结合部路网匝道系统结构分解与协同控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大城市结合部路网拥堵日益严重,而相应的交通管理和控制却明显欠缺。考虑到结合部区域与中心城区在交通体系结构、路网空间布局和交通流特征等方面均存在显著的差异,在中心区所采取的应对拥堵措施在结合部区域并没有很好的实现条件。应对大城市结合部路网的交通拥堵已成为亟需解决的现实问题,同时,也是我国智能化交通控制领域学术研究创新的一个空白点。为此,本文应用系统工程方法,在对结合部路网进行结构分解后,将结合部路网拥堵归结为三类并形成了各自相应的研究问题,包括(1)高速公路转向城市快速路匝道多目标协调控制;(2)高速公路联络线主线关联多匝道协同控制;(3)互通式立交拥堵多匝道协同控制。结合各问题特点,设计、论证和检验以匝道为实施载体的交通控制方法,三个部分的研究层层递进,由最基础的系统结构分解与状态描述建模、控制目标和控制策略的设计、控制方程的建立、控制律算法设计到多点控制的协同,再到系统转换的控制,构成了一个点、线、面的研究结构。
     本文研究内容主要有如下几个方面:
     (1)对单匝道控制中的基础问题进行了研究,建立了匝道排队冗余等待时间模型,并以兼顾公平和效率的目标导向设计思想,以冗余等待时间为新的控制参数,建立了改进的匝道多目标协调控制方程。以高速公路转向城市快速路匝道为对象,实现了单匝道多目标协调控制的作用效果仿真试验,应用支持向量机方法设计了匝道控制律的求解流程对方程求解,与其他控制方法进行对比,重点对四种情况下各种时间指数的变化规律和原因进行了分析,验证了控制方法在减少冗余等待时间方面的作用,以及控制方程在避免信息缺失和信息冗余方面的改进效果。
     (2)对高速公路联络线主线关联多匝道协同控制问题进行了研究,在对主线关联多匝道系统进行结构分解和系统描述基础上,建立了以“主线机动容量”合理分配和高效利用为目标的主线关联多匝道协同控制模型。以高速公路联络线多匝道为对象进行案例仿真,以匝道排队、容量负担比、冗余等待时间以及平均冗余等待周期数指标等进行对比,验证了协同控制模型在均衡各入口匝道排队负担、提高主线通行能力等方面的作用。
     (3)对互通式立交网络进行结构分解,展开为二维无交叉多源多汇网络,对其性质进行了说明并给出了确定受控弧的方法。将立交结构展开后,结合残量网络方法求解了互通立交网络最大流;在动态特性推算中,应用流量反推方法对展开的互通立交网络的动态流谱进行推算并确定互通立交网络的受控弧。
     (4)对高速公路联络线与城市快速路互通式立交多匝道协同控制问题进行了研究,以推迟立交网络拥堵失效并提高拥堵时立交网络通行效率和稳定性为目标,制定了以多匝道为实施载体的立交网络流拥堵控制方法,建立了以提高网络最大流和弧段动态阻抗均衡为目标的控制模型。以高速公路联络线与城市快速路互通式立交为对象进行拥堵控制案例仿真,以网络流量、队列不均衡系数和冗余等待时间不均衡系数等进行评价,验证了本文设计控制方法在提升网络流量和平衡动态阻抗方面的作用。
Traffic congestion in metropolitan periphery road networks are growing seriously, and the corresponding management and control is obviously lacking. Nowadays, trains of strategies and methods on urban traffic congestion prevention and relief which based on diverse transportation sharing and traditional traffic control have been proposed. Mainly of them are suit for downtown area instead of for periphery road networks, for there are giant differences of transportation system, road layout and traffic flow characteristics between downtown area road networks and periphery road networks. Intelligent control is a new development to find the combination of control measures for the best road performance and control effectiveness. Ramp metering has gained general acceptance as an essential part of modern traffic congestion management systems in either preventing or reducing freeway congestion. On considering the realities of periphery road networks and to relieve traffic congestion during peak hours on freeways, this paper designed, discussed and tested suiTable ramp metering control method based on system engineering, various ramp metering models have been attempted for regulation of the inputs to freeway from entry ramps for three kinds of problem that include multi-objects coordinated for turning ramp from freeway to expressway, multi-ramps coordinated metering control for a simple traffic corridor that consists of G2freeway and a set of parallel arterials connected by entrance ramps and interchange congestion metering, all of them formed a integral research system from point, line to plane structure.
     The main contents, innovations and research result are summarized as follows:
     (1) In consideration of some weaknesses of current intelligent metering, this paper proposes an innovative concept and associated local ramp metering approach. Inspired by the rationale of equity, we introduce a novel ramp queuing parameter, the accumulative waiting time, to ramp metering. The objective is to avoid long waiting time of multiple cycles for any single vehicle. In calibration of the proposed model, a radical based function support vector machine algorithm is developed for model calibration. From results of a comparative case study with real world traffic flow data in Beijing, the nevel metering approach is proven to significantly output from traditional models, particularly in regards to its effectiveness in minimizing the waiting time of multiple cycles.
     (2) The idea of "flexible capacity for mainline" and the problem of its reasonable allocation and effective utilization for ramp coordinated metering are considered on considering the traffic characteristics of periphery road. Based on this idea, this paper examines the conditions for which ramp metering can be beneficial to overall systems in terms of ramp queuing length, redundancy waiting time and redundancy waiting cycle number decreasing for a simple traffic corridor that consists of G2freeway and a set of parallel arterials connected by entrance ramps. The focus is on analyzing system state and control relationships to arrive at general analytical results regarding optimal metering policies, discusses the optimal coordinated control metering of multi-ramps, especially the method of enhance the efficiency and equity of "flexible capacity" allocation by modifying the length of control cycle. A modified ramp latency model is posed using the method of queuing theory, and the related redundancy latency cycle amount is designed to evaluate the consequence quantitatively.
