段的模拟精度R2分别为0.85、0.78、0.78;Nash-Sutclife效率(Ens)分别为0.71、0.65和0.69。
     4、气候和地表覆被变化对河流输沙变化的影响,在不同时段有差别。气候变化在1977-1987、1993-2000、2002-2008年时段对河流输沙量的贡献率分别为44%、21.8%和48.4%。
     不同地表覆被类型对河流输沙的影响不同。控制河流输沙强度的顺序表现为有林地>灌木林地>陡坡耕地>非陡坡耕地>草地>疏林地。其中,有林地在1993-2000间的面积比例为50%左右时,其增减对河流输沙变化的敏感性最为突出,达到了91.55%,而当其面积比例在2008年为70%左右时,对河流输沙变化的敏感性反而最低,为70.71%;河流输沙对陡坡耕地增减的敏感性要高于非陡坡耕地约8个百分点。
     5、河流输沙对未来气候和地表覆被情景的响应,随气候、地表覆被变化程度及其组合状况呈现出不同的特点:
     (1)河流输沙对气候要素变化的响应,主要表现为降雨量的增减对河流输沙量增减的显著影响。降雨增加引起的河流输沙增加幅度,比降雨减少相同幅度引起的河流输沙减少幅度大。以1974-1987年的数据平均值为参照,如8月份降雨增加20%,输沙会增加24.31%,降雨减少20%,输沙则只减少19.23%。降雨量在干季的增减引起的河流输沙量变化平均值小于0.5%;在雨季的增减引起的河流输沙量变化平均值为12%左右;
     (2)河流雨季输沙对未来地表覆被变化中有林地和灌木林地面积减少的响应十分敏感。以2002-2008年的数据平均值为参照,2020年雨季河流输沙约各增加6%和8%,2030年约各增加8%和10%;耕地总面积的增加,仍然导致河流雨季输沙2020年增加约2%,2030年增加约3%;
     (3)地表覆被变化在各种气候情景下对河流输沙的影响呈一直增加的趋势。以2002-2008年的数据平均值为参照,与单一气候变化对输沙的影响相比,未来地表覆被情景下,降雨量减少对输沙减少的影响呈衰减态势,而降雨增加对输沙的影响则进一步强化。以雨季8月的河流输沙为例,当有林地减少10%,建设用地增加100%的情景下,降雨增加5%,将导致河流输沙增加13.21%;而降雨减少5%,则引起河流输沙减少5.72%;在降雨量不发生变化的情况下,土地利用强度的增加,也使河流输沙平均增加3%左右。
     本文的上述研究成果,加深了对龙川江流域水沙过程规律的理解与认识,不仅为在本区域更深入进行河流水沙变化及其影响的理论研究提供案例支持和方向,也为在本流域进行土壤侵蚀治理、调整土地利用结构和功能,实现区域生态环境-社会经济系统协调发展提供了理论依据和主攻方向,具有积极的现实意义。
The change of suspended sediment in river is one of the results that change of regional climatic and surface cover pattern. On the one hand, it will cause the scour and silting evolution of the channel directly, which affect the normal function of the hydraulic projects, agricultural production, water resources distribution and channel management seriously. On the other hand, this change is also the signal of the developing trend on all kinds of environmental factors associated sediment producing and transporting.
     As a sample, Longchuanjiang river watershed, the main branch of Jinshajiang, is applied to research temporal and spatial changing regulation of the sediment flux based on hydraulic and physical geography theory and spatial information, distributed model and conventional statistical techniques. The relationship between climatic, surface cover pattern changing and sediment flux changing has been studied in this paper, main conclusions as follows:
     1. In the past decades of years, the temporal characteristic of the sediment transported are fit to the precipitation in Longchuangjiang River watershed. However, its changing trend characteristic is the result of land use pattern changed. The sediment amount and precipitation has a transparently ascending trend in 1970-1992, a descendant phenomenon appears in 2003-2008. The sediment amount has a transparently ascending abrupt changing in 1992, descending abrupt in 2002, which appears highly synchronous with the surface cover pattern changed.
     2. The relationship between surface cover pattern, soil eroded character changed and sediment transportation in river has been researched by interpreting 1974's, 1992's,2002's and 2007's satellite images in this paper. The results indicated that the cultivated land, woodland, grassland are main surface cover types in the watershed, which area ratio is 99.69% in 1974,99.13% in 1992,98.64% in 2002 and 96.75% in 2008. The most surface cover transferring has happened among the cultivated land, forest land, shrubbery since 1974. For example, the area of shrubbery and cultivated land has been subtracted 1901.3 km2 and 204.1 km2 respectively from 1974 to 1992, but the up-to-25 degree cultivated land added 24.3km2, meanwhile, the forest land area has been added 2094.4 km2. From 1992 to 2002, the area of cultivated land has been added 83.4km2, including the up-to-25 degree cultivated land added 23.4km2, at the same time, forest land area has been subtracted 730.1km2; the area of shrubbery and cultivated land has been subtracted 558.4km2 and 725.8km2 respectively from 2002 to 2008, including the up-to-25 degree cultivated land subtracted 82.5km, meanwhile, the forest land area has been added 1846km2.
     Soil eroded temporal character is well related with surface cover types changed, including the amount and the modulus of soil eroded changed. E.g.in 1974, the soil eroded amount was 2.31 X 107t, while 2.15 X 107t in 1992,2.84X 107t in 2002,2.11 X 107t in 2008. The soil eroded modulus was 2497t/(km2·a) in 1974,2331 t/(km2·a) in 1992,3077t/(km2·a) in 2002, in 2008, it was 2286t/(km2·a). The inner transformation of the same surface cover type has little effect to soil eroded character, but the transformation between different surface cover type has much effect to it, especially among the woodland, shrubbery and cultivated land. Woodland and shrubbery turned to cultivated land, especially to those up-to-25 degree cultivated land, the soil eroded intensity degree added 50%-70%, reversely, cultivated land, especially to those up-to-25 degree cultivated land, turned to woodland and shrubbery, the index subtracted much.
     Indirectly cause and effect relationship lies between the sediment transportation amount and surface cover pattern changed in Longchuangjiang River watershed. When the intensity of land use ascending, the sediment transportation amount is added, inversely, it is subtracted.
     3. The sediment transportation model build in this paper is used to modulate the sediment transportation process in Longchuangjiang River effectively, based on spatial information technology, soil erosion and hydrology theory. In the three phases of 1981-1987,1994-2000 and 2002-2008, the accuracy index R2 is 0.85、0.78 and 0.78;Nash-Sutclife efficiency index (Ens) is 0.71、0.65 and 0.69 respectively.
