珠江流域河流碳通量与流域侵蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以珠江水体、悬浮物为研究对象,通过对西江马口、北江河口、东江博罗断面水体取样,分析水体中不同形态碳含量,测定碳同位素值,并计算了河流碳通量值;还对珠江流域的侵蚀状况及植被分布对流域侵蚀的影响进行了探讨。得出如下的结论:
     珠江水体HCO_3~-离子含量在一个水文年中发生显著变化,特别是丰水期与枯水期之间波动幅度较大;无机碳含量西江含量最高,其次是北江,东江最低;西江无机碳主要来源于岩溶作用,由于受河流冲刷效应影响,丰水期HCO_3~-离子含量升高;东江流域无机碳主要来源于硅酸盐岩的碳酸盐风化过程,丰水期HCO_3~-离子含量无显著变化;北江无机碳来源于岩溶作用和硅酸盐岩的碳酸盐风化过程,受稀释效应影响,无机碳含量随水量增加而降低。
     珠江水体中DOC含量属热带-亚热带河流的下限值水平。其含量顺序与DIC相反,即东江>北江>西江。
     与世界其它河流相比,珠江POC含量较低;三条河流中,以西江最高,东江次之,北江最低。珠江流量存在很大的季节变化,汛期拥有超过60%的年度总径流量,DOC和POC在高流量时骤增,DOC含量增加约20-90%,而POC含量最大则可能增加6倍,与山区河流的特征相似。
     2000-2001水文年度珠江河流碳通量为1.355×10~4kg·km~(-2)·a~-,比1997-1998水文年度的碳通量(2.741×10~4kg·km~(-2)·a~-)结果低,这与本年度流域缺乏强暴雨冲刷过程有直接的联系。
     珠江水体悬浮物POC稳定同位素值介于-18~-28‰之间,西江、北江、东江三个断面平水期的POC δ~(13)C值的变化范围分别介于-23.09‰~-20.66‰、-27.25‰~-18.77‰、-24.10‰~-21.83‰之间;丰水期POC δ~(13)C值的变化范围分别介于-23.75‰~-22.59‰、-25.36‰~-22.65‰、-23.17‰~-20.80‰之间;丰水期向枯水期过渡期间三江不同断面水体中POC δ~(13)C值的变化范围分别处于-22.95‰~-20.32‰、-24.39‰~-22.13‰、-24.39‰~-22.31‰之间;枯水期水体POC δ~(13)C值的变化范围分别介于-23.15‰~-20.06‰、-24.34‰~-22.87‰、-26.67‰~-23.60‰之间。
     珠江水系各断面水体中悬浮物含量及POC δ~(13)C值的季节变化是其物质来源季节变化的反映。在珠江流域中,东江水体POC受C_4植物草类以及作物的影响明显,δ~(13)C值比西江、北江偏重。北江流域森林覆盖率较高,受C_3植物影响明显,故北江水体中POC δ~(13)C值最轻。西江水体中有机质受C_3、C_4植物共同影响,其δ~(13)C值介于北江、东江之间。
     珠江水体悬浮物POC~(14)C表观年龄介于540~2050a之间,西江、北江悬浮物POC年龄相对较老,东江悬浮物POC年龄较为离散,既有较为年轻的样品,又有较老的样品,但以较年轻的样品为主。珠江水体中POC以现代碳源为主,其含量在不同支流及全年内相当恒定,全部样品的现代碳含量超过75%。
     珠江水体悬浮物中POCΔ~(14)C与δ~(13)C之间接近正相关关系,反映的是大河汛期悬浮物碳同位素的对应表征值,是流域侵蚀和植被覆盖现状、历史情况的综合反映。
     珠江流域侵蚀比较严重,其中以西江流域为甚,东江流域整体状况较好,但中下游地区由于受人类扰动的影响,水土流失仍较严重;北江流域侵蚀总体较轻。
This paper researches on the water and suspension in Zhujiang (Pearl) River and her three branches, sampling in Makou Hydrological gorge station of Xijiang River, Hekou Hydrological gorge station of Beijiang River and Boluo Hydrological gorge station of Dongjiang River. The author calculated the riverine carbon flux and measured the content of different carbon forms and carbon isotope composition. Furthermore, the author also studied drainage basin erosion and the influence of vegetation distribution on erosion. The main conclusions are as follows:
    The HCO3- ion content of Zhujiang River changes notably in one hydrological year, especially in wet season and dry season. As for the content of inorganic carbon, that of the Xijiang River is the highest, then the Beijiang River, and then the Dongjiang River. The Xijiang River's inorganic carbon source was major from karst process in the drainage basin. Due to the "washing effect" , the content of HCO3- ion increased in the wet season. The HCO3- of Dongjiang River originates mostly from the weathering process of silicate, and its content changes little. The HCO3-of Beijiang River originates primarily from the weathering process of silicate and karst process. Influenced by the " dilution effect" , its content decreased while its runoff increased.