     (3) Continuously, on relieving congestion within interchange networks, the problem of designing control strategies for congested interchange is considered, it is a novel research field with challenges. This paper presented a novel methodology based on graph theory and network flow theory, the former is used to modelling by unfolding a Typical interchange into a directed weighted network with multi origins and destinations, and the latter is used to calculate the dynamic flow spectrum, clarify maximum flow and to certify the controlled ramp arc.
     (4) In addition, two novel resistance balancing factors aim to increase the fairness of control are designed with ramp queuing lengths and redundancy time, incorporating flow spectrum and based on control theory, a linear model with a quadratic objective function is constructed, and the corresponsive control law algorithm is designed with the adaptive queuing management method.
     Trains of ramp metering simulation cases are finished. With in-situ traffic flow data, two scenarios of no-control and coordinated with different flexible capacity using strategies are compared, and the result demonstrates the advantage of the new method. For interchange congestion control, a preliminary simulation-based investigation of the virtual coordinated ramp metering control problem using the methodology demonstrates the comparative efficiency and its ability to maintenance network performance while balancing cost distribution is better.
引文
[1]A.Boldin. Traffic control system and method[P]. United States of America:0299595,2007,12.
    [2]A.D.Spiliopoulou, I.Papamichail, and M.Papageorgiou. Toll plaza merging traffic control for throughput maximization[J]. Journal of Transportation Engineering,2010,136(1):67-76.
    [3]A.G.Wilson. Advances and problems in distribution modelling[J]. Transportation Research, 1970,4:1-18.
    [4]A.Hegyi, B.D.Schutter, and H.Hellendoorn. Model predictive control for optimal coordination of ramp metering and variable speed control [C]. Proceedings of the 1st European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems (EUNITE 2001), Tenerife, Spain,2001,260-272.
    [5]A.Hegyi, B.D.Schutter, and H.Hellendoorn. Model predictive control for optimal coordination of ramp metering and variable speed limits [J]. Transportation Research Part C (Emerging Technologies),2005,13:185-209.
    [6]A.Hegyi, B.D.Schutter, and S.Hoogendoorn, et al. Fuzzy decision support system for traffic control centers[C]. Proceedings of the European Symposium on Intelligent Techniques (ESIT 2000), Aachen, Germany,2000,389-395.
    [7]A.Hegyi, M.Burger, and B.D.Schutter, et al. Towards a practical application of model predictive control to suppress shock waves on freeways [C]. Proceedings of the European Control Conference 2007(ECC'07), Kos, Greece,2007,1764-1771.
    [8]A.Kotsialos, M.Papageorgiou, and F.Middelham. Local and optimal coordinated ramp metering for freeway networks[J]. Journal of Intelligent Transportation Systems,2005,9(4):187-203.
    [9]A.Kotsialos, M.Papageorgiou, and M.Mangeas, et al. Coordinated and integrated control of motorway networks via non-linear optimal control[J]. Transportation Research Part C (Emerging Technologies),2002,10:65-84.
    [10]A.Kotsialos, M.Papageorgiou. Efficiency and equity properties of freeway network-wide ramp metering with AMOC[J]. Transportation Research Part C (Emerging Technologies),2004a,12: 401-420.
    [11]A.Kotsialos, M.Papageorgiou. Motorway network traffic control systems[J]. European Journal of Operational Research,2004b,152:321-333.
    [12]A.Alessandri, A.D.Febraro, and A.Ferrara, et al. Optimal control of freeway via speed signaling and ramp metering[J]. Control Engineering Practice,1998,6:771-780.
    [13]B.Kuhn, K.Balke, and N.Chaudhary, et al. Managed lanes strategies feasible for freeway ramp applications [R]. Texas Transportation Institute, The Texas A&M University System College Station, FHWA/TX-08/0-5284-2,2007,16-173.
    [14]B.S.Kerner. The Physics of Traffic:Emperical Freeway Pattern Features, Engineering Applications, and Theory [M]. Verlag Berlin Heideberg, Springer:2005,591-630.
    [15]C.Diakaki, M.Papageorgiou.Simulation studies of integrated corridor control in Glasgow[J]. Transportation Research Part C (Emerging Technologies),1997,5(3/4):211-224.
    [16]C.H.Walters, C.M.Poe, and D.A.Skowronek. Methodology for assessing feasibility of bottle-neck removal [R]. Texas Transportation Institute, The Texas A&M University System College Station, FHWA/TX-93/1232-17,1992,13-34.
    [17]C.H.Wei. Analysis of artificial neural network models for freeway ramp metering control[J]. Artificial Intelligence in Engineering,2001,15:241-252.
    [18]C.J.Messer, M.E.Thomadakis, and H.A.Charara, et al. Ramp adaptive metering bottleneck optimization (RAMBO) user's manual[R]. Texas Transportation Institute, The Texas A&M University System College Station, FHWA/TX-94/1232-31,1994,12-50.
    [19]C.J.Messer. Advanced freeway system ramp metering strategy for Texas[R]. Texas Transporta-tion Institute, The Texas A&M University System College Station, FHWA/TX-93/ 1232-23, 1993,47-88.
    [20]C.J.Taylor, D.Meldrum, and L.Jacobson. Fuzzy ramp metering:design overview and simula-tion results[J]. Transportation Research Record:Journal of Transportation Research Board, 1998,1634:10-18.
    [21]C.J.Taylor, P.G.McKenna, and P.C.Young, et al. Macroscopic traffic flow modelling and ramp metering control using Matlab Simulink[J]. Environmental Modelling&Software,2004,19: 975-988.
    [22]C.Lee, B.Hellinga, and K.Ozbay. Quantifying effects of ramp metering on freeway safety[J]. Accident Analysis and Prevention,2006,38:279-288.
    [23]C.M.Monsere, R.L.Bertini, and O.Eshel, et al. Using archived data to measure operational benefits of a system-wide adaptive ramp metering (SWARM) system[R]. Portland State University, FHWA-OR-RD-09-10, OTREC-RR-08-04,2008,6-80.
    [24]C.Taylor, D.Meldrum, L.Jacobson. Fuzzy ramp metering:design over-view and simulation results[J]. Transportation Research Record:Journal of Transportation Board,1998,1634: 10-18.