     4. The effect of climatic and surface cover pattern changed to sediment transported in river has a differentiation in several temporal phases. In 1977-1987, 1993-2000,2002-2008, climatic changed contributed about 44%,21.8% and 48.4% respectively.
     The effect of various surface cover type to sediment transportation amount raised in river are different. The capacity sequence of controlled sediment transportation in river as follows:forest land, shrubbery, up-to-25 degree cultivated land and non-up-to-25 degree cultivated land, grassland, sparse woodland. When the ratio of forest land area was 50%, whether its area added or subtracted, the sensitivity of sediment transportation in river was 91.55%, otherwise, when the ratio was 70%, the sensitivity was 70.71%, lower than 91.55%. As to cultivated land, the sensitivity of sediment transportation in river to up-to-25 degree cultivated land was higher about 8% than to non-up-to-25 degree cultivated land.
     5. The response of the sediment transportation amount in river to climatic and surface cover pattern changed in the future is different with the climatic and surface cover pattern changed extent, including theirs combination situation. The results as follows:
     (1) The sensitivity of sediment transportation amount raised up in river to precipitation increasing is very high, but the rainfall added up results in sediment transportation amount increased is much more than decreased by the rainfall subtracted the same ratio. Researching achievements indicated that rainfall added up average 20%, the increasing ratio of the sediment transportation amount in river will be 24.31%, inversely, and it will be 19.23% in August. And that, this effect in drought season is nearly neglected, but in rain season, this decreased or increased ration of sediment transportation amount in river is about 12%.
     (2) The response of sediment transportation amount in river of rain season to the forest land and shrubbery area subtraced is very sensitively. In 2020, the sediment transportation amount in river will rise up about 6%,8% respectively. But in 2030, the ratio is 8% and 10% respectively. At the same time, the added sum area of cultivated land will still result in the sediment transportation amount raised about 2% and 3%.
     (3) The effect of surface cover changed to sediment transportation amount in river in the future is increasing continuously in any of climatic changed scenario. The effect of rainfall subtracted to the sediment transportation amount decreased in river will be degraded gradually in whichever surface cover pattern; on the contrary, the effect of rainfall increased to the sediment transportation amount increased in river will be strengthened further. E.g. rainfall increases average 5% in August, if forest land area subtraced 10% and residential area added 100%, the increasing ratio of the -sediment transportation amount in river will be 13.21%, inversely, it will be 5.72%. In addition, even if the rainfall keeps stability, the movable soil eroded amount may be added in virtue of the land use explored drastically, it can result in the ratio of the sediment transportation amount in river increased about 3%.
     All the achiements made in this paper result in a more deep comprehension to water-sediment transportation regulation in Longchhuanjiang River. It not only applies a case and research direction to deep theoretical studied water-sediment transportation changing law and its affected factors in this watershed, but also provides theoretical basis and main struggle direction for soil erosion controlled, land use patterm and its function adjusted and realize the environment-society-economy system harmonious development in Longchuanjiang River watershed.
引文
[1]李义天,李荣,邓金运.长江中游水沙灾害形成机理研究[J].自然灾害学报,2000(3):98-105.
    [2]倪晋仁等著.江河泥沙灾害形成机理及其防治[M].北京:科学出版社,2008.
    [3]芮孝芳,姜广斌,程海云.考虑回水预报顶托影响的水位预报研究[J].水科学进展,1998,9(2):69-75.
    [4]师长兴,章典.中国洪涝灾害与泥沙关系[J].地理学报,2000,(9):627-636.
    [5]中华人民共和国水利部.2000年中国河流泥沙公报[M].北京:水利水电出版社,2001.
    [6]陈世俭,吴显欣.长江中游地区的治水策略与可持续发展[J].自然灾害学报,1999,8(3):7-13.
    [7]IPCC 1990.Climate Change and Impact 1990[R].Cambridge University Press,Cambridge.
    [8]IPCC 1996.Climate Change 1995.Impacst, Adaptation, and Mitigation[R].Cambridge University Press,Cambridge.
    [9]IPCC 2001.Climate Change 2001.Impacst, Adaptation, and Vulnerability[R].Cambridge University Press, Cambridge.
    [10]Bloomfield P. Trend in global temperature[J], Climate Change,1992,21,1-16.
    [11]Saltzman B. Climatic system analysis[J].Advances in Geophysics,1983,25:173-233.
    [12]Mimikou M. Climatic change. In:Environmental hydrology[M].Kluwer Academic Publishers,the Netherlands,1995:69-106.
    [13]Douglas, J.E. A summary of some results from the Coweeta hydrologic laboratory, Appendix B, in L.S. Hamilton and P.N. King, Tropical forested watershed[M].West view Press, Boulder,Colo.,1981.
    [14]Mimikou, M. Impact of Climate Change on Hydrological Regimes and European Community, EV5V-CT93-0293 Report[R].UK:University of Southampton,1996:1-19.
    [15]Grabs, W.1997, Impact of Climate change on hydrological regimes and water resources management in the Rhine watershed.CHR report no.1-16[R].CHR, Lely stab, the Netherlands.
    [16]Arnold J.G,& Srinivasan R. et al. Large area hydrologic modeling and water assessment (Part Ⅰ):model development[J] Journal of the American Water Resources Association, 1998,34(1):73-89.
    [17]US Academy of science climate. Climate change and water supply[M].Washington DC.: National Academy Press,1977.
    [18]Guo Shenglian, Wang Jinxing, Xiong lihua, et al. A macro scale and semi-distributed monthly water balance model to predict climate change impacts in China. Journal of Hydrology,2002,268:1-15.
    [19]施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J].冰川冻土,2002,24(3):219-226.
    [20]秦大河,丁一汇,王绍武等.中国西部生态环境变化与对策建议[J].地球科学进展,2002,17(3):314-319.
    [21]张信宝,文安邦,长江上游干流和支流河流泥沙近期变化及其原因[J],水利学报,2002(4):56-59.
    [22]Thomas H.E.,Effects of drought in the Colorado River Watershed.U.S. Geol. Sruv., Prof. Pap,1962(372-F):50pp.
    [23]Gregory,K.J. and Park,C.C. Adjustment of river channel capacity downstream from a reservoir[J]. Water resources research,1974(10):870-873.
    [24]Ghorbel A.and Claude J. Mesure des Г envasement dans ies retcnues de sept barrages en Tunisie:estimation des transports solides. In. Erosion and Solid Matter Transport in Inland Water(Proc. Paris Symp.July 1977), IAHS Publ.no.1977(122):219-232.
    [25]Colombani J.Effet sur les transports solides des ouvrages hydrauliques en Afique du Nord.In:Erosion and Solid Matter Transport in Inland Water(Proc. Paris Symp. July 1977), IAHS Publ. no.1977(122):295-300.
