废弃亚三角洲岸滩泥沙运动和剖面塑造过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1976年黄河入海尾间由刁口河改道清水沟流路后,因泥沙供给严重匮乏致使黄河三角洲北部岸滩进入快速的侵蚀与后退状态。该域分布的大量油田亦为此而造成重大的经济损失,海岸防护工程受到破坏,相应的土地盐碱化等问题也日趋严峻。本文以多年重复测量的海岸剖面、2004年4月研究大潮期间实测水文、悬沙和表层沉积物以及30m深柱状样资料为基础,利用机制分解法、EOF以及BP神经网络等技术手段,分别从动力作用、沉积物抗冲性以及剖面形态方面探讨黄河三角洲北部岸滩的强烈侵蚀和剖面塑造机理,同时针对不同冲淤状态的剖面变化趋势进行预测。主要结论包括:
     (1)黄河三角洲北部海域的波、流动力特征为:(a)由海向陆摩阻流速逐渐减小,在横向上呈线性分布,其中在研究水深范围内最大潮流摩阻流速为1.3-2.7cm/s,潮平均摩阻流速仅在0.8-1.8 cm/s,潮流的分布与摩阻流速相似;(b)波浪摩阻流速横向分布从深水向浅水逐渐增大,进入波浪破波带摩阻流速陡增;当波高小于0.5m摩阻流速不超过2.5cm/s,而波高大于4m的来波可导致摩阻流速峰值超过20cm/s;(c)地形因素对波浪传播衰减过程作用明显,坡度越缓,消耗波浪能量愈多。因此,相同来波条件下波浪摩阻流速研究东侧大西侧小;相同剖面1976年后波浪摩阻流速逐渐变小。
     (2)含沙量变化与流速相关,高含沙量出现时刻滞后于高流速出现时刻约1小时。研究水域高含沙量特征主要来源于本地局部泥沙再悬浮,悬沙以高含沙量水团形式从床底向上扩散,5m水深左右出现高能再悬浮环境。海沉积物的分布特征主要是:实测表层沉积物以粉砂为主,整体上从岸向海,粒径逐渐变小,分选性变差直至10m水深转为变好趋势。海床表层沉积物可以分为3个,近岸无潮沟岸段沉积物颗粒组成较粗,目前具有一定的抗冲能力;有潮沟岸段,沉积物组成粗细混合,以粉砂质粘土为主,分选较差,目前抗冲能力较弱;大于10m水深的深水,沉积物组成相对较细。
     (3)海岸剖面变化特征:行水期淤积中心分布在入海尾间外,致使1976年后近岸强侵蚀与淤积对应,侵蚀强度东强西弱,剖面经历了快速侵蚀、波动调整和二次侵蚀期3个阶段。据此提出可反映剖面淤蚀和形态变化特征的形态参数A和F。当剖面变化越剧烈,形态参数变化越明显。依据参数A和F变化和剖面塑造等特征,可将研究剖面分为三类,一是动态平衡型:建设期参数A变化率为1.20-1.26,参数F为1.19-1.38,剖面整体淤涨,形态上经三角洲浅水缓坡后呈上凹形直接向平坦海床过渡,缺少前缘斜坡段;1976年后主要是浅水蚀退,整体变化微小;二是强淤弱蚀型:剖面由浅水缓坡、前缘斜坡和平坦海床构成,建设期参数A和F变化率分别为1.39~1.46和1.59~1.80;1976年黄河改道后,该剖面参数A和F变化率分别为0.84~0.87和0.66~0.71,剖面形态由“S”型向直线型转变,剖面在浅水表现为侵蚀状态;三是弱淤强蚀型:以1976年为节点,在1976年前剖面形态参数A和F的变化率分别介于1.07-1.29和1.16~1.46范围,剖面亦由浅水缓坡、前缘斜坡和平坦海床构成,但三角洲前缘段分布较广;1976年后,参数A和F的变化率分别为0.56~0.67和0.45~0.67,剖面除在三角洲前缘斜坡与平坦海床过渡段略有淤积外,剖面蚀退集中在三角洲前缘斜坡段。
     (4)强侵蚀型剖面蚀退塑造机理:海沉积物和动力因素的变化对剖面蚀退起决定作用。首先,三角洲废弃初期的高含水率、结构松散的沉积物抗冲性极差,加上波状地形易被夷平,废弃初期仅在潮流作用下岸滩就能发生快速蚀退;其次,松散沉积物消耗殆尽后,波流共同作用成为岸滩演变的动力,波浪主要起掀沙作用,潮流主要输运扩散泥沙作用。这主要体现在沉积物因筛选、以及埋深沉积物受到压实作用而抗冲性增强,波流共同作用的底部摩阻流速从废弃伊始逐渐减小,故剖面蚀退速度发生下降。最后,黄河入海尾闾的频繁摆动,导致河口坝和河口坝侧海湾出现不同沉积环境下的沉积体,其抗冲性不同,造成蚀退期间不同时期内(1985~1989年)蚀退速度迥异。
     (5)剖面变化的短期预测:EOF时空分解前2个特征函数可以较好的概括剖面变化特征,其中两个特征函数分别表征浅水和深水的变化。CS1-CS5剖面的第一特征函数主要表征深水变化,第二特征函数主要表征浅水变化;CS6-CS8剖面则相反。表征深水变化的特征函数表征潮流作用,而表征浅水变化的特征函数表征波浪作用。从研究西侧到东侧,潮流作用占优势逐渐转变为波浪作用为主导。利用对EOF时空分解的时间函数的预测,可达到剖面的短期预测。此外,利用BP神经网络对剖面空间相和时间相分别进行预测,其中对于逐年变化存在趋势变化的剖面预测有较好的效果。
     (6)不同水文学方法技术的利用:传统水文学方法和国家规范方法在分析近海潮流数据时,垂线平均特征值误差在8%以下,计算潮周期单宽通量时,误差可忽略不计;究其物理意义,传统水文学方法处理数据结果适用讨论水动力和沉积物相互作用,国家规范方法在分析潮流、悬沙净通量时,其数值和角度更加可信。
Since terminal reach of the Yellow River shifted from Diaokouhe channel to the Qingshuigou channel in 1976, the northern Yellow River Delta had been rapidly eroded owing to the lack of the sediment supply. Thereafter, many oil wells of the Shengli Oil Field located in Yellow River Delta had been seriously destroyed for the coastline retreat, which was a result of directly great economic loss. Moreover, the coastal engineerings were also damaged, and the area of coastal wetland reduced constantly, soil salinizaion aggravated and the ecological function of the littoral zone is weakened. Thus, the data including the repeatly measured coastal profiles lasted several decades, hydrology, suspended sediment, surficial sediments and a core sample of 30 m depth were obtained form the study area in the April 2004. Subsequently, from the view point of dynamics, the sediment resistance and the changes of the coastal profiles, respectively, these data were analyzed by using the mechanism analyses, empirical orthogonal function (EOF) and BP artificial neural network to discusse the mechanism of the intense erosion and profiles shaping processes of the northern Yellow River Delta. In addition, the changes of the different profile types were also predicted. The conclusions were shown as follows:
    (1) The characteristics of the flow and wave located at the nearshore zone of the northern Yellow River Delta: (a) the friction velocity of tidal flow gradually decreases landward and the curve of the friction velocity of tidal flow vs spatial distance was appeared as a linear distribution with a maxmum value range of 1.3~2.7cm/s and the average value range of 0.8~1.8 cm/s. In addition, the characteristic of the tidal flow is similar to that of the friction velocity; (b) the friction velocity of wave increases landward with sharply strengthened trends in the wave broken zone. The value of the wave friction velocity with a wave height below 0.5m could not exceed 2.5cm/s, and the maximum wave friction velocity with a wave height over 4 m could exceed 20cm/s; (c) the process of wave propagation is strongly influenced by the topographical factors.
    (2) Closely correlation between the sediment concentration and flow velocity: the lagged phase for the high sediment concentration to the high flow velocity is about 1 hour owing to the sediment resuspended. The spreaded models for the suspended sediment is that the water body with high sediment concentration is upwards from the bottom.,and the high energy resuspending environment located at about the area of 5m depth. Moreover, Most of the surficial sediments consist of silt.The trend of the medium grain size (D_(50)) is diminished, and sorting coefficient is poor from the bank to seaeard area of below 10 m isobaths. The values of the sorting coefficient become well at area of over 10 m isobath. The deposition in the present sdudy area could be divided into 3 zones: The composition of the sediment grain size is rather coarse in the nearshore without tidal creeks and fine in the nearshore with tidal creeks; and the characristic of the sorting is worse and the composition of the grain-size is fine in the study area of over 10 m water depth.
    (3) Deposition centre located at outside of river mouth before1976, and the strong erosion area
    occurred in the same area after 1976. The degree of the erosion is strong in the eastern and weak in the western. Since the northern Yellow River delta was abandoned. The changes of the coastal profiles experienced three periods which could be termed as 'rapid erosion - slow eroding modulate - fluctuate triggering change'. The shape parameter A and F may be suggested to reflect the shape change of the profiles. The changes of the profiles were rather obvious when the the value of the shape parameter had a distinct changed trends. Based on the profile shape parameter and developing characteristics, the profiles could be divided into 3 types as follows: (a) the dynamic equilibrium type: change rate of the parameter A is 1.20~1.26 and parameter F is 1.19-1.38. The siltup was occurred around the profile with a concave appeareance located at the seawards of shallow water where the delta front slope was un-developed; In addition, although minor erosion was happed in the shallow water, the appeareance of the profile was stable after 1976; (b) the strong silting and weak erosion type: The profile consist of delta platform, delta front slope and pro-delta shelf. The change rates of parameter A and F are 1.39~1.46 and 1.59-1.80 respectively before 1976. After terminal reach shifted in 1976, change rates of parameter A and F are 0.84~1.87 and 0.66~1.71, respectively. The changed trend