    [25]C.Y.Ngo, V.O.K.Li. Freeway traffic control using fuzzy logic controllers[J]. Information Sciences Applications,1994,1(2):59-76.
    [26]D.Levinson, L.Zhang. Ramp meters on trial:Evidence from the Twin Cities metering holiday [J]. Transportation Research Part A (Policy and Practice),2006,40:810-828.
    [27]D.Teodorovic, K.Vukadinovic. Traffic control and transportation planning-a fuzzy sets and neural networks approach [M]. Boston:Kluwer Academic Publishers,1998,303-365.
    [28]D.Teodorovic. Fuzzy logic systems for transportation engineering:the state of the art[J]. Transportation Research Part A (Policy and Practice),1999,33(5):337-364.
    [29]D.Teodorovic. Fuzzy sets theory applications in traffic and transportation[J]. European Journal of Operational Research,1994,74(3):379-390.
    [30]D.Teodorovic. Swarm intelligence systems for transportation engineering:principles and applications[J], Transportation Research Part C (Emerging Technologies),2008,16:651-667.
    [31]E.D.Arnold. Ramp metering:a review of the literature[R]. Virginia Transportation Research Council, VTRC99TAR5,1998,6-12.
    [32]E.Smaragdis, M.Papageorgiou, and E.Kosmatopoulos. A flow-maximizing adaptive local ramp metering strategy[J]. Transportation Research Part B (Methodological),2004,38:251-270.
    [33]E.Cascetta, A.A.Improta. Estimation of travel demand using traffic counts and other data sources[M]//Michel Gendreau, Patrice Marcotte, editor. Transportation and Network Analysis: CurrentTrends. Dordrecht:Kluwer Academic Publishers,2002,72-75.
    [34]F.Y.Wang, H.M.Kim. Implementing adaptive fuzzy logic controllers with neural networks:a design paradigm[J]. Journal of Intelligent and Fuzzy Systems,1995,1(3):165-180.
    [35]G.C.Gomes, R.Horowitz, and A.A.Kurzhanskiy, et al. Behavior of the cell transmission model and effectiveness of ramp metering[J]. Transportation Research Part C (Emerging Techno-logies),2008,16:485-513.
    [36]GC.Gomes, R.Horowitz. Optimal freeway ramp metering using the asymmetric cell transmis-sion model[J]. Transportation Research Part C (Emerging Technologies),2006,14:244-262.
    [37]GC.Gomes. Optimization and microsimulation of on-ramp metering for congested freeways [R]. University of California in Berkeley, UCB-ITS-PRR-2004-44,2004,22-79.
    [38]G.C.K.Wong, S.C.Wong. A multi-class traffic flow model-an extension of LWR model with heterogeneous drivers[J]. Transportation Research Part A (Policy and Practice),2002,36:827-841.
    [39]G.F.Newell. A simplified theory of kinematic waves in highway traffic, part Ⅰ:General theory [J]. Transportation Research Part B (Methodological),1993a,27(4):281-287.
    [40]GF.Newell. A simplified theory of kinematic waves in highway traffic, part Ⅱ:Queueing at free-way bottlenecks[J]. Transportation Research Part B (Methodological),1993b,27(4):289-303.
    [41]GF.Newell. A simplified theory of kinematic waves in highway traffic, part Ⅲ:Multi-destination,flows[J]. Transportation Research Part B (Methodological),1993c,27(4):305-313.
    [42]H.Haj-Salem, M.Papageorgiou. Ramp metering impact on urban corridor traffic:field result [J]. Transportation Research Part A (Policy and Practice),1995,29A(4):303-319.
    [43]H.J.Miller, S.S.Lung. Geographic information systems for transportation principles and applications[M]. New York:Oxford University Press, Inc.,2001,55-62,321-324.
    [44]H.J.Payne. Models of freeway traffic and control[J]. Simulation Councils Proceeding Series: Mathematical Models of Public Systems,1971,1(1):51-61.
    [45]H.M.Zhang, S.GRitchie, and R.Jayakrishnan. Coordinated traffic-responsive ramp control via nonlinear state feedback[J]. Transportation Research Part C (Emerging Technologies),2001b, 9:337-352.
    [46]H.M.Zhang, S.G.Ritchie, and W.W.Recker. Some general results on the optimal ramp control problem[J]. Transportation Research Part C (Emerging Technologies),1996,4(2):51-69.
    [47]H.M.Zhang, S.GRitchie. Freeway ramp metering using artificial neural networks [J]. Transpor-tation Research Part C (Emerging Technologies),1997,5(5):273-286.
    [48]H.M.Zhang, T.Kim, and X.J.Nie, et al. Evaluation of on-ramp control algorithms[R]. California Partners for Advanced Transit and Highways (PATH), Institute of Transportation Studies, UC in Berkeley, UCB-ITS-PRR-2001-36,2001a,5-55.
    [49]H.M.Zhang, W.W.Recker. On optimal freeway ramp control policies for congested traffic corridors[J]. Transportation Research Part B (Methodological),1999,33:417-436.
    [50]H.Yang, Y.Iida, and T.Sasaki. An analysis of the reliability of an origin-destination trip matrix etimated from traffic counts[J]. Transportationn Resesrch Part B (Methodological),1991, 25(5):351-363.
    [51]I.Papamichail, A.Kotsialos, and I.Margonis. Coordinated ramp metering for freeway networks-A model-predictive hierarchical control approach[J]. Transportation Research Part C (Emerging Technologies),2010,18(3):311-331.
    [52]J.C.Liu, J.L.Kim and Y.Chen, et al. An adcanced real-time ramp metering system (ARMS):the system concept[R]. Texas Transportation Institute, The Texas A&M University System College Station, FHWA/TX-94/1232-24,1994,13-66.
    [53]J.D.Ortuzar, L.G.Willumsen. Modelling transport (Third Edition)[M]. Chichester:John Wiley& Sons, Ltd.,2001,174-175.