    [26]Thompson K.R. Annual suspended-sediment loads in the Colorado River near Cisco, Utah.1930-1982. U.S. Geol.Surv.,Water Resource,Invest.Rep.,1984a (85-4011):19pp.
    [27]Meade R.H. and Parker R.S. Sediment in rivers of the United States. In:National Water Summary 1985.U.S. Geol. Surv. Water Supply Pap,1985(2275):49-60.
    [28]Kesel R H,Yodis E J,Mccraw D J.An approximation of the sediment budget of the Lower Mississippi Rriver prior to major human-modification[J]. Earth surface processes and landforms,1992,17(7):711-722.
    [29]Kesel R H. Human modification to the sediment regime of the Lower Mississippi River flood plain[J].Geomorphology,2003,56:325-334.
    [30]Hammad, H.Y.,Khafagy A.A. AND Sidky,S. A short note on the sediment regime of the River Nile.Bulletin Institute Oceangraphy and Fish A.R.E.Alexandria),1979(7):314-322.
    [31]Shahin,M. Hydrology of Nile Watershed.Elsevier,Amsterdam,1985,575pp.
    [32]Grimshaw, D.L.and Lewin, J. Reservoir effects on sediment yield[J].Journal of Hydrology,1980(47):163-171.
    [33]Kumar Santosh and Rastogi, R.A., A conceptual catchment model for estimating suspended sediment flow[J].Journal of Hydrology,1987(95):155-163.
    [34]Chakrapani G.J. and Subramanian V. Factors controlling sediment discharge in the Mahanadi River Watershed, India[J].Journal of Hydrology,1988(99):201-214.
    [35]Stanley A C, Misganaw D. Detection of changes in stream flow and floods resulting from climate fluctuations and land use-drainage changes [J].Climatic Change,1996,32:411-421.
    [36]Allen Gellis, Richrd Hereford, S.A. Schumm, et al. Channel evolution and hydrologic variations in the Colorado River watershed:Factors influencing sediment and salt loads[J]. Journal of Hydrology,1991,124(3-4):317-344.
    [37]顾文书.黄河近年来水沙变化情况以及龙羊峡和刘家峡两大水库在黄河治理开发中所起的作用[J].水力发电学报,1994,(1):1-6.
    [38]顾文书.无定河流域水土保持措施在“94.8”特大暴雨中的减水减沙作用[J].中国水土保持,1995,(11):20-23.
    [39]胡荣轩,毛荣生,陈小红.黄河中游区水、沙变化趋势及其预测[J].地理学报,1992,47(4):315-324.
    [40]陈小红,刘美南,胡荣轩.黄河中游区水沙时空颁及衰减分析[J].水文,1997,(1):19-23.
    [41]倪晋仁,王光谦.黄河中游水保措施对入黄干支流泥沙量的影响:Ⅱ.减沙效益分析[J].自然资源学报学报,1997,12(2):126-132.
    [42]王兮之,索安宁,洪军等.黄土高原泾河流域水沙分析[J].水土保持学报,2006,20(2):22-25,93.
    [43]王国庆,王云璋.渭河流域产流产沙模型及径流泥沙变化原因分析[J].水土保持学报,2000,14(4):22-25.
    [44]舒长先.黄河中游地区泥沙变化研究进展[J].水土保持通报,2000,20(3):10-14.
    [45]霍勇峰.湫水河泥沙变化及其原因分析[J].水资源与水工程学报,2006,17(6):94-96.
    [46]张胜利等.黄河中游多沙粗沙区水沙变化原因及发展趋势[M].郑州:黄河水利出版社,1998,180-191.
    [47]程天文,赵楚年.我国沿岸入海河川径流量与输沙量的估算[J].地理学报,1984,39(4):418-427.
    [48]程天文,赵楚年.我国主要河流入海径流量、输沙量及对沿岸的影响[J].海洋学报,1985,7(4):460-471.
    [49]余剑如,长江上游地面侵蚀与泥石流泥沙问题的探讨[J].人民长江,1987(9):21-29.
    [50]陈显维,郭海晋.长江宜昌站年悬移质输沙量均值估计[J].泥沙研究,1991(1):10-14.
    [51]金蓉玲.长江宜昌悬移质输沙量来源的成因分析[J].水文,1991(2):17-23
    [52]李景保,刘晓清,潘安敏.荆江南岸主要河流入湖水沙及其对洞庭湖的影响[J].热带地理,1995,15(4):314-320.
    [53]卢金发,罗恒凯.长江与洞庭湖关系变化初步分析[J].人民长江,1999,30(4):24-26.
    [54]杨永德,邹宁.汉江上游水文特征的初步分析[J].水文,1997(2):54-56.
    [55]沈焕庭,张超,茅志昌.长江入河口区水沙通量变化规律[J]/海洋与湖沼,2000,31(3):288-294.
    [56]赵庆英,杨世伦,朱骏.河口河槽季节性冲淤变化及其对河流来水来沙响应的统计分析-以长江口南槽为例[J].地理科学,2003,23(1):112-117.
    [57]府仁寿,虞志英,金缪等.长江水沙变化发展趋势[J].水利学报,2003(11):21-29.
    [58]曹慧,贺根宝,王初等.长江干支流输沙量减少趋势及其影响因素浅析[J].长江流域资源与环境,2007,16(A02):164-171.
    [59]张强,陈桂亚,姜彤等.近40年来长江流域水沙变化趋势及可能影响因素探讨[J].长江流域资源与环境,2008,17(2):257-263.
    [60]周跃,朱云梅,吕喜玺.人为活动对金沙江一级支流龙川江流域输沙量的影响分析[J].昆明理工大学学报(理工版),2006,31(1):77-82.
    [61]戴仕宝,杨世伦,蔡爱民.51看来珠江流域输沙量的变化[J].地理学报,2007,62(5):545-554.
    [62]潘久根.金沙江流域河流泥沙输移特性[J].泥沙研究,1999(2):46-49.
    [63]张信宝.长江上游河流泥沙近期变化,原因及减沙对策[J].中国水土保持,1999(2):22-24.
    [64]毛红梅,刘少华.嘉陵江流域人类活动对干支流水沙量影响[J].水文水资源,2000,21(3):37-40.
    [65]吴豪,虞孝感.近四十年来长江源区河流水沙量的变化[J].长江流域资源与环境,2002,11(2):175-178.
    [66]张信宝,文安邦.长江上游干流和支流河流泥沙近期变化及其原因[J].水利学报,2002,33(4):56-59.
    [67]陈立,吴门伍,张俊勇.三峡工程蓄水运用对长江口径流来沙的影响[J].长江流域资源与环境,2003,12(1):50-54.