of the profile configuration was from the symbol "S" to a linetype. However, it is strong erosion in the shallow water; (c) the weak silting and strong erosion type: Taking the year 1976 as the node, before 1976 change rates of parameter A and F are 1.07~1.29 and 1.16~1.46 respectively. It also has the three parts that were delta platform, delta front slope and pro-delta shelf, and the delta front slope is the broad. After 1976, Change rates of parameter A and F are 0.56~1.67 and 0.45~1.67 respectively. This types of the profile has minor accretion coccured in the transition between the the delta frnt slope and sea bed, and erosion focused on the delta front slope.
    (4) The developed mechanism of strong erosion type profile: The development characteristic of topographical is decided by hydrodynamic force and sediment factor. Firstly, during the initiative abandoned stage, the weak sediment resistance of newly incompact deposition and the fluctuant coast line are the main reasons for erosion and retreation of the profile with a high speed. Secondly, the main erosion action force was changed from tidal to co-action of tidal and wave after the newly incompact deposition disappeared. The wave plays a role of lifting the sand, and the flow transports sediment mainly. The frition velocity of co-action of wave and flow reduced gradually after 1976; Due to the effect of the sorting and compaction, the retreating speed of the profile was slow down. Finally, due to the frequently swing of terminal reach of the Yellow River, the sea region experienced the two sedimentary environments that are mouth bar type and side bay type of mouth bar, which has different sediment resistance and different erosion rate during the different periods (1985~1989).
    (5) The prediction of profile change in the short-time period. The first and second eigenfunctions of EOF could explain the main change characteristic, one shows the changes of the shallow water zone and the another shows deep water zone. The first eigenfunction of profiles CS1-CS5 could reflect the changes in the deep water zone, the second eigenfunction reflect the changes of shallow water zone profiles CS6~CS8 are opposite. The eigenfunction that
    shows the deep water zone represents the tidal action; the eigenfunction that shows shallow water zone represents the wave action. From profile CS1 to CS8, the change of the dominant actions is transferred from tidal flow to wave gradually. By EOF method, the development of profiles in the short term could be forcasted. Moreover, BP artificial neural network is used to predict the development of space phase and time phase seperately. The results show that the BP artificial neural network method can be applied to predict the changes of the profile while the changed trend of the profile is obvious.
    (6) The differences between analysis methods of hydrology. The vertical average characteristic value error between nation criterion and traditional hydrology method is below 8%; while calculating per wide flux of tide period, the error could be ignored. The traditional hydrology method is availiable to deal with interaction of water dynamic force and sediment, and the nation criterion method could be adapt to analyse the tidal flow and direction of net flux.
引文
Antunes DC, Seabra-Santos FJ. 2002. Near-shore sediment dynamics computation under the combined effects of waves and currents: Elsevier Science: 37-48
    