    [54]J.L.Barker, C.L.Du Vivier, and L.R.Pallat. Expressway ramp traffic control system[P]. United States of America:3508191,1970,4.
    [55]J.R.Scariza. Evaluation of coordinated and local ramp metering algorithms using micro-scopic traffic simulation[D]. Boston:Massachusetts Institute of Technology,2003,75-86.
    [56]J.S.Oh, C.E.Cortes, and R.Jayakrishnan, et al. Microscopic simulation with large-network path dynamics for advance traffic management and information systems [R]. Department of Civil Environmental Engineering and Institute of Transportation Studies, University of Californin Irvine, UCI-ITSTS-WP99-11,1999,6-9.
    [57]K.Aboudolas, M.Papageorgiou, and E.Kosmatopoulos. Store-and-forward based methods for the signal control problem in large-scale congested urban road networks[J]. Transportation Research Part C (Emerging Technologies),2009,17:163-174.
    [58]K.Bogenberger, A.D.May. Advanced coordinated traffic responsive ramp metering strategies [R]. University of California in Berkeley, UCB-ITS-PWP-99-19,1999,3-54.
    [59]K.K.Smith, C.T.Johnson, and S.Allman. System and method for adaptive digital ramp current control[P]. United States of America:7830560,2010,11.
    [60]L.Chu, H.X.Liu, and W.Recker, et al. Performance evaluation of adaptive ramp-metering algorithms using microscopic traffic simulation mode[J]. ASCE Journal of Transportation Engineering,2004,3:330-338.
    [61]L.E.Lipp, L.J.Corcoran, and GA.Hickman. Benefits of central computer control for Denver ramp-metering system[J]. Transportation Research Record:Journal of Transportation Research Board,1991,1320:3-6.
    [62]L.F.Waldron. Syetem for freeway access ramp traffic control[P]. United States of America: 3384869,1968,5.
    [63]L.Jacobson, J.Stribiak, and L.Nelson. Ramp management and control handbook[R]. Office of Transportation Management Federal Highway Administration, FHWA-HOP-06-001,2006, 5-11-5-13,5-28.
    [64]L.L.Chen, A.D.MAY, and D.M.Auslander. Freeway ramp control using fuzzy set theory for inexact reasoning[J]. Transportation Research Part A (General),1990,24(1):15-25.
    [65]L.M.Munoz. Macroscopic Modeling and identification of freeway traffic flow[D]. Berkeley: University of California in Berkeley,2004,7-36,59-110.
    [66]L.S.Yuan, J.B.Kreer. Adjustment of freeway ramp metering rates to balance entrance ramp queues[J]. Transportation Research Part A (General),1971,5:127-133.
    [67]L.Zhang, D.Levinson. Optimal freeway ramp control without origin-destination informa-tion[J]. Transportation Research Part B (Methodological),2004,38:869-887.
    [68]L.Zhang, D.Levinson. Ramp metering and freeway bottleneck capacity[J]. Transportation Research Part A (Policy and Practice),2010,44:218-235.
    [69]M.Abdel-Aty, A.Dhindsa, and V.Gayah. Considering various ALINEA ramp metering strategies for crash risk mitigation on freeways under congested regime [J]. Transportation Research Part C (Emerging Technologies),2007,15:113-134.
    [70]M.B.Gothe, K.O.Jornsten, and J.T.Lundgren. Estimation of origin-destination mastrices from traffic counts using multiobjective programming formulations[J]. Transportation Research Part B (Methodological),1989,23(4):257-269.
    [71]M.Ben-Akiva, D.Cuneo, and M.Hasan, et al. Evaluation of freeway control using a microscopic simulation laboratory[J]. Transportation Research Part C (Emerging Technologies),2003,11: 29-50.
    [72]M.Martinez, A.Garcia, A.T.Moreno. Traffic Microsimulation Study to Evaluate Freeway Exit Ramps[J]. CapacityProcedia Social and Behavioral Sciences,2011,16:139-150.
    [73]M.GH.Bell, Y.Iida.Transportation network analysis[M]. Chichester:John Wiley & Sons, Ltd., 1997,150-154.
    [74]M.GH.Bell. The real time estimation of origin-destination flows in the presence of platoon dispersion[J]. Transportation Research Part B (Methodological),1991,25(2-3):115-125.
    [75]M.Hasan, M.Jha, and M.Ben-Akiva. Evaluation of ramp control algorithms using microscopic traffic simulation[J]. Transportation Research Part C (Emerging Technologies),2002,10:229-256.
    [76]M.Hasan. Evaluatione of ramp control algorithms using a microscopic traffic simulation laboratory, MISIM[D]. Boston:Massachusetts Institute of Technology,1999,14-72.
    [77]M.J.Barth, J.M.Norbeck. Transportation modeling for the environment[R]. University of California in Berkeley, UCB-ITS-PRR-94-27,1994,37-54.
    [78]M.J.Lighthill, G.B.Whitham. On kinematic waves Ⅱ, A theory of traffic flow on long crowded roads[C]. Proceedings of the Royal Society of London, Series A:Mathematical and Physical Sciences,1955,22:317-345.
    [79]M.Marinaki, M.Papageorgiou.Central flow control in sewer networks[J]. Journal of Water Resources Planning and Management,1997,123(5):274-283.
    [80]M.Medina, M.Moabed. Texas urban mobility plan:breaking the gridlock (Laredo Urban Transportation Study)[R]. Texas Department of Transportation,2010,19-24.
    [81]M.Papageorgiou, B.Posch, and GSchmidt. Comparison of macroscopic model for control of freeway traffic[J]. Transportation Research Part B (Methodological),1983a,17B(2):107-116.
    [82]M.Papageorgiou, GVigos. Relating time-occupancy measurements to space-occupancy and link vehicle count[J]. Transportation Research Part C (Emerging Technologies),2008a,16: 1-17.
    [83]M.Papageorgiou, H.Hadj-Salem, and F.Middelham. ALINEA:a local ramp metering, summary of field results[J]. Transportation Research Record:Journal of Transportation Research Board, 1997,1603:90-98.