    [68]应铭,李九发,万新宁等.长江大通站输沙量时间序列分析研究[J].长江流域资源与环 境,2005,14(1):83-87.
    [69]马颖,李琼芳,王鸿杰等.人类活动对长江干流水沙关系的影响的分析[J].水文,2008,28(2):38-42.
    [70]许炯心,汉江丹江口水库下游河床调整过程中的复杂响应[J].科学通报,1989(6):450-452.
    [71]陈显维.嘉陵江流域水库群拦沙量估算及拦沙效应分析[J].水文,1992(4):34-38.
    [72]韩其为,杨克诚.三峡水库建成后下荆江河型变化趋势的研究[J].泥沙研究,2000(3):1-11.
    [73]黄国强.三峡工程坝下冲刷研究[J].中国三峡建设,1997(5):14-16.
    [74]潘庆燊,胡向阳.三峡工程泥沙问题的研究进展[J].水利水电快报,1997,18(17):1-5.
    [75]韩其为,何明民.三峡水库建成后长江中、下游河道演变的趋势[J].长江科学院院报,1997,14(1):12-20.
    [76]陆永军,袁美琦,贾锐敏等.三峡工程对下游河道的影响及治理措施的初步研究[J].水道港口,1997(2):11-29.
    [77]刘东生,熊明,董伟.丹江口水库下游深水与清水冲刷特点对比分析[J].水利水电快报,1998,19(23):23-26.
    [78]刘青泉,三峡工程对下游及河口环境的影响分析[J],力学与实践,1998,20(3):1-8.
    [79]施修端,孔祥林,杨彬.丹江口水库建库前后沿程水位流量关系变化及其对下游防洪影响的探讨[J].水利水电快报,1999,20(13):8-11.
    [80]韩其为,江湖流量分配变化导致长江中游新的洪水形势[J].泥沙研究,1999(5):1-12.
    [81]唐日长.下荆江裁弯对荆江洞庭湖的影响分析[J].人民长江,1999,30(4):20-23.
    [82]卢金发.荆江三口分流分沙变化规律研究[J].泥沙研究,1996(4):54-61.
    [83]魏向阳,韩巧兰,薛云鹏.丹江口水库下游河道演变对黄河下游防洪的启示[J].人民黄河,2000,22(11):15-16.
    [84]王荣新,章厚玉,易志平.丹江口水库坝下游沿程Z-Q关系变化分析[J].人民长江,2001,32(2):25-27.
    [85]陈立,吴门伍,张俊勇.三峡工程蓄水运用对长江口径流来沙的影响[J].长江流域资源与环境,2003,12(1):50-54.
    [86]张燕菁,胡春宏,王延贵等.辽河干流河道演变与维持河道稳定的输沙水量研究[J].水利学报,2007,38(2):176-181.
    [87]陈吉余,沈焕庭,徐海根等.长江三峡对生态与环境影响及其对策研究论文集[M].北京:科学出版社,1987:350-368.
    [88]陈西庆,陈吉余.南水北调对长江口粗颗粒悬沙来量的影响[J].水科学进展,1997,8(3):259-263.
    [89]陈吉余,陈沈良.中国河口海岸面临的挑战[J].海洋地质动态,2002,18(1):1-5.
    [90]赵庆英,杨世伦,朱骏.长江入海水沙变化的回归分析[J].水文,2001(5).
    [91]杨世伦,朱骏,赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究-近期证据分析和未来趋势估计[J].海洋学报,2003,25(5):83-91.
    [92]程义.延河洪水输沙特征分析[J].水土保持学报,1992,6(2):35-40.
    [93]安和平.北盘江流域降雨、径流、产沙相互关系研究[J].水土保持学报[J].水土保持学报,1994,8(3):46-51.
    [94]潘久根.金沙江流域输沙特性分析[J].水土保持通报,1997,17(5):35-39.
    [95]邓贤贵,黄川友.金沙江泥沙输移特性及人类活动影响分析[J].泥沙研究,1997,(4):3741.
    [96]应铭,李九发,万新宁等.长江大通站输沙量时间序列分析研究[J].长江流域资源与环境,2005,14(1):83-87.
    [97]贺松林,王盼成.长江大通站水沙过程的基本特征Ⅱ.输沙过程分析[J].华东师范大学学报(自然科学版),2004,(2):81-87.
    [98]董耀华,惠晓晓,蔺秋生.长江干流河道水沙特性与变化趋势初步分析[J].长江科学院院报,2008,25(2):16-20.
    [99]府仁寿,齐梅兰,方红卫等.长江宜昌至汉口河段输沙特性分析[J].水利学报,2005,36(1):35-41.
    [100]张建春,查良松,史志刚等.大沙河流域降水变化与输沙关系的研究[J].水土保持学报,2004,18(4):166-169.
    [101]饶素秋,霍世青,薛建国等.黄河上中游水沙变化特点分析及未来趋势展望[J].泥沙研究,2001,(2):74-77.
    [102]汪丽娜,穆兴民,高鹏等.黄土丘陵区产流输沙量对地貌因子的响应[J].水利学报,2005,38(8):956-960.
    [103]张晓明,余新晓,武思宏等.黄土区森林植被对流域径流和输沙的影响[J].中国水土保持科学,2006,4(3):48-53.
    [104]朱俭.湟水流域输沙特征分析[J].中国水土保持,2001,(1):25-27.
    [105]第宝锋,崔鹏,黄胜等.近50年金沙江干热河谷区泥沙变化及影响因素分析-以云南省元谋县为例[J].中国水土保持科学,2006,4(5):20-24.
    [106]于涛,邓义祥,富国等.近50年来黄河输沙量变化特征及原因分析[J].人民黄河,2007,29 (12):27-29.
    [107]丁文峰,张平仓,任洪玉.近50年来嘉陵江流域径流泥沙演变规律及驱动因素定量分析[J].长江科学院院报,2008,25(3):23-27.
    [108]黄英.澜沧江云南段河流输沙量及其变化规律探讨[J].人民长江,1996,27(1):33-35.
    [109]邓振镛,张强,李栋梁等.气候变化对渭河上游径流量和输沙量的影响[J].中国沙漠,2006,26(6):982-985.
    [110]孙长江,孙瑶,王磊.人类活动对柳河水沙影响分析[J].水资源与水工程学报,2007,18(3):98-100.
    [111]赵文林,焦恩泽,王广任等.三川河水沙变化及人类活动影响[J].人民黄河,1992,(1):22-26.
    [112]戴会超,王玲玲,蒋定国.三峡水库蓄水前后长江上游近期水沙变化趋势[J].水利学报,2007,,(增刊):226-231.