    Bruun P. 1954. Coast erosion and the development of beach profiles. Beach erosion Board.Technical Memoranum, 44
    
    Budetta P., Galietta G, and Santo A. 2000. A methodology for the study of the relation between coastal cliff erosion and the mechanical strength of soils and rock masses: Elsevier Science: 243-256
    
    Coleman, J.M., Gagliano, S.M. 1964. Cyclic sedimentation in the Mississippi River deltaic plain. Gulf Coast Association of Geological Societies Transactions, 14, 67-80.
    
    Fisk, N.H. 1944. Geological investigation of the alluvial valley of the lower Mississippi River. Technical Report, Mississippi River Committee, Vicksburg, Mississippi.
    
    Frihy, O.E., Komar, P.D., 1993. Long-term shoreline changes and theconcentration of heavy minerals in beach sands ofthe Nile Delta, Egypt. Mar. Geol. 115, 253-261.
    
    Gao Shu. 1998. Equilibrium Coastal Profiles: I review and synthesis, Chinese Journal of Oceanology and Limnology, 01.16, No.2: 97-107
    
    Gao Shu. 1998. Equilibrium Coastal Profiles: II evidence from eof analysis, Vol.16, No.3: 193-205
    
    John Pethick, 2001. Coastal management and sea-level rise. Catena, 42:307-322
    
    Jones A.T., Mader C.L. 1996. Wave erosion on the southeastern coast of Australia: tsunami propagation modeling Australian Journal of Earth Sciences, 43(4): 479-483.
    
    Jonsson I.G. 1996. Wave boundary layers and friction factors, Process of 10th Conference of coastal Engineering, 127-148
    
    Mark R. Byrnes, and Matteson W. Hiland, 1995. Large-scale sediment transport patterns on the continental shelf and influence on shoreline response St. Andrew Sound, Georgia to Nassau Sound, Florida, USA. Marine Geology, 12, 6: 19-43
    
    Postma, H. 1967. Sediment transport and sedimentation in the marine environment. Lauff G H ( ed): Estuaries. Amer. Assoc. Advanc. Sci. publ. 83, Washington, 158-179
    
    Shi Changxing, Zhang David Dian, You Lianyuan, 2003. Sediment budget of the Yellow River delta, China: the importance of dry bulk density and implications to understanding of sediment dispersal, Marine Geology, 199:13-25
    
    Thampanya, U., Vermaat, J.E., Sinsakul, S., et al. 2006. Coastal erosion and mangrove progradation of Southern Thailand, Estuarine, Coastal and Shelf Science Volume: 68, Issue: 1-2, June: 75-85
    
    Winant, C.D., Inman,D.L. and Nordstrom,C.E. 1975. Description of seasonal beach changes using empirical eigenfunctions. Journal of Geophysical Research, 80(15): 1979-1986
    
    Ying Ming, Li Jiufa and Li Weihua et al, 2005. The study on Profile Shaping Process of Northern Yellow River Delta Coast, IGARSS 2005: 2005 IEEE International Geoscience and Remote Sensing Symposium proceedings: 25-29 July 2005, Seoul, Korea: 5404-5407
    