    [84]M.Papageorgiou, H.Hadj-Salem, and J.M.Blosseville. ALINEA:a local feedback control law for on-ramp metering[J]. Transportation Research Record:Journal of Transportation Research Board,1991,1320:58-64.
    [85]M.Papageorgiou, I.Papamichail, and A.D.Spiliopoulou. Real-time merging traffic control with applications to toll plaza and work zone managemen[J]. Transportation Research Part C (Emerging Technologies),2008b,16:535-553.
    [86]M.Papageorgiou, J.M.Blosseville, and H.Hadj-Salem. Macroscopic modelling of traffic flow on the Boulevard Peripherique in Paris[J].Transportation Research Part B (Methodological), 1989,23B(1):29-47.
    [87]M.Papageorgiou, J.M.Blosseville, and H.Hadj-Salem. Modelling and real-time control of traffic flow on the southern part of Boulevard Peripherique in Paris, part Ⅰ:modelling[J]. Transporta- tion Research Part A(General),1990a,24(5):345-359.
    [88]M.Papageorgiou, J.M.Blosseville, and H.Hadj-Salem. Modelling and real-time control of traffic flow on the southern part of Boulevard Peripherique in Paris, part Ⅱ:coordinated on-ramp metering[J]. Transportation Research Part A (General),1990b,24(5):362-370.
    [89]M.Papageorgiou. A hierarchical control system for freeway traffic[J]. Transportation Research Part B (Methodological),1983b,17(3):251-261.
    [90]M.Papageorgiou. An integrated control approach for traffic corridors[J]. Transportation Research Part C (Emerging Technologies),1995,3(1):19-30.
    [91]M.Papageorgiou. Application of automatic control concepts to traffic flow modeling control [M]//A.V.Balakrishnan, M.Thoma (Editor). Lecture Notes on Control and Information Sciences, Verlag Berlin Heideberg:Springer,1983c,59-162.
    [92]M.Papageorgiou. Some remarks on macroscopic traffic flow modelling[J]. Transportation Research Part A (Policy and Practice),1998,32(5):323-329.
    [93]M.Papageorgiou. Traffic control[M]//W.Hall Randolph (Editor). Handbook of Transportation Science (Second Edition). Boston:Kluwer Academic Publishers,2002,255-272.
    [94]M.van den Berg, B. De Schutter, and A. Hegyi, et al. Model predictive control for mixed urban and freeway networks[C]. Proceedings of the 83rd Annual Meeting of the Transportation Research Board, Washington, DC,2004b,1-19.
    [95]M.V.D.Berg, B.D.Schutter, and H.Hellendoorn. Effects of on-ramp and off-ramp metering on queue forming in urban traffic networks[C]. Proceedings of the 11th IFAC Symposium on Control in Transportation Systems, Delft, The Netherlands,2006,130-135.
    [96]M.V.D.Berg, B.D.Schutter, and H.Hellendoorn. Integrated model predictive control for mixed urban and freeway networks[C]//P.H.L.Bovy (Editor). Proceedings of the 8th TRAIL Congress 2004-A World of Transport, Infrastructure and Logistics-Selected Papers, Rotterdam, The Netherlands,2004a,27-49.
    [97]M.V.D.Berg, T.Bellemans, and B.D.Schutter, et al. Control of traffic with anticipative ramp metering[C]. Proceedings of the 84th Annual Meeting of the Transportation Research Board, Washington, DC,2005,1-17.
    [98]N.A.Chaudhary, C.J.Messer. Ramp metering design and operations guidelines for Texas[R]. Texas Transportation Institute, The Texas A&M University System College Station, FHWA/TX-01/2121-2,2000a,2-43.
    [99]N.A.Chaudhary, C.J.Messer. Ramp metering technology and practice:task 1 and 2 summary [R].Texas Transportation Institute, The Texas A&M University System College Station, FHWA /TX-01/2121-1,2000b,2-14.
    [100]N.A.Chaudhary, Z.Z.Tian, and C.J.Messer, et al. Ramp metering alogorithms and approaches for Texas[R].Texas Transportation Institute, The Texas A&M University System College Station, FHWA/TX-05/0-4629-1,2004,5-50.
    [101]N.L.Zhao, L.Yu, and Y.B.Geng, et al. Support vector machine-based approach to data-layer multi-source ITS data fusion[J]. Journal of Transportation Systems Engineering and Information Tech nology,2007,7(2):32-38.
    [102]O.J.Chen. A dynamic traffic control model for real time freeway operations[D]. Boston: Massachusetts Institute ofTechnlogy,1996,56-117.
    [103]P.I.Richards. Shock waves on the highway[J]. Operations Research,1956,4(1):42-51.
    [104]Q.Meng, H.L.Khoo. A Pareto-optimization approach for a fair ramp metering[J]. Transporta-tion Research Part C (Emerging Technologies),2010,18:489-506.
    [105]R.C.Carlson, I.Papamichail, and M.Papageorgiou. Optimal mainstream traffic flow control of large scale motorway networks[J]. Transportation Research Part C (Emerging Technologies), 2010a,18:193-212.
    [106]R.C.Carlson, I.Papamichail, and M.Papageorgiou. Optimal motorway traffic flow control involving variable speed limits and ramp metering[J]. Transportation Science,2010b,44(2): 238-253.
    [107]R.H.Chi, Z.S.Hou. A model-free periodic adaptive control for freeway traffic density via ramp metering[J]. Acta Automatica Sinica,2010,36(7):1029-1033.
    [108]R.V.Katwijk, P.V.Koningsbruggen. Coordination of traffic management instruments using agent technology[J]. Transportation Research Part C (Emerging Technologies),2002,10:455-471.
    [109]S.Kang, D.Gillen. Assessing the benefits and costs of intelligent tranportation systems:ramp meters[R]. University of California in Berkeley, UCB-ITS-PRR-99-19,1999,5-42.
    [110]S.Smulders. Control of freeway traffic flow by variable speed signs[J]. Transportation Research Part B (Methodological),1990,24B(2):111-132.