    [113]郭宣福.汀江河流泥沙及其变化规律分析[J].亚热带水土保持,2006,18(1):12-14.
    [114]刘成,王兆印,隋觉义.我国主要入海河流水沙变化分析[J].水利学报,2007,38(12):1444-1452.
    [115]于浩,张晓萍,李锐.延河流域径流和输沙周期变化特征的小波分析[J].中国水土保持科学,2008,6(4):18-22.
    [116]李晶莹,张经.中国主要河流的输沙量及其影响因素[J].青岛海洋大学学报,2003,33(4):565-573.
    [117]邓居礼.祖厉河流域水沙时空分布及变化分析[J].水文,2001,21(2):47-50.
    [118]陈军峰,李秀彬.森林植被变化对流域水文影响的争论[J].自然资源学报,2001,16(5):474-480.
    [119]史玉虎,袁克侃.鄂西三峡库区森林变化对河川径流泥沙的影响[J].北京林业大学学报,2007,18(3):98-100.
    [120]张志强,王礼先,余新晓.森林植被影响径流形成机制研究进展[J].自然资源学报,2001,16(1):79-84.
    [121]张志强,王盛萍,孙阁.流域径流泥沙对多尺度植被变化响应研究进展[J].生态学报,2006,26(7):2356-2364.
    [122]刘金清,陆建华.国内外水文模型概论[J].水文,1996,(4):4-8.
    [123]葛守西.现代洪水预报技术[M].北京:中国水利水电出版社.1999:1-23.
    [124]贾仰文,王浩,倪广恒.分布式流域水文模型原理与实践[M].北京:中国水利水电出版社,2005:259-268.
    [125]芮孝芳.流域水文模型研究中的若干问题[J].水科学进展,1997,8(1):94-98.
    [126]袁作新.流域水文模型[M].北京:水利水电出版社,1990.
    [127]赵人俊.流域水文模拟-新安江模型与陕北模型[M].北京:水利水电出版社,1984.
    [128]芮孝芳,黄国如.分布式水文模型的现状与未来[J].水利水电科学进展,2004,24(2):55-58.
    [129]刘昌明,郑红星,王中根.流域水循环分布式模拟[M].郑州:黄河水利出版社,2006.
    [130]夏军.水文非线性系统理论与方法[M].武汉:武汉大学出版社,2002.
    [131]郝芳华,王玲等译.分布式水文模拟[M].郑州:黄河水利出版社,2003.
    [132]詹姆斯.韦斯特韦尔特著.程国栋等译.流域管理的模拟建模[M].郑州:黄河水利出版社,2004.
    [133]Saleh A, Arnold J G, Gassman P W, et al. Application of SWAT for the Upper North Bosque River Watershed[J]. Transactions of the American Society of Agricultural Engineers,2000,43(5):1077-1087.
    [134]Qiu Zeyuan and Prato Tony. Economic Evaluation of Riparian Buffers in an Agricultural Watershed[J]. Journal of the American Water Resources Association,1998,34(3):877-890.
    [135]Qiu Zeyuan and Prato Tony. Physical Determinants of Economic Value of Riparian Buffers in an Agricultural Watershed[J].Journal of the American Water Resources Association,2001,37(2):295-303.
    [136]Santhi C, Srinivasan R, Arnold J G, et al. A Modeling Approach to Evaluate the Impacts of Water Quality Management Plans Implemented in a Watershed in Texas [J]. Environmental Modeling & Software,2006(21):1141-1157.
    [137]张运生,曾志远,李硕.GIS辅助下的江西潋水河流域径流的化学组成计算机模拟研究[J].土壤学报,2005,42(4):559-569.
    [138]万超,张思聪.基于GIS的潘家口水库面源污染负荷计算[J].水力发电学报,2003,(2):62-68.
    [139]郝芳华,孙峰,张建永.官厅水库流域非点源污染研究进展[J].地学前沿,2002,9(2):385-386.
    [140]Arnold J G and Fohrer N.SWAT2000:Current Capabilities and Research Opportunities in Applied Watershed Modeling[J].Hydrological processes,2005,(19):563-572.
    [141]Fontaine T A, Cruickshank T S, Arnold J G, et al. Development of a Snowfall-snowmelt Routine for Mountainous Terrain for the Soil Water Assessment Tool(SWAT)[J].Journal of Hydrology,2002,262:209-223.
    [142]Arnold J G and Allen P M. Estimating Hydrologic Budgets for Three Illinois Watersheds[J]. Journal of Hydrology,1996(176):57-77.
    [143]Arnold J G, Srinivasan R, Muttiah R S, et al. Continental Scale Simulation of the Hydrologic Balance. Journal of the Ameircan Water Resources Association,1999,35 (5):1037-1051.
    [144]Eckhardt K and Arnold J G. Automatic Calibration of a Distributed Catchment Model[J]. Journal of Hydrology,2001(251):103-109.
    [145]Saleh A, Arnold J G, Gassman P W, et al. Application of SWAT for the Upper North Bosque River Watershed[J]. Transactions of the American Society of Agricultural Engineers,2000,43(5):1077-1087.
    [146]Qiu Zeyuan and Prato Tony. Economic Evaluation of Riparian Buffers in an Agricultural Watershed[J]. Journal of the American Water Resources Association,1998,34(3):877-890.
    [147]Qiu Zeyuan and Prato Tony. Physical Determinants of Economic Value of Riparian Buffers in an Agricultural Watershed[J] Journal of the American Water Resources Association,2001,37(2):295-303.
    [148]Santhi C, Srinivasan R, Arnold J G, et al. A Modeling Approach to Evaluate the Impacts of Water Quality Management Plans Implemented in a Watershed in Texas[J]. Environmental Modeling & Software,2006(21):1141-1157.
    [149]张运生,曾志远,李硕.GIS辅助下的江西潋水河流域径流的化学组成计算机模拟研究[J].土壤学报,2005,42(4):559-569.
    [150]万超,张思聪.基于GIS的潘家口水库面源污染负荷计算[J].水力发电学报,2003,(2):62-68.
    [151]郝芳华,李春晖,赵彦伟等.流域水质模型与模拟[M].北京.北京师范大学出版社,2008.
    [152]Arnold J G and Fohrer N.SWAT2000:Current Capabilities and Research Opportunities in Applied Watershed Modeling[J].Hydrological processes,2005,(19):563-572.
    [153]Fontaine T A, Cruickshank T S, Arnold J G, et al. Development of a Snowfall-snowmelt Routine for Mountainous Terrain for the Soil Water Assessment Tool(SWAT)[J] Journal of Hydrology,2002,262:209-223.
    [154]Arnold J G and Allen P M. Estimating Hydrologic Budgets for Three Illinois Watersheds[J]. Journal of Hydrology,1996(176):57-77.