    Yuksek, O., Onsoy, H.; Birben, A. R., et. al., 1996. Coastal erosion in eastern Black Sea region, Turkey, Oceanographic Literature Review Volume: 43, Issue: 9, September: 954
    
    Zhang, Yong, Swift, Donald J.P., Yu Zhiying et. al. 1998. Modeling of coastal profile evolution on the abandoned delta of the Huanghe River, Marine Geology Volume: 145, Issue: 1-2, February: 133-148
    包四林,2005,潮汐海岸等深线变化模式的应用开发,海洋学报,27(4):76-81
    曹文洪,舒安平,1999,潮流和波浪作用下悬移质挟沙能力研究述评,泥沙研究,05:74-80
    曹祖德,唐士芳,李蓓,1991,波、流共存时的床面剪切力,水道港口,22(2):56-60
    陈才俊,1991,江苏淤涨型淤泥质潮滩的剖面发育,海洋与湖沼,22(4):360-367
    陈吉余,王宝灿,虞志英,1989,中国海岸发育过程和演变规律,上海:上海科学技术出版社:81-119
    陈吉余,王宝灿,1989,渤海湾淤泥质海岸(海河口-黄河口)剖面的塑造过程,陈吉余,王宝灿,虞志英等,中国海岸发育过程和演变规律,上海:上海科学技术出版社:221-237
    陈沈良,张国安,谷国传,2004,黄河三角洲海岸强侵蚀机理及治理对策,水利学报,7:1-7
    陈沈良,张国安,陈小英等,2005,黄河三角洲飞雁滩海岸的侵蚀及机理,海洋地质与第四纪地质,25(3):9-14
    陈西庆,陈吉余,1998,长江三角洲海岸剖面闭合深度的研究——Bruun法则及其应用的基本问题,地理学报,53(4):323-331
    陈小英,陈沈良,于洪军等,2005,黄河三角洲海岸剖面类型与演变规律,海洋科学进展,23(4):438-445
    陈子燊,1996,波控弧形海湾近岸平衡剖面特征分析.热带海洋,15(1):17-23
    陈子燊,1999,波控呷间海岸平衡剖面形态及其地形学意义南海研究与开发,1:5-11
    成国栋,1991,黄河三角洲现代沉积作用及模式,北京:地质出版社
    戴志军,陈子集,张清凌,2001,呷间海滩剖面短期变化过程分析,热带地理,21(3):266-269
    丁东,董万,1988,现代黄河三角洲蚀退作用的初步研究,海洋地质与第四纪地质,8(3):53-60
    丁东,李绍全,任于灿等,1994,黄河三角洲及邻风暴潮沉积特征.海洋地质动态,11:1-3
    丁东,任于灿,李绍全等,1995,黄河三角洲及邻的风暴潮沉积,海洋地质与第四纪地质,15(3):25-33
    丁东,尹延鸿,2000,黄河三角洲海岸防护工程研究,海洋地质动态,16(2):5-8
    董年虎,黄河入海泥沙的淤积与扩散,海洋工程,1997,15(2):59-64
    樊社军,虞志英,金镠,1997,海州湾淤泥质海滩剖面堆积过程的计算模式,海洋与湖沼,28(4):411-418
    樊社军,虞志英,金镠,1997,淤泥质海滩侵蚀堆积动力机制及剖面模式——以连云港地淤泥质海岸为例Ⅰ.波浪和潮流,海洋学报,19(3):66-76
    樊社军,虞志英,金镠,1997,淤泥质海滩侵蚀堆积动力机制及剖面模式——以连云港地淤泥质海岸为例Ⅱ.泥沙运动和岸滩剖面演变模式,海洋学报,19(3):77-85
    范顺挺,王以谋,1999,黄河口海域特征波浪要素比的分析,海洋预报,16(1):21-28