    The content of dissolved organic carbon (DOC) in Zhujiang River only reached the lowest value standard only in the tropical-subtropical zone. Among the three rivers, the DOC content of Dongjiang River is the highest, then the Beijiang River, and then the Xijiang River.
    Paniculate organic carbon (POC) content of Zhujiang River is lower than that of other rivers in the world. Among the three branches, the content in Xijiang River is the highest, then the Dongjiang River, and then the Beijiang River. The runoff of Zhujiang River has very great seasonal change. DOC and POC increased dramatically at high runoff in these rivers. The DOC content increased 20-90%, POC content probably increased 6 times. This indicates that Zhujiang River has the characteristics of mountainous rivers.
    The riverine carbon flux of the Zhujiang River is about 1.355 104kg-km-2-a- in hydrological year 2000-2001, lower than the result in hydrological year 1997-1998. It was due to fewer storms and lack of stronger erosion process.
    The stable isotope value of POC in Zhujiang River is between -18~-28%. The stable isotope value of POC in the three hydrological station sections in the normal season is between -23.09 %~-20.66%, -27.25%~-18.77% and -24.10%~-21.83%, respectively. The change in scope of POC 8 13C value in the wet season is between 23.75%~- 22.59%, -25.36%-~-22.65% and -23.17%~--20.80%. The POC 13C value in the period of the transition from the wet season to the dry season is between -22.95%~-20.32%, -24.39%~~-22.13% and -24.39%~-22.31%, respectively. The change in scope of POC 13C value in the dry season in the three hydrological
    
    
    station section is between -23.15% ~-20.06%, -24.34%~-22.87% and -26.67%~-23.60%, respectively.
    The seasonal change of POC 13C value of suspension in Zhujiang River is the reflection of the suspended source in every season. POC in the Dongjiang river was influenced mainly by C4 plant such as grass and crops, and POC 6 13C value was heavier than that in the Xijiang and Beijiang Rivers. The forest cover rate of the Beijiang River drainage basin is higher. Affected by C3 plant, its POC 8 13C value was lighter. Influenced by C3 and C4 plant in the Xijiang River, its POC 6 13C value is between Dongjiang and Beijiang Rivers'.
    The POC14C apparent age of Zhujiang River suspension is between 540 and 2050 a. Among the three branches, Xijiang and Beijiang River suspensions are older. The 14C apparent age value of Dongjiang River is comparatively scattered-it not only has considerably younger samples but also the older ones. POC of Zhujiang River was mainly from modern carbon, the content of which was fairly constant in different branches all year round.
    The erosion of Zhujiang River drainage basin is relativel
引文
1. Andres R J, Marland G, Boden T, and Bischof, S., 2000: Carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1751-1991, and an estimate of their isotopic composition and latitudinal distribution. In: The Carbon Cycle, [Wigley, T.M.L. and D.S. Schimel (eds.)]. Cambridge University Press, New York, pp. 53-62.
    2. Arain, R. Carbon and mineral transport of Indus River 1982-1983. In: Degens, E. T., Kempe, S. and Herrera, R. (Eds) Transport of Carbon and Minerals in Major World Rivers, Pt. 3. Mitt. Geol.-Pal(?)ont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd. 1985, 58: 487-494.
    3. Bai Z G, Wan G J et al. Geochemical speciation of soil ~7Be, ~(137)Cs, ~(226)Ra, ~(228)Raas tracers to particle transport. Pedosphere, 1997,7(3): 263-268.