    [155]Arnold J G, Srinivasan R, Muttiah R S, et al. Continental Scale Simulation of the Hydrologic Balance. Journal of the Ameircan Water Resources Association,1999,35 (5):1037-1051.
    [156]Eckhardt K and Arnold J G. Automatic Calibration of a Distributed Catchment Model[J]. Journal of Hydrology,2001(251):103-109.
    [157]张雪松,郝芳华,杨志峰等.基于SWAT模型的中尺度流域产流产沙模拟研究[J].水土保持研究,2003,10(4):38-42.
    [158]王林,陈兴伟.基于SWAT模型的晋江西溪流域产沙模拟[J].福建师范大学学报(自然科学版),2008,24(3):93-97.
    [159]Fohrer N, Moller D, N. An Interdisciplinary Modeling Approach to Evaluate the Effects of Land use Change[J].Physics and Chemistry of the Earth,2002,27:655-662.
    [160]Weber A, Fohrer N, Moller D. Long-term Land use Changes in a Mesoscale Watershed due to Socio-economic Factors-effects on Landscape Structures and Functions[J]. Ecological Modeling,2001,140(2/2):125-140.
    [161]Hernandez M, Miller S N, Goodrich D C. et al. Modeling Runoff Response to Land Cover and Rainfall Spatial Variability in Semi-arid Watersheds[J].Environmental Monitoring and Assessment,2000(64):285-298.
    [162]Celine C, Ghislain de M, Faycal B, et al. A long-term Hydrological Modeling of the Upper Guadiana River Watershed(Spain)[J].Physics and Chemistry of the Earth,2003(28): 193-200.
    [163]Andrea W, Fohrer N, Miller D. Long-term Land Use Changes in a Mesoscale Watershed due to Socio-economic Factors-Effects on Landscape Structures and Functions[J]. Ecological Modeling,2001,140(112):125-140
    [164]郝芳华,陈利群,刘昌明等.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(3):5-8.
    [165]陈军锋,李秀彬.土地覆被变化的水文响应模拟研究[J].应用生态学报,2004,15(5):833-836.
    [166]张蕾娜,李秀彬,王兆锋等.一种可用于表征土地利用变化水文效应的水文模型探讨—SWAT模型在云州水库流域的应用研究[J].水文,2004,24(3):4-8.
    [167]Cruise J F, Limaye A S, Al-Abed N. Assessment of Impacts of Climate Change on Water Quality in the Southeastern United States[J].Journal of the American Water Resources Association,1999,35(6):1539-1550.
    [168]Stonefelt M D, Fontaine T A, Hotchkiss RH. Impacts of Climate Change on Water Yield in the Upper Wind River Watershed[J] Journal of the American Water Resources Association, 2000,36 (2):321-336.
    [169]Stone M C, Hotchkiss R H, Hubbard C M, et al. Impacts of Climate Change on Missouri River Watershed Water Yield[J]. Journal of the American Water Resources Association, 2001,37(5):1119-1129.
    [170]Eckhardta K and Ulbirchb U. Potential Impacts of Climate Change on Ground Water Recharge and Streamflow in a Central European Low Mountain Range[J].Journal of Hydrology,2003(284):244-252.
    [171]Rosenberg N J, Epstein D L, Wang D, et al. Possible Impacts of Global Warming on the Hydrology of the Ogallala Aquifer region[J].Climatic Change,1999,42(4):677-692.
    [172]Hotchkiss R H, Jorgensen S F, Stone M C, et al. Regulated River Modeling for Climate Change Impact Assessment:the Missouri River[J] Journal of the American Water Resources Association,2000,36(2):375-386.
    [173]Wollmuth J C,E heart J W. Surface Water Withdrawal Allocation and Trading Systems for Traditionally Riparian Areas [J] Journal of the American Water Resources Association, 2000,36 (2):293-303
    [174]王中根,刘昌明,黄友波SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
    [175]Mamillapalli S, Srinivasan R, Anrold J G. et al. Effect of Spatial Variability on Watershed Scale Modeling. In:Proceedings of the Third International Conference/Workshop on Intergrading GIS and Environmental Modeling. National Center for Geographic Information and Analysis, Santa Barbara,Califonria,1996.Available at http://www.negia. Ucsb.edu/conf/
    [176]Bingner R L, Garbrecht J, Arnold J G, et al. Effect of Watershed Subdivision on Simulation Runoff and Fine Sediment Yield[J].Transactions of the American Society of Agricultural Engineers,1997,40 (5):1329-1335.
    [177]FitzHugh T W and MacKay D S. Impacts of Input Parameter Spatial Aggregation on an Agricultural Non-point Source Pollution Model[J].Journal of Hydrology,2000(236):35-53.
    [178]张雪松,郝芳华,程红光等.子流域划分对分布式水文模型模拟结果的影响[J].水利学报,2004,(7):119-123.
    [179]Jha M, G assman P W, Secchi S, et al. Effect of Watershed Subdivision on SWAT Flow, Sediment, and Nutrient Predictions [J] Journal of the American Water Resources Association,2004,40(3):811-825.
    [180]Chaplot V.Impact of DEM Mesh Size and Soil Map Scale on SWAT Runoff, Sediment, and NO3-N Loads Predictions[J] Journal of Hydrology,2005,312(1-4):207-222.
    [181]任希岩,张雪松,郝芳华等.DEM分辨率对产流产沙模拟影响研究[J].水土保持研究,2004,11(1):1-5.
    [182]《楚雄州年鉴》.楚雄彝族自治州人民政府,2007.
    [183]《楚雄彝族自治州水资源公报》.楚雄彝族自治州水利局,2007.
    [184]《楚雄彝族自治州水利志》.楚雄彝族自治州水利局,1191-2005.
    [185]《楚雄州气候公报》.楚雄州农业气象服务中心,2008.
    [186]钟佳.龙川江水质污染状况、发展趋势及水污染防治对策[J].环境科学导刊,2007,26(1):54-57.
    [187]《2008年楚雄州政府工作报告》.2008.
    [188]《2008年楚雄州水土保持公报》.2008.
    [189]Claudia Libiseller.Multivariate and partial Mann-Kendall test[M].2002.
    [190]魏凤英.现代气候统计诊断预测技术[M].北京气象出版社.1999.
    [191]Bobrovitskaya N.N.,Kokorev A.V.,Lemeshko N.a.Regional patterns in recent trends in sediment yields of Eurasian and Siberian rivers[J].Global and Planetary Change,2003,39: 127-146.
    [192]段克勤,王宁练等.达索谱冰芯记录的印度季风突变[J].科学通报,2001,46(24):2069-2073.