    [111]S.Yousifa, J.A1-Obaedi. Modeling Factors Influencing the Capacity of Motorway Merge Actions Controlled by Ramp Metering[J]. Procedia Social and Behavioral Sciences,2011,16: 172-183.
    [112]T.Bellemans, B.D.Schutterb, and B.D.Moor. Model predictive control for ramp metering of motorway traffic:a case study[J]. Control Engineering Practice,2006,14:757-767.
    [113]T.Bellemans, B.D.Schutter, and B.D.Moor. Anticipative model predictive control for ramp metering in freeway networks[C]. Proceedings of the 2003 American Control Conference, Denver, Colorado,2003,4077-4082.
    [114]T.H.Chang, Z.Y.Li. Optimization of mainline traffic via an adaptative coordinated ramp metering control model with dynamic OD estimation[J]. Transportation Research Part C (Emerging Technologies),2002,10:99-120.
    [115]T.J.Lomax. Incorporating the effect of operational improvements in the Texas congestion index estimation process [R]. Texas Transportation Institute, The Texas A&M University System College Station, FHWA/TX-05/5-4853-01-1,2005,5-7.
    [116]The Minnesota Department of Transportation (Mn/DOT), Cambridge Systematics Inc. Twin Cities ramp meter evaluation final report[R]. The Minnesota Department of Transportation, Oakland, California, USA,2001,9.1-9.18.
    [117]U.S. Department of Transportation, Federal Highway Admission, Offices of Research and Development Implementation Division. Control strategies for signalized diamond interchanges:technology sharing report[R]. FHWA-TS-78-206,1978,17-54.
    [118]W.L.Garrison, D.M.Levinson. The transportation txperience:policy, planning, and deploy-ment[M]. New York:Oxford University Press,2006,180-190.
    [119]W.Sarintorn. Development and comparative evaluation of ramp metering algorithms using microscopic traffic simulation[J]. Journal of Transportation Systems Engineering and Information Technology,2007,7(5):51-62.
    [120]W.Shen, H.M.Zhang. Pareto-improving ramp metering strategies for reducing congestion in the morning commute[J]. Transportation Research Part A(Policy and Practice),2010,44:676-696.
    [121]X.K.Wu, P.Michalopoulos, and H.X.Liu. Stochasticity of freeway operational capacity and chance constrained ramp metering[J]. Transportation Research Part C (Emerging Tech-nologies),2010,18:741-756.
    [122]Y.B.Wang, M.Papageorgiou, and A.Messmer, et al. An adaptive freeway traffic state estimator[J]. Automatica,2009,45:10-24.
    [123]Y.B.Wang, M.Papageorgiou, and A.Messmer. Real-time freeway traffic state estimation based on extended Kalman filter:Adaptive capabilities and real data testing[J]. Transportation Research Part A (Policy and Practice),2008,42:1340-1358.
    [124]Y.B.Wang, M.Papageorgiou, and A.Messmer. RENAISSANCE-A unified macroscopic model-based approach to real-time freeway network traffic surveillance[J]. Transportation Research Part C (Emerging Technologies),2006,14:190-212.
    [125]Y.Zhang, Y.Z.Chen. New method for controlling freeway on-ramp based on fuzzy logic[J]. Journal of Systems Simulation,2005,17(10):2486-2489.
    [126]Z.S.Hou, J.X.Xu, and J.W.Yan. An iterative learning approach for density control of freeway traffic via ramp metering[J]. Transportation Research Part C (Emerging Technologies),2008, 16:71-97.
    [127]Z.Z.Tian, K.Balke, and R.Engelbrecht,et al. Integrated control strategies for surface street and freeway systems[J]. Transportation Research Record,2002,1811:92-99.
    [128]Z.Z.Tian, K.Balke. Development and evaluation of a framework for selecting operational strategies for and integrated diamond interchange ramp metering control system[R]. Texas A& M University, SWUTC/04/473700-00025-1,2004b,5-55.
    [129]Z.Z.Tian. Development and evaluation of operational strategies for providing and integrated diamond interchange ramp-metering control system[D]. Texas A&M University,2004a, 16-224.
    [130]Z.Z.Tian. Modeling and implementation of an integrated ramp metering-diamond interchange control system[J]. Journal of Transportation System Engineering and Information,2007,7(1): 61-72.
    [131]敖谷昌,贾元华,张惠玲.基于时间占有率分析的车辆折算系数研究[J].交通运输系统工程与信息,2008,8(3):106-110.
    [132]蔡志理.高速公路交通事件检测及交通疏导技术研究[D].长春:吉林大学博士学位论文,2007,110-136.
    [133]曹鹏,贾洪飞,隽志才,等.高速公路入口匝道控制算法用户公平性分析[J].公路交通科技,2006,23(11):129-133.
    [134]曹少中.非线性协调控制理论研究及应用[M].北京:科学出版社,2009,21-38.
    [135]柴干,黄琪,方程炜,等.高速公路入口匝道启发式控制的仿真研究[J].系统仿真学报,2009,21(21):6829-6832.
    [136]陈德望,李灵犀,刘小明,等.城市高速道路交通控制方法研究的回顾与展望[J].信息与控制,2002,31(4):341-345,362.
    [137]陈德望,王飞跃,陈龙.基于模糊神经网络的城市高速公路入口匝道控制算法[J].交通运输工程学报,2003,3(2):100-105.
    [138]陈峰,贾元华,李健,等.结合部区域入口匝道协调控制模型[J].北京交通大学学报,2010,34(6):46-50.
    [139]陈峰,贾元华,牛忠海,等.基于模糊神经网络的结合部匝道控制方法研究[J].交通运输系统工程与信息,2011,11(1):108-113.
    [140]陈华,单骏,陆小芳,等.一种道路自适应入口匝道汇入控制设备[P].中国:200820150208,2009,7.
    [141]陈华,冯雷,陆小芳,等.一种道路入口匝道控制器[P].中国:200710040682,2007,10.
    [142]陈巳康,冯雷,王瑶明,等.一种匝道汇入控制器调试和现场紧急控制的系统及其方法[P].中国:200810039793,2011,2.