    4. Baker F W G. Internationalism and science, Talor Graham, London, 1996, 78-88.
    5. Baskaran M, Coleman C H et al. Atmospheric deposition fluxes of ~7Be and ~(210)Pb at Galveston and College Station, Taxas. Journal of Geophysical Research, 1993, 98: 20,555-20,571.
    6. Baskaran M. A search for the seasonal variability on the depositional fluxes of ~7Be and ~(210)Pb. Journal of Geophysical Research, 1995, 100: 2,833-2,840.
    7. Battle M, Bender M, Tans P P. Global carbon sinks and their variability, inferred from atmospheric O_2 and δ~(13)C. Science, 2000, 287:2,467-2,470.
    8. Bird M I et al. Carbon isotope indicators of catchment vegetation in the Brazilian Amazon. Global Biogeochem. Cycles, 1992, 6: 293-303.
    9. Bird M I, Chivas A R and Head J A. Latitudinal gradient in carbon turnover times in forest soils[J]. Nature, 1996, 381:143-146.
    10. Bloom A. Geomorphology: a systematic analysis of Late Cenozoic landforms. Simon Schuster, Englewood Cliffs. 1991.
    11. Boon P I and Bunn S E. Variations in the stable isotope composition of aquatic plants and their implications for food web analysis. Aquatic botany, 1994, 48: 99-108.
    12. Bousquet P P, Peylin P & Ciais C. Regional changes of CO_2 fluxes over land and oceans since 1980. Science, 2000, 290:1,342-1,346.
    
    
    13. Cai D L et al. Sources and transport of particulate organic carbon in the Amazon River and Estuary. Estuarine Coastal Shelf Sci., 1988, 26:1-14.
    14. Cauwet G. Distribution and behavior of organic and inorganic carbon in the Changjiang Esturary[A]. Yu G H et al. Proceedings of the International Symposium on Biogeochemical Study of the Changjiang Esturary and its Adjacent Coastal Waters of the East China Sea[C]. Beijing: China Sea Press, 1990,570-588.
    15. Collins A L & Willing D E, et al. Using ~(137)Cs measurement to quantify soil erosion and redistribution rates for areas under different land use in the upper Kaleya river basin, Southern Zambia, Geoderma, 2001,104:299-323
    16. Copper L W & Oslen C R et al. Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an arctic watershed. Water Resour. Res., 1991, 27: 2,171-2,179.
    17. Cosa D & Tremblay G. (1983) Major ions composition of the Lawrence River: Seasonal variability and fluxes. In: Degens E T, Kempe S and Soliman H. (Eds) Transport of Carbon and Minerals in Major World Rivers, Vol. 2. Mitt. Geol.-Pal(?)ont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd. 55, Universitat Hamburg, 253-259.
    18. CrowleyT J. Ice-age carbon. Nature, 1991, 352: 575-576.
    19. Crutzen P J & Ramanathan V. The Ascent of Atmospheric Sciences[J]. Science,2000, 290:299-304.
    20. Dacidson G R. The stable isotope composition and measurement of carbon in soil CO_2[J]. Geochemica et Cosmochemica Acta, 1995, 59: 2,485-2,489.
    21. Degens E T, Kempe S & Spitey A.Carbon dioxide: A biogeochemical portrait[A]. In: Hutzinger C O.ed. The handbook of environmental chemistry, vol. 1[C]. Berlin: Springer-verlag, 1984, 127-215.
    22. Degens E T. et al. Summary: Biogeochemistry of major world rivers. In: Degens E.T. eds, Biogeochemistry of Major World Rivers. New York: John Wiley, 1991. 323-347.
    23. Degens E T. In: Perspectives on Biogeochemistry (ed. Degens E T). Ch. 11,303-304 (Springer, New York, 1989).
    24. Devel A H.et al. Seasonal dynamics in methane emissions from the Amazon River floodplain to the troposphere. J.Geophys.Res., 1990,95:16,417-16,426.
    
    
    25. Druffel E R M, Williams P M, Bauer J E, et al. Cycling of dissolved and particulate organic matter in the open ocean. J Geophysical Research, 1992, 97: 15,639-15,659.
    26. Eddins Nikolova S.G. Calculation of terrestrial inputs to particulate organic carbon in an anthropogenically impacted estuary in the southeastern United States. Water, Air, and Soil Pollution, 2001,127: 227-241.