    [193]Yang Xiaohu,Feng Longlong,Zhu Yaoyuan.Wavelet spectrum analysis of larger scale galaxy struction:method and numerical simulation[J].Science in China(Series A),2001,31 (3):278-288.
    [194]郭跃华主编.概率论与数理统计[M].科学出版社,2007.
    [195]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2005.
    [196]王静龙.多元统计分析[M].北京:科学出版社,2008.
    [197]王万忠.黄土高原降雨特性与土壤流失关系的研究-关于侵蚀性降雨的标准问题[J].水土保持通报,2004,27(1):26-30.
    [198]李艳,陈晓宏,王兆礼.人类活动对北江流域径流系列变化的影响初探[J].自然资源学报,2006,21(6):910-915.
    [199]胡春红.黄河水沙过程变异及河道的复杂响应[M].北京:科学出版社,2005:14-15.
    [200]孙长江,孙瑶,王磊.人类活动对柳河水沙影响分析[J].水资源与水工程学报,2007,18(3): 98-100.
    [201]王存荣,冉大川.三川河流域水沙变化水文分析[J].水土保持通报,2002,22(6):15-19.
    [202]王宏,秦百顺,赵光耀.渭河流域水沙变化的水文分析与计算[J].人民黄河,2002,24(8):19-20.
    [203]武晓林.湫水河流域水沙变化现状及成因分析[J].水资源与工程学报,2007,18(3):56-59.
    [204]张明波,郭海晋,徐德龙.嘉陵江流域水保治理模型研究与应用[J].水土保持学报,2003,17(5):110-113.
    [205]许全喜,石国钰,陈泽芳.长江上游近期水沙变化特点及其趋势分析[J].水科学进展,2004,15(4):420-426.
    [206]Willmott C J,Robeson S M,Feddema J J.Estimating continental and terrestrial Precipitation average from rain-gauge networks[J].Int.J.Climatol,1994,14:403-414.
    [207]朱会义,贾绍风.降雨信息空间插值的不确定性分析[J].地理科学进展,2004,23(2):34-42.
    [208]Sillverman B W.Some aspects of the spline smoothing approach to nonparametric regression curve fitting (with discussion)[J].Journal Royal Statistical Society Series B,1985,47:1-52.
    [209]Hutpchinson M F. Interpolating mean rainfall using thin plate smoothing Splines [J]. International Journal of GIS,1995,9:305-310.
    [210]李丽娟,王娟,李海滨.东江流域流域降雨量空间变异性研究[J].地理研究,2002,21(4):435-440.
    [211]阎洪.气候时空数据的样条插值与应用[J].地理与地理信息科学,2003,19(5):27-31.
    [212]Hutpchinson M F, Bishof, R J. A new method for estimating the spatial distribution of mean and annual rainfall applied to the Hunter Valley, New South Wales[J].Australian Meteorological Magazine,1983,31:179-184.
    [213]Patrick M, Bartier. Multivariate Interpolation to incorporate thematic surface data using inverse weighting(IDW) [J].Computer & Geosciences,1996,22(7):795-799.
    [214]封志明,杨艳昭,丁晓强等.气象要素空间插值方法优化[J].地理研究,2004,23(3):357-364.
    [215]林忠辉,莫兴国,李宏轩等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-56.
    [216]朱会义,这述林,贾绍凤.自然地理要素空间插值的几个问题[J].地理研究,2004,23(4):425-432.
    [217]Zhou S, Xue G.The SIA method for spatial analysis of precipitateon in the upper-middle, reaches of the Yangtze River[J] Journal of Geographical Sciences,2005,15(2):223-238.
    [218]王兆礼,陈晓宏,李艳.基于BPANNSI的多年平均水面蒸发量插值方法[J].中山大学学报(自然科学版),2007,46(1):114-118.
    [219]王兆礼,陈晓宏.近40年来珠江流域平均气温时空演变特征[J].热带地理,2007,27(2):50-54.
    [220]任国玉,徐铭志,初子莹.近54年中国地面气温变化J].气候与环境研究,2005,10(4):717-726.
    [221]唐国利,任国玉.近百年中国地表气温变化趋势的再分析[J].气候与环境研究,2005,10(4):791-798.
    [222]左洪超,吕世华,胡隐樵.中国近50年来气温及降水量的变化趋势分析[J].高原气象,2004,23(2):238-244.
    [223]汤海燕.广东省近40年来气候变化初探[J].广东气象,2003(1):37-39.
    [224]曾琮,陈创买,李晓娟.广东冬季气温时空变化特征[J].气象,2005,31(3):56-60.
    [225]左洪超,李栋梁,胡隐樵等.近40a中国气候变化趋势及其同蒸发器观测的蒸发量变化的关系[J].科学通报,2005,50(11):1125-1130.
    [226]Donald H.Burn,Nicole M.Hesch.Trends in evaporateon for the Canadian Prairies[J]. Journal of Hydrology,2007,336(1-2):61-73.DOI:10.1016/j.jhydrol.2006.12.011.
    [227]J.A.Hudson,K.Gilman.Long-term variability in the water balances of the Plynlimoncatchments[J]. Journal of Hydrology,1993,143(3-4):355-380.DOI:10.1016/ 0022-1694(93)90199-J.
    [228]任国玉,郭军.中国水面蒸发量的变化[J].自然资源学报,2006,21(1):3144.
    [229]张存厚,吴学宏,李永利.内蒙古近45a蒸发量气候变化特征分析[J].干旱区资源与环境,2007,21(12):93-98.
    [230]曾燕,邱新法,刘昌明等.1960-2000年中国蒸发皿蒸发量的气候变化特征[J].水科学进展,2007,18(3):311-318.
    [231]郭华,姜彤,王国杰等.1961-2003年间鄱阳湖流域气候变化趋势及突变分析[J].湖泊科学,2006,18(5):443451.
    [232]闵骞.鄱阳湖水面蒸发量的计算与变化趋势分析[J].水资源研究,2006,27(2):18-21.
    [233]郭军,任国玉.黄淮海流域蒸发量的变化及其原因分析[J].水科学进展,2005,16(5):666-672.
    [234]邱新法,刘昌明,曾燕.黄河流域近40年蒸发量的气候变化特征[J].自然资源学报,2003, 18(4):437-442.
    [235]Sun Lan,Wu Guoxiong.Influence of land evapotranspiration on climate variations[J], Science in China(series D),2001,44:838-846.
    [236]Shukla J,Mintz Y.The influence of land evapotranspiration on Earth's climate[J]. Science, 1982,215:1498-1501.
    [237]Hu Qi.Centennial variations and recent trends in summer rainfall and runoff in the Yangtze River Watershed,China[J].Journal of Lake Sciences,2003,15(Suppl.):97-104.