    丰爱平,夏东兴,2003,海岸侵蚀灾情分级,海岸工程,22(2):60-66
    逢自安,1980,浙江港淤泥质海岸剖面若干特性,海洋科学,2:9-14
    耿秀山,张耆年,傅命佐等,1988,黄河口海港冲淤变化的定量分析与评价,海洋学报,10(6):712-719
    郝琰,乐肯堂,刘兴泉,2000,黄河三角洲海2010年潮波分布特征的数值预测,海 洋科学,24(6):43-47
    贺松林,1989,淤泥质潮滩剖面塑造的探讨,中国海岸发育过程和演变规律,上海科学技术出版社:74-80
    胡春宏,曹文洪,2003,黄河口水沙变异与调控Ⅰ——黄河口水沙运动与演变基本规律,泥沙研究,5:1-8
    胡一三主编,1996,中国江河防洪丛书黄河卷,北京:中国水利水电出版社
    黄海军,李成治,郭建军,1994,卫星影像在黄河三角洲岸线变化研究中的应用,海洋地质与第四纪地质,14(2):29-37
    黄世光,1993,套尔河湾海域泥沙冲淤特征——兼论黄河改道后三角洲的冲淤演化,海洋与湖沼,24(2):197-204
    季子修,蒋目巽,朱季文等,1993,海平面上升对长江三角洲和苏北滨海平原海岸侵蚀的可能影响.地理学报 48(6):516-526
    季子修,1996,中国海岸侵蚀特点及侵蚀加剧原因分析,自然灾害学报,5(2):65-75
    金庆祥,劳治声,龚敏等,1989,应用经验特征函数分析杭州湾北岸金汇港泥质潮滩随时间的波动,中国海岸发育过程和演变规律,上海:上海科学技术出版社:161-167
    李安龙,李广雪,曹立华等,2004,黄河三角洲废弃叶瓣海岸侵蚀与岸线演化,地理学报,59(5):731-737
    李从先,王平,范代读等,2000,布容法则及其在中国海岸上的应用,海洋地质与第四纪地质,01:87-91
    李殿魁,杨作升,孙效功等,2002,延长黄河口清水沟流路行水年限的研究,郑州:黄河水利出版社:113-199
    李东风,李泽刚,张青玉,1998,清水沟北汊流路入海泥沙对东营港影响的数值分析,黄渤海海洋,16(1):1-6
    李福林,庞家珍,姜明星,2000,黄河三角洲海岸线变化及其环境地质效应,海洋地质与第四纪地质,20(4):17-21
    李福林,庞家珍,姜明星等,2001,黄河清水沟流路水沙组合和河口三角洲发育的宏观特性,海洋学报,23(1):52-60
    李国胜,王海龙,董超,2005,黄河入海泥沙输运及沉积过程的数值模拟,地理学报,60(5):707-716
    李恒鹏,杨桂山,2001,基于GIS的淤泥质潮滩侵蚀堆积空间分析,地理学报,56(3):278-286
    李恒鹏,2001,长江三角洲海平面上升海岸主要响应过程与海岸易损性研究,博士学位论文
    李九发,1990,长江河口南汇潮滩泥沙输移规律探讨,海洋学报,12(1):75-82
    李希宁,刘曙光,李从先,2001,黄河三角洲冲淤平衡的来沙量临界值分析,人民黄河,23(3):20-21
    李谊纯,孙效功,李瑞杰等,2003,黄河三角洲洪、枯季泥沙冲淤的数值模拟,青岛海洋大学学报,33(2):281-286
    刘曙光,李从先,丁坚等,2001,黄河三角洲整体冲淤平衡及其地质意义,海洋地质与第四纪地质,21(4):13-17
    刘勇,李广雪,邓声贵等,2002,黄河废弃三角洲海底冲淤演变规律研究,海洋地质与第四纪地质,22(3):27-34
    鹿洪友,李广雪,2003,黄河三角洲埕岛地近年海底冲淤规律及水深预测,长安大学学报(地球科学版),25(1):57-61
    仁于灿、周永青,1994,废弃的黄河三角洲的地貌结构特征及演化,海洋地质与第四纪地质,14(2):19-28
    阮成江,谢庆良,徐进,2000,中国海岸侵蚀及防治对策,水土保持学报,1:44-47