    27. Eglinton T I, Benitez Nelson BC, Pearson A, et al. Variability in radiocarbon ages of individual organic compounds from marine sediments. Science, 1997, 277: 796-799.
    29. Everett C B, et al. Determining the times and distances of particle transit in a mountain stream using fallout radionuclides. Geomorphology, 1999,27:75-92.
    30. Findlay S. et al. Variability and transport of suspended sediment, particulate and dissolved organic carbon in the tidal freshwater Hudson River. Biogeochemistry, 1991, 12:149-169.
    31. Gao Q Z, TAO Z & Shen C D et al. Riverine organic carbon in the Xijiang River (South China): seasonal variation in content and flux budget [J]. Environmental Geology, 2002,41:826-832.
    32. Goni M A. et al. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature, 1997, 389: 275-278.
    33. Guo L, Santschi P H & Cifuentes LA, et al. Cycling of high molecular weight dissolved organic matter in the Middle Atlantic Bight as revealed carbon isotopic (~(13)C and ~(14)C) signatures. Limnol. & Oceanogr. 1996, 41:1,242-1,252.
    34. Harrsion K. et al. A strategy for estimating the impact of CO_2 fertilization on soil carbon storage. Global Biogeochem. Cycles, 1993,7:69-80.
    35. He Q, Walling D E, et al. Calibration of a field-portable gamma detector to obtain in-situ measurements of the ~(137)Cs inventories of cultivated soils and floodplain sediments. Applied radiation and isotopes, 2000, 52:865-872
    36. Hedges J I & Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem., 1995, 49:81-115.
    37. Hedges J I & Parker P L. Land-derived organic matter in surface sediments from the Gulf of Mexico [J]. Geochim. et Cosmochim,Acta, 1976, 40:1,019-1,029.
    38. Hedges J I, Quay P D and Richey J E, et al. Composition and fluxes of particulate organic material in the Amazon River [J]. Limnol & Oceanogr., 1986, 31(4):
    
    717-738.
    39. Hedges J. I. et al. Organic carbon-14 in the Amazon River system. Science, 1986,231: 1129-1131.
    40. Hedges, J I, Keil, R G & Benner R. What happens to terrestrial organic matter in the ocean? Org. Geochem.,1997, 27: 195-212.
    41. Heimann M. Review of the global carbon cycle nowadays and the foresights of Arrhenius and global 100 years ago[J].AmbioHuman and Environments, 1997, 26: 17-24.
    42. Hellings L., et al. Origin and fate of organic carbon in the freshwater part of the Scheldt Estuary as traced by stable carbon isotope composition. Biogeochemistry, 1999, 47: 167-186.
    43. Houghton R A. Changes in storage of terrestrial carbon since 1859. In: Lal R, Kimbkle J, Leine E, et al eds. Soil and Global Change. Boca Raton: CRC Press, 1995.45-65.
    44. Hunt J M. The significance of carbon isotope variations in marine sediments[A]. Hobson G D. Advances in Organic Chemistry[C]. Oxford: Pergamon Press, 1970, 27-35.
    45. Kao S.J. et al. Particulate organic carbon export from a subtropical mountainous river in Taiwan. Limnol. Oceanogr., 1996, 41: 1,749-1,757.
    46. Keeling C D, Whorf T P, Wahlen M, et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 [J]. Nature, 1995, 375: 666-670.
    47. Keeling C D. Atmospheric CO_2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii. T.P. Whorf, and the Carbon Dioxide Research Group, Scripps Institution of Oceanography (SIO), University of California, June 13, 2002. http://cdiac.esd.ornl.gov/ftp/maunaloaco_2/maunaloa.co_2.
    48. Keil R G, Mayer L M, et al. Loss of organic matter from riverine particles in deltas. Geochem.et Cosmochim. Acta, 1997, 61(7): 1,507-1,511.
    49. Kempe, S. Impact of Aswan High Dam on water chemistry of the Nile. In: Degens, E. T., Kempe, S. and Soliman, H. (Eds) Transport of Carbon and Minerals in Major World Rivers, Pt. 2. Mitt. Geol.-Pal(?)ont. Inst. Univ. Hamburg, SCOPE/ UNEP Sonderbd. 1983, 55, 401~423.
    50. Kendall C. et al. Carbon and nitrogen isotopic compositions of particulate organic
    
    matter in four large river systems across the United States. Hydrol. Process. 2001,15: 1,301-1,346.