    [143]陈涛.基于系统科学理论的城市道路交通拥挤预测与控制模型研究[D].南京:东南大学博士学位论文,2005,93-100.
    [144]陈学文,田傲霜,王殿海,等.城市快速路出入口匝道联动控制策略研究[J].交通与计算机,2007,25(6):4-7.
    [145]陈学文,田傲霜.基于ANN城市快速路入口匝道控制研究[J].辽宁工业大学学报(自然科学版),2008b,28(5):330-332.
    [146]陈学文,王殿海,金盛,等.城市快速路入口匝道控制方法[J].吉林大学学报(工学版),2008c,38(增刊):43-48.
    [147]陈学文.城市快速路匝道优化控制策略与方法研究[D].长春:吉林大学博士学位论文,2008a,4-103.
    [148]程琳,王炜,于春青,等.城市道路交通网络容量的建模[J].管理工程学报,2007,21(2):84-88.
    [149]程琳.城市交通网络流理论[M].南京:东南大学出版社,2010,129-131.
    [150]池荣虎,侯忠生,隋树林.快速路入口匝道的非参数自适应迭代学习控制[J].控制理论与应用,2008b,25(6):1011-1015.
    [151]池荣虎,侯忠生,于镭,等.高阶无模型自适应迭代学习控制[J].控制与决策,2008a,23(7):795-798.
    [152]池荣虎.非线性离散时间系统的自适应迭代学习控制及应用[D].北京:北京交通大学博士学位论文,2006,128-137.
    [153]单骏,李会斌,虞鸿,等.一种匝道汇入控制器的手持式控制器及其系统[P].中国:200820150209,2009,7.
    [154]邓景发,范康年.物理化学[M].北京:高等教育出版社,1993,534-541.
    [155]丁建梅,王可崇.高速公路入口匝道交通模糊控制研究[J].哈尔滨工业大学学报,2002,34 (5):671-674.
    [156]丁同强,郑黎黎,常云涛.高速公路入口匝道控制策略研究[J].武汉理工大学学报(交通科学与工程版),2006,30(5):755-758.
    [157]杜学艳,李平,马广英,等.应用混合进化算法求解极大熵OD流量反推模型[J].中国科学技术大学学报,2005,35(增刊):291-297.
    [158]杜长海,黄席樾,杨祖元,等.改进的粒子群算法在动态OD矩阵反推中的应用[J].计算机工程与应用,2008,44(34):234-238.
    [159]范立权,陈阳舟,李振龙.城市快速路入口匝道控制算法的PARAMICS仿真研究[J].交通运输系统工程与信息,2007,7(6):45-50.
    [160]冯苏苇.低速混合型城市交通流的建模、实测与模拟[D].上海:上海大学博士学位论文,1997,46-60.
    [161]干宏程,孙立军.城市快速道路交通流建模和控制[J].公路交通科技,2006,23(8):101-105,115.
    [162]高自友,贾斌,李克平.一种入口匝道与主干道汇合处的信号控制方法[P].中国:200410009290,2006,2.
    [163]关伟,何蜀燕.基于统计特性的城市快速路交通流状态划分[J].交通运输系统工程与信息,2007,7(5):42-50.
    [164]韩印,干宏程,吴稼豪.基于粒子群优化的高速公路网集成优化控制模型[J].交通运输工程学报,2009,9(1):1-5.(英文版)
    [165]贺敬凯,徐建闽.基于BP神经网络的入口匝道控制器的设计[J].华南理工大学学报(自然科学版),2002,30(7):24-27.
    [166]侯忠生,晏静文.带有迭代学习前馈的快速路无模型自适应入口匝道控制[J].自动化学报,2009,35(5):588-595.
    [167]胡洁.BP和RBF神经网络短时交通流预测结果比较[J].长江大学学报(自然版)理工卷,2007,4(3):74-76.
    [168]黄海军.城市交通网络动态建模与交通行为研究[J].管理学报,2005,2(1):18-22.
    [169]黄席樾,向长城,殷礼胜.现代智能算法理论及应用[M].北京:科学出版社,2005,179-187.
    [170]黄小原,樊治平,张文江.高速公路车辆群模型与控制[J].东北工学院学报,1990,11(4):377-382.
    [171]黄小原,樊治平,张文江.高速公路入口交通控制问题的研究[J].系统工程,1989,11:36-41.
    [172]黄小原,樊治平,张文江.高速公路入口匝道的分散控制[J].信息与控制,1991,2:1-5.
    [173]嵇春宝,蒋珉,柴干.高速公路网的匝道协调控制及仿真研究[J].系统仿真学报,2009,21(4):1206-1209.
    [174]江竹,李树斌,黄永宣.基于OD预测信息的高速公路优化控制系统设计与仿真[J].交通运输系统工程与信息,2008,8(1):55-60.
    [175]姜紫峰,韩锡令.高速公路交通流低密度区可变速度控制[J].西安公路学院学报,1993,13(4):6-11.
    [176]姜紫峰,韩锡令.高速公路交通流高密度区的入口匝道联合调节和出口分流协同控制[J].西安公路交通大学学报,1996a,16(1):35-39.
    [177]姜紫峰,荆便顺,韩锡令.高速公路入口匝道控制的仿真研究[J].中国公路学报,1997,10(2):83-89.
    [178]姜紫峰.高速公路动态交通流的建模与控制策略[J].公路交通科技,1996b,13(4):29-35.
    [179]荆便顺,赵永进.高速公路最大运行流率稳态入口控制策略的研究[J].西安公路学院学报,1994,14(3):36-43.
    [180]荆便顺.道路交通控制工程[M].北京:人民交通出版社,1995,73-118,131-162.
    [181]雷丽.城市高架路——匝道——地面交通的交互作用及交通流特性研究[D].上海:上海大学博士学位论文,2004,63-94.
    [182]李明利,赵祥模,王选民.分组拥塞控制在城市交通控制中的应用[J].长安大学学报(自然科学版),2003,23(6):94-98.