    时连强,李九发,应铭等,2006,现代黄河三角洲潮滩原状沉积物冲刷试验,海洋工程,24(1):46-54
    司书亨,张广泉,1985,黄河三角洲海水深变化及深水港选位的设想,海岸工程,4(1)
    宋红霞,刘红珍,汪习文等,2000,黄河河口三角洲风暴潮灾害特点及其预防对策,海岸工程,4:70-74
    宋立松,余祈文,2003,杭州湾悬沙净输移机制探讨,泥沙研究,3:48-52
    万新宁,李九发,何青等,2002,国内外河口悬沙通量研究进展,地球科发展,17(6):864-870
    王爱华,业治铮,1990,现代黄河三角洲的结构、发育过程和形成模式,海洋地质与第四纪地质,10(1):1-12
    王艳红,张忍顺,吴德安等,2003,淤泥质海岸形态的演变及形成机制,海洋工程,21(2):65-70
    闻新,周露,王丹力等,2001,Matlab神经应用设计,北京:科学出版社
    吴世迎,臧启运,1997,胜利油田部分岸段岸滩演化和防护问题,黄渤海海洋,04:14-22
    吴宋仁,2000,海岸动力学,北京:人民交通出版社
    向为华,李九发,徐海根等,2003,上海市南汇南滩近期演变特征分析,华东师范大学学报(自然科学版),3:49-55
    严恺,2002,海岸工程,北京,海洋出版社:129
    杨桂山,施雅风,季子修,2002,江苏淤泥质潮滩对海平面变化的形态相应,地理学报,57(1):76-84
    杨世伦,2003,海洋环境和地貌过程导论,北京:海洋出版社:156
    杨世伦,谢文辉,朱骏等,2001,大河口潮滩地貌动力过程的研究——以长江口为例,地理学与国土资源,17(3):44-48
    杨世伦,1997,长江三角洲潮滩季节性冲淤循环的多因子分析,地理学报,52(2):123-130
    叶青超,1982,黄河三角洲的地貌结构及发育模式,地理学报,37(4):349-363
    叶青超,1994,黄河流域环境演变与水沙运行规律研究,济南:山东科学技术出版社
    尹延鸿,2003,现代黄河三角洲海岸的冲淤及造陆速率,海洋地质动态,07:13-19
    印萍,吕京福,夏东兴,2001,海滩均衡剖面的概念及相关问题的讨论——以日照实测海滩剖面为例,黄渤海海洋,02:39-45
    虞志英,金镠,陈德昌等,1986,连云港吹泥岸滩自然冲淤及吹泥条件下海滩演变的观测分析,海洋与湖沼,17(4):351-365
    虞志英,张国安,金镠等,2002,波流共同作用下废黄河河口水下三角洲地形演变预测模式,海洋与湖沼,33(6):583-590
    恽才兴,1988,长江河口潮滩冲淤和滩潮泥沙交换,陈吉余,沈焕庭,恽才兴等,长江河口动力过程和地貌演变,上海:上海科学技术出版社:229-236
    张忍顺,陆丽云,王艳红,2002,江苏海岸侵蚀过程及其趋势,地理研究,21(4):469-478
    张士华,邓声贵,2004,黄河水下三角洲沉积物输运及海底冲淤研究,海洋科学进展,2:194-192
    张世奇,1990,黄河口输沙及冲淤变形计算研究,水利学报,1:23-33
    赵庚星,张万清,李玉环等,1999,GIS支持下的黄河口近期淤、蚀动态研究,地理科 学,19(5):442-445
    仲德林,刘建立,2001,埕岛油田海海底地形变化及预防措施,海岸工程,3:14-18
    周永青,1998,黄河三角洲北部海岸水下岸坡蚀退过程及主要特征,海洋地质与第四纪地质,18(3):79-85
    周永青,1998,黄河三角洲北部海岸水下岸坡蚀退过程及主要特征,海洋地质与第四纪地质,18(3):79-85
    庄克琳,庄振业,李广雪,1998,海岸侵蚀的解析模式,海洋地质与第四纪地质,2:97-102

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700