    51. Lasaga A C et al.地球化学过程动力学.科学出版社,1989,43-53.
    52. Libby W F. Radiocarbon Dating. Chicago: The University of Chicago press,1992.
    53. Lionel M, Claude Bernard. Relationship between soil ~(137)Cs inventories and chemical properties in a small intensively cropped watershed. Earth and planetary sciences, 1998,327:527-532.
    54. Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemistry Cycle. 1996,10(1):23-41.
    55. Mariotti A, Gadel F, Giresse P et al. Carbon isotope composition and geochemistry of particulate organic matter in the Congo River(Central Africa):Application to the study of Quaternary sediments off the mouth of the river[J].Chemical Geology (Isotope Geoscience Section), 1991, 86:345-357.
    56. Martinotti W. et al. C,N and their stable isotopes in suspended and sedimented matter from the Po Estuary(Italy).Water, Air and Soil Pollution,1997,99:325-332.
    57. Masiello C.A. et al. Carbon isotope geochemistry of the Santa Clara River. Global Biogeochem. Cycles, 2001, 15(2): 407-416.
    58. Megen L.et al. Chemical and isotopic characterization of particulate organic matter. 1997 http://www.cio.phys.rug.nl/HTML-docs/Verslag/97/OC-02.htm.
    59. Menzel R G. Transport of 90 Sr in runoff [J]. Science, 1960, 131: 26-31.
    60. Meybeck M et al. C, N, S, and P in rivers: from sources to global inputs. In: R. Wallast et al.[eds]. Interactions of C, N, P and S biogeochemical cycles and global change, Springer, 1993, 163.
    61. Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers. American Journal of Science, 1982, 282: 401-450.
    62. Meybeck M. Riverine transport of atmospheric carbon: sources, global typology, and budget. Water, air and soil pollution, 1993, 270: 195-212.
    63. Middelburg J. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Mar. Chem., 1998, 60: 217-225.
    64. Milliman J D, Xie Q C and Yang Z. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the Ocean[J]. American Journal of Science,
    
    1984, 284: 824-834.
    65. Milliman J D.现代沉积碳酸盐——海洋碳酸盐.北京:地质出版社,1978,138-155.
    66. Milton G M, Kramer S J et al. Qualitive estimates of soil disturbance in the Vicinity of CANDU station, utilizing measurements of ~(137)Cs and ~(210)Pb in soil core. Journal of Environmental radioactivity, 2001, 55:195-205.
    67. Mishima Y. et al. Deposition rates of terrestrial and marine organic carbon in the Osaka Bay, Seto Inland Sea, Japan, determined using carbon and nitrogen stable isotope ratios in the sediment. Journal of oceanography, 1999, 55:1-11.
    68. Montani S, Mishima Y and Okaichi T. Scavenging processes of marine particles in Osaka Bay. Marine pollution bulletin, 1991b, 23:107-111.
    69. Montani S. Y. et al. Distribution of organic carbon, organic nitrogen, total phosphorus and pheopigments in surface sediment from Osaka Bay, the Sero Inland Sea, Japan. Technical Bulletin of Faculty of Agriculture, Kagawa University, 1991a, 43: 77-87.
    70. Morgan R P C, Quinton J N, et al. The European soil erosion model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth surface processes and landform, 1998,23:527-544.
    71. Mulholland, P. J. et al. Marine Origin of Savannah River Estuary Sediments: Evidence from Radioactive and Stable Isotope Tracers. Estuarine, Coastal and Shelf Sci., 1992, 34, 95-107.
    72. N'Kounkou R.R. and Probst J.L. Hydrology and geochemistry of the Congo river system. In: Transport of carbon and minerals in major world rivers, 1987.
    73. Newman J. W. et al. Organic carbon isotope ratios in Quaternary cores from the Gulf of Mexico. Geochim. et Cosmochim. Acta, 1973, 37: 225-238.
    74. Nissenbaum A and Schallinger K M. The distribution of the stable carbon isotopes (~(13)C/~(12)C) in fractions of soil organic matter, Geoderma, 1974, 11: 137-145.
    75. Ogawa H.N. et al. Stable carbon isotope ratio of suspended particulate and sedimentary organic matter during the summer blooming in Tokyo Bay. Chikyukagaku, 1994, 28:21-36.