    [238]王艳君,姜彤,许崇育等.长江流域1961-2000年蒸发量变化趋势研究[J].气候变化研究进展,2005,1(3):99-105.
    [239]刘敏,沈彦俊,曾燕等.近50年来中国蒸发皿蒸发量变化趋势及原因[J].地理学报,2009,64(3):259-269.
    [240]朱翔,李卓卿,朱云燕等.多山地区植被类型遥感调查-以金沙江流域滇西北部分为例[J].生态学杂志,2001,20(增刊):12-17.
    [241]赵英时主编,遥感应用分析原理与方法[M].北京:科学出版社.2003.
    [242]曾和平,赵敏慧,周跃等.香格里拉县纳西族与汉族聚居区的景观生态格局对比研究[J].环境科学研究,2007,20(6):56-60.
    [243]曾和平,王剑,周跃.漾濞江流域土地利用变化的土壤侵蚀效应[J].生态与农村环境学报,2008,24(2):1-6.
    [244]周良勇,李广雪,邓声贵等.现代黄河三角洲土地利用变化分析[J].海洋地质动态,2003,19(10):1-4.
    [245]朱会义,李秀彬,何书金等.环渤海地区土地利用的时空变化分析[J].地理学报,2001,56(3):253-260.
    [246]李喆,秦其明,刘大平等.土地利用变化的时空分析及其在云南丽江的应用[J].云南地理环境研究,2004,16(3):10-13.
    [247]王桥,杨一鹏,黄家柱等.环境遥感[M].北京:科学出版社,2005.
    [248]段瑞娟,郝晋珉,李伟等.城市化进程中城郊土地利用及区位变化分析——以北京近、远郊为例[J].地理学报,2001,56(3):53-56.
    [249]何春阳,史培军,陈晋等.北京地区土地利用和覆被变化研究[J].地理研究,2001,20(6):679-687
    [250]中华人民共和国水利行业标准.《土壤侵蚀分类分级标准》(SL 190-2007),中华人民共和国水利部发布,2008.
    [251]马超飞,马建文,布和敖斯尔USLE模型中植被覆盖因子的遥感数据定量估算[J].水土 保持通报,2001,21(4)6-9.
    [252]王思远,王光谦,陈志祥.黄河流域土地利用与土壤侵蚀的耦合关系[J].自然灾害学报,2005,14(1):32-37.
    [253]杨子生,刘彦随,Liang Luohui等.金沙江下游近40年来土壤侵蚀变化——以云南彝良为例[J].山地学报,2005,23(2):144-152.
    [254]杨子生,贺一梅,李云辉,等.近40年来金沙江南岸干热河谷区的土地利用变化及其土壤侵蚀治理研究——以云南宾川县为例[J].地理科学进展,2004,23(2):16-26.
    [255]郭兆元.陕西土壤[M].北京:科学出版社,1992.
    [256]梁犁丽,汪党献,王芳SWAT模型及其应用进展[J].中国水利水电科学研究院学报.2007,5(2):125-131.
    [257]张明旭SWAT模型初步研究[J].吉林师范大学学报,2006,(2):13-15.
    [258]王中根,刘昌明,吴险峰.基于DEM的分布式水文模型研究综述[J].自然资源学报,2003,18(2):168-173.
    [259]袁作新.流域水文模型[M].北京:中国水利电力出版社,1991.
    [260]Williams J R.Computer models of watershed hydrology[J].Water Resources Publications, 1995,25:909-1000.
    [261]蔡崇法等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量研究[J].水土保持学报,2000,14(2):19-24.
    [262]刘建立,徐绍辉,刘慧.几种土壤累积粒径分布模型的对比研究[J].水科学进展,2003,14(5):588-592.
    [263]谢鉴衡.河流模拟[M].北京.水利水电出版社,1990:8-13.
    [264]杨国录.河流数学模型[M].北京:海洋出版社,1993:78-80.
    [265]李义天,尚全民.一维非恒定流泥沙数学模型研究[J].泥沙研究,1998(1):81-87.
    [266]张红武,张清.黄河水流挟沙力的计算[J].人民黄河,1992,(11):7-9.
    [267]王纲胜,夏军,万东晖.气候变化及人类活动影响下的潮白河月水量平衡模拟[J].自然资源学报,2006,21(1):86-91.
    [268]Costanza R,Ruth M.Using dynamic modeling to scope environmental problems and build consensus [J].Environmental Managemet,1998,22:183-195.
    [269]蔡运龙.土地利用/土地覆被变化研究:寻求新的综合途径[J].地理研究,2001,20(6):645-652.
    [270]蔡玉梅,刘彦随,宇振荣.土地利用变化空间模拟的进展[J].地理科学进展.2004,23(4):63-71.
    [271]Kitamura,T.,Kagatsume,M.,Hoshino,S.et al.A Theoretical consideration on the land-use change model for Japan cases study area[C].Ⅱ ASA Interim Report IR-97-064,1991.
    [272]Turner M G. Spatial simulation of landscape change in Georgia:A comparison of 3 transition models[M].landscape Ecology,1987.
    [273]Van D P,Strengers B J, De Veies et al.Long-term perspectives on world metal use:a system dynamics model [J].Resources Policy,1999,25(4):239-255.
    [274]Nijs T C,Niet R D,Crommentuijn.Constructing land-use maps of the Netherlands in 2030[J] Journal of Environmental Management,2004,72:35-42.
    [275]李秀彬.土地利用变化的解释[J].地理科学进展,2002,21(3):195-203.
    [276]周成虎,孙战利,谢一春.地理元胞自动机研究[M].北京:科学出版社,1999.
    [277]Store M C,Hotchktss R H,Hubbard C M,et al.Impact of climate change on Missouri river watershed water yield[J] Journal of the American Water Resources Association,200,37(5): 1119-1129.
    [278]李道峰,田英,刘昌明.黄河河源区变化环境下分布式水文模拟[J].地理学报,2004,59(4):565-573.
    [279]刘昌明,郑红星,王中根.流域水循环分布式模拟[M].郑州:黄河水利出版社,2006.
    [280]王光谦,李铁键,薛海等.流域泥沙过程机理分析[J].应用基础与工程科学学报,2006,14(4):455-462.
    [281]王光谦,李铁健,贺莉等.黄土丘陵沟壑区沟道的水沙运动模拟[J].泥沙研究,2008,3:19-25.
    [282]ZHU Yunmei.The impact of climate change and human activity on water and sediment: Artificial Neural Network modeling in the Longchuanjiang catchment,Upper Yangtze River[D].Theses for the degree of doctor philosophy for National University of Singapore,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700