    76. Onstad G D. et al. Sources of particulate organic matter in rivers from the continental USA: Lignin phenol and stable carbon isotope compositions. Geochim. et Cosmochim. Acta, 2000, 64: 3,539-3,564.
    
    
    77. Ostrom N E.et al. Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of coastal cold ocean environment. Geochim. et Cosmochim. Acta, 1997, 61: 2,929-2,942.
    78. Palmer S.M. et al. Source of organic and inoganic carbon in a headwater stream: Evidence from carbon isotope studies. Biogeochemistry, 2001, 52:321-328.
    79. Paolo Porto, Willing D E, et al. Validating the use of caesium-137 measurements to estimate soil erosion rates in a small drainage basin in Calabria, South Italy. Journal of hydrology, 2001, (248): 93-108.
    80. Peters K E. et al. Correlation carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnol. & Oceanogr., 1978, 23: 598-604.
    81. Pocklington R & Tan F C. Seasonal and annual variations in the organic matter contributed by the St. Lawrence River to the Gulf of St. Lawrence [J]. Geochemica et. Cosmochemica Acta, 1987, 51: 2,579-2,586.
    82. Probst J L, Amiotte-Suchet P, Ludwig W. Continental erosion and river transports of carbon to oceans[J].Trends in Hydrology, 1994, 1: 453-468.
    83. Probst J L, Mortatti J, Tardy Y. Carbon river fluxes and weathering CO_2 consumption in Congo and Amazon river basins. Applied Geochemistry, 1994, 9(1): 1-13.
    84. Probst J L, Suchet P A. Fluvial suspended sediment transport and mechanical erosion in the Maghreb(North Africa). Hydrol Sci J, 1992, 37(6): 621-637.
    85. Quay P D.et al. Carbon cycling in the Amazon River: Implications from the ~(13)C composition of particulate and dissolved carbon. Limnol.& ceanogr. 1992, 37, 857-871.
    86. Rashid M A. et al. Organic matter in surficial sediments of the Miramichi estuary, New Brunswick, Canada. Estuarine and Coastal Marine Science, 1979, 8: 23-36.
    87. Raymond P and Bauer J. Use of ~(14)C and natural abundances for evaluating riverine, esturine, and coastal DOC and POC sources and cycling: a review and synthesis. Organic Geochemistry, 2001, 32: 469-485.
    88. Richey J E, Hedge J I, Dovel A H, et al. Biogeochemistry of carbon in the Amazon River[J]. Limnol. Oceanorg., 1990, 32(5): 352-371.
    89. Ritch J C, Mchenry J R et al. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J Environ. Qual. 1990, 19:215-233
    
    
    90. Rosenfeld J S. et al. Examination of the carbon base in southern Ontario streams using stable isotopes. Journal of the North American Benthological Society, 1992, 11: 1-10.
    91. Rounick J S. et al. Differential utilization of allochthonous and autochthonous inputs by aquatic invertebrates in some New Zealand streams: a stable carbon isotope study. Oikos, 1982, 39:191-198.
    92. Sackett W M & Thompson R. R. Isotopic organic carbon composition of recent continental derived clastic sediments of eastern gulf coast, Gulf of Mexico[J]. Bull. Am. Assoc. Petrol. Geol. 1963, 47: 525-531.
    93. Sackett W M. The depositional history and isotopic organic carbon composition of marine sediments [J]. Mar. Geol. 1964, 2: 173-185.
    94. Santschi P H. Radioisotopes in aquatic science. EAWAG/News, 1983,14/15:1-6.
    95. Santschi P H. Radionuclides as tracers for sedimentation and remobilization processes in the ocean and on lakes. In: Sly P G, ed. Sediments and water interactions. New York: Springer-Verlag, 1986,437-449
    96. Schelske C L. et al. Using carbon isotope of bulk sedimentary organic matter to reconstruct the history of nutrient lading eutrophication in Lake Erie. Limnol.& Oceanogr., 1995, 40: 918-929.
    97. Schlesinger W H. Biogeochemistry: An analysis of global change. Academic Press, New York 1991.
    98. Schuler C, Wieland E, et al. A multitracer study of radionuclides in Lake Zurich, Switzerland, 1, Comparison of atmospheric and sedimentary flux of ~7Be、~(10)Be、 ~(210)Pb、~(210)Po and ~(137)Cs. Journal of Geophysical Research, 1991, 96(C9):17,051-17,065
    99. Shukla J C et al. Amazon deforestation and climate change. Science, 1990, 247: 1,322-1,325.
    100. Silverman, S R. and Epstein S. Carbon isotope compositions of petroleum and other sedimentary organic materials: Am. Assoc. Petroleum Geologists Bull., 1958, 42: 998-1012.
    101. Smith B N and Epstein S. Two categories of ~(13)C/~(12)C ratios for plants, Plant Physiol., 1971, 47: 380-384.
    102. Stuiver M and Polach H A. Discussion: reporting of ~(14)C data. Radiocarbon, 1977, 19: 355-363.
    
    
    103. Sweeney R E. et al. Natural abundences of ~(15)N as a source indicator for nearshore marine sedimentary and dissolved nitrogen. Mar. Chem., 1980, 9: 81-94.
    104. Tan F C, Cai D L and Edmond J M. Carbon isotope geochemistry of the Changjiang Estury[J]. Estuaine, Coastal and Shelf Science, 1991, 32(4): 395-403.
    105. Telang S A., Pocklington, R., Naidu, A. S., Romankevich, E. A., Gitelson, I.I. and Gladyshev, M. I. (1990) Carbon and mineral transport in major North American, Russian arctic, and Siberian rivers: the St Lawrence, the Mackenzie, the Yukon, the arctic Alaskan rivers, the arctic basin rivers in the Soviet Union, and the Yenisei. In: Degens, E. T., Kempe, S. and Richey, J. (Eds) Biogeochemistry of Major World Rivers. SCOPE Report 42, John Wiley & Sons, Chichester, 75-104.
    106. Thurman E M. Organic geochemistry of natural waters United States Geological Survey, Denver, Colorado, USA. 1985.
    107. VandenBygaart A J. Erosion and deposition history derived by depth-stratigraphy of ~(137)Cs and soiol organic carbon. Soil and tillage research, 2001 (61): 187-192
    108. Wada, E Y. et al. ~(13)C and ~(15)N abundance of sedimentary organic matter in estuarine areas of Tokyo Bay. Mass Spectroscopy, 1990, 38: 307-318.
    109. Wang X C, Druffel E RM. Radiocarbon and stable carbon isotope composition of organic compound classes in sediments from the NE Pacific and Southern Ocean. Marine Chemistry, 2001,73:65-81.
    110. Wang X C, Druffel ERM, Griffin S et al. Radiocarbon studies of organic compound classes in plankton organic matter and sediment in the deep Northeast Pacific Ocean. Geophysical Research Letters, 1996, 23: 3,583-3,586.
    111. Williams P M, Druffel E R M. Radiocarbon in the dissolved organic matter in central north Pacific Ocean. Nature, 1987, 330: 246-248.
    112. Winterbourn M J. et al. Patterns of carbon resource utilization by benthic invertebrates in two British river systems: a stable carbon isotope study. Archives of Hydrobiology, 1986, 107:349-361.
    113. Wiranatha A S, Rose C W et al. A comparison using the caesium-137 technique of the relative importance of cultivation and overland flow on soil erosion in a steep semi-tropical. Aust. J soil Res., 2001, 39:219-238
    
    
    114. Wollast R, ed. Interactions of C, N, ponds biogeochemical cycles and global change. Berlin: Springer, 1993.
    115. Yoshii K. Stable isotope analyses of benthic organisms in Lake Baikal. Hydrobiologia, 1999, 411: 145-159.
    116. Zhang S, Gan W B & Ittekkot V. Organic matter in large turbid rivers: Huanghe and its estuary. Marine Chemistry, 1992, 38(1/2): 67-75.
    117.《珠江志》编纂委员会.《珠江志》.第一卷.广州:广东科技出版社,1991.150.
    118.蔡德陵,Tan F C.长江口区有机碳同位素地球化学[J].地球化学,1992,21(3):305-311.
    119.蔡德陵,蔡爱智.黄河口区有机碳同位素地球化学[J].中国科学(B辑),1993,23(10):1105-1113.
    120.仇士华,陈铁梅,蔡莲珍.中国~(14)C年代学研究.北京:科学出版社,1990.
    121.高全洲,沈承德,孙彦敏等.珠江流域的化学侵蚀[J].地球化学,2001,31(3):223-230.
    122.高全洲,沈承德,孙彦敏等.珠江马口站、河口站断面水体有机碳含量的季节变化[J].地球化学,1999,28(3):273-280.
    123.高全洲,沈承德,孙彦敏等.西江流域的有机碳侵蚀通量.沉积学报,2000,18(4):639-645.
    124.李美荣.气候变化与C_4植物资源.资源开发[A],全球变化与持续发展(中国科学技术学会第二界青年学术论文集.资源与环境科学分册)[C].北京:中国科学技术出版社,1995,291-294.
    125.梁宝鎏,Stokes MJ.香港地区环境~(14)C水平研究.地球化学,1995,24(增刊):115-118.
    126.林植芳,郭俊彦,广东的C_4和CAM植物[A].中国科学院华南植物研究所集刊,1986,2:171-178.
    127.刘秉正,吴发启.土壤侵蚀[M].西安:陕西人民出版社,1997
    128.沈承德,刘东生,彭少麟等.鼎湖山自然保护区森林土壤~(14)C测定及~(14)C示踪初步研究[J].科学通报,1998,43(16):1775-1780
    129.沈承德,易惟熙,孙彦敏等,鼎湖山森林土壤~(14)C表观年龄及δ~(13)C分布特征[J].第四纪研究,2000,20(4):335-344.
    130.沈承德,孙彦敏,易惟熙等.退化森林生态系统恢复过程的碳同位素示踪[J].第四纪研究,2001,21(5):425-460.
    131.邢长平,沈承德,孙彦敏等.鼎湖山亚热带森林土壤有机质~(14)C年龄初步研
    
    究[J].地球化学,1998,27(5):493-499.
    132.施光春.长江口悬浮POC的稳定同位素[J].海洋通报,1993,12(1):49-53,
    133.王礼先.水土保持学[M].北京:中国林业出版社,1995.
    134.王永吉,吕厚远,王国安等.C_3,C4植物和现代土壤中硅酸体碳同位素分析[J].科学通报,2000,45(9):978-982.
    135.魏秀国,沈承德,孙彦敏等.河流、河口沉积物中碳同位素研究[J].自然科学进展,2002,12(11):1,135-1,139.
    136.徐嵩龄,方精云等.黄河水系对流域碳分布的影响[J].生态学报,1995,15(3):287-295.
    137.杨明义,田均良等.用~(137)Cs法研究农耕地坡面土壤侵蚀空间分布特征初报[J].水土保持研究,1997,4(2):96-112
    138.庄亚辉.全球生物地球化学循环研究的进展[J].地学前缘,1997,(4):1-2.
    139.广东省东江流域综合治理开发研究协作组.广东省东江流域综合治理开发专题研究.海洋出版社,1993.
    140.李定强等.水土保持与可持续发展理论与实践.广东省地图出版社,1998.
    141.李定强,王继增等.广东省典型水土流失区水土保持生态建设研究(1987-2002).广东省生态环境与土壤研究所研究报告,
    142.刘良悟,茅昂江.我国土壤放射性碳年龄.土壤学报,2001,38(4):506-513.
    143.邓南荣等.广东省东江流域土壤侵蚀空间分布特征研究.中国水土保持,1999,(5):21-24.
    145.韩舞鹰等.珠江口的碳通量和碳循环.海洋学报,1992,14(1):56-63.
    146.中华人民共和国水利部.中华人民共和国水利部水文统计年鉴珠江流域水文资料,1959-1984.
    147.贵州省统计局.贵州统计年鉴.中国统计出版社,2001:413.
    148.湖南省统计局.湖南统计年鉴.中国统计出版社,2001:400-401.
    149.广东省统计局.广东统计年鉴.中国统计出版社,2001:100.
    150.广西省统计局.广西统计年鉴.中国统计出版社,2001:28.
    151.江西省统计局.江西统计年鉴.中国统计出版社,2001:520-525.
    152.云南省统计局.云南统计年鉴.中国统计出版社,2001:26.
    153.安和平,周家维.贵州南、北盘江流域土壤侵蚀现状及防治对策.水土保持学报,1994,8(3):36-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700