    [183]李三财.高速公路入口交通动态控制系统的研究[J].西安公路交通大学学报,1997,17(4):105-108.
    [184]李曙红,李章兵,刘定.高速公路网入口流量控制的双层规划模型及算法[J].计算机应用,2007,27(7):1783-1785.
    [185]梁新荣,曾爱国.高速公路匝道回归神经网络控制器的设计[J].微计算机信息,2007,23(3-1):41-43.
    [186]梁新荣,刘智勇,孙德山,等.支持向量机在混沌系统预测中的应用[J].计算机工程与应用,2006,5:161-162,168.
    [187]梁新荣,刘智勇,徐建闽,等.高速公路多路段的模糊逻辑协调控制[J].华南理工大学学报(自然科学版),2005a,33(9):35-40.
    [188]梁新荣,刘智勇,徐建闽,等.高速公路多匝道协同控制系统设计与仿真[J].信息与控制,2005b,34(3):308-317.
    [189]梁新荣,任睿.基于模糊逻辑工具箱的高速公路匝道控制[J].微计算机信息,2008,24(5-1):255-257.
    [190]梁新荣.高速公路智能控制方法研究[D].广州:华南理工大学博士学位论文,2005c,24-67.
    [191]林尚伟,林岩.基于模糊控制律的遗传神经匝道协调控制[J].控制工程,2008,15(3):235-238,286.
    [192]刘小明,张永忠,张福生,等.复合型快速路入口匝道交通控制和诱导装置及方法[P].中国:201010108477,2011,1.
    [193]刘智勇,吴今培,万百五.高速公路智能交通控制系统的建模及多层描述[J].公路交通科技,1998,15(1):39-44.
    [194]刘智勇.智能交通理论及其应用[M].北京:科学出版社,2003,227-245.
    [195]陆克丽霞,杜豫川,孙立军.基于ALINEA算法的上海快速路入口匝道控制方法[J].同济大学学报(自然科学版),2009,37(2):207-212.
    [196]陆克丽霞,杜豫川,孙立军.上海快速路入口匝道自动控制系统设计及评价[J].交通与计算机,2008,26(1):5-9.
    [197]罗方述,万百五,潘文敏.西安——临潼高速公路递阶控制方法研究[J].自动化学报,1991,17(3):363-367.
    [198]吕智林,范炳权,张林峰.基于多Agent的高速公路入口匝道智能控制策略[J].计算机应用,2004,24(5):126-127,130.
    [199]马广英,李平,闻育,等.基于极大熵模型的交通出行矩阵解法研究[J].浙江大学学报(工学版),2006,40(10):1778-1782.
    [200]梅超群,黄海军,唐铁桥.高速公路入匝控制的一个元胞自动机模型[J].物理学报,2008,57(8):4786-4793.
    [201]聂磊,杨晓光,庄斌,等.快速路入口匝道控制适应性研究[J].交通与计算机,2006,24(3):18-21.
    [202]庞明宝,贺国光,马宁.基于延迟反馈的高速公路匝道混沌控制研究[J].武汉理工大学学报(交通科学与工程版),2008a,32(5):959-962.
    [203]庞明宝,贺国光,马宁.基于遗传算法高速公路混沌系统模糊延迟反馈匝道控制[J].土木工程学报,2009,42(3):125-131.
    [204]庞明宝,贺国光.高速公路混沌模糊延迟反馈控制仿真研究[J].系统仿真学报,2009,21(1):127-131,134.
    [205]庞明宝,贺国光.高速公路匝道混沌控制仿真[J].系统工程,2007,25(12):14-19.
    [206]庞明宝.交通流混沌智能控制研究[D].天津:天津大学博士学位论文,2008b,42-116.
    [207]齐驰,侯忠生,卜旭辉.快速路入口匝道排队现象分析及其对策[J].交通运输系统工程与信息,2009,9(2):38-43.
    [208]任黎立,彭其渊.基于人工神经网络的高速公路入口匝道控制算法[J].交通与计算机,2006,24(2):89-93.
    [209]撒元功,徐建闽.基于神经网络预测模型的高速公路递阶控制[J].暨南大学学报(自然科学版),2002,23(5):31-34.
    [210]厍向阳,罗晓霞.点和边有容量限制的网络最大流新算法[J].计算机应用,2008,28(1): 143-145.
    [211]沈国江,胡丹,孙优贤.城市高速公路交通的神经网络建模与控制[J].信息与控制,2004,33(6):729-734.
    [212]沈国江,孙优贤.面向控制的城市交通网络宏观动态模型[J].浙江大学学报(工学版),2005,39(10):1485-1490,1511.
    [213]史其信,郑为中.道路网短期交通流预测方法比较[J].交通运输工程学报,2004,4(4):68-71,83.
    [214]宋一凡,高自友.城市高速公路网络入口流量控制的双层规划模型及求解算法[J].北方交通大学学报,1999,23(3):86-89,94.
    [215]隋亚刚,李志恒,苏岳龙,等.城市快速路匝道出口与相邻交叉路口信号灯联动控制系统[P].中国:201010289988,2011,1.
    [216]孙刚,彭子晖.一种在交通瓶颈处的控制方法与装置[P].中国:200810117959,2009,12.
    [217]谭满春,徐建闽,毛宗源.高速公路交通流的建模与入口匝道最优控制[J].中国公路学报,2000b,13(4):83-85.
    [218]谭满春,徐建闽,毛宗源.高速公路入口匝道的模糊逻辑控制[J].华南理工大学学报(自然科学版),1999a,27(8):5-8.
    [219]谭满春,徐建明,毛宗源.高速公路入口匝道控制与仿真[J].暨南大学学报(自然科学版),1999b,20(5):28-30.
    [220]谭满春.多车道交通流非线性优化控制模型及遗传算法[J].计算机工程与应用,2009,45(13):13-15,25.
    [221]谭满春.基于多车道交通流动态离散模型的递阶优化控制问题与算法[J].控制理论与应用,2003,20(6):855-858,864.
    [222]谭满春.面向ITS的高速公路网交通分配与入口匝道控制方法研究[D].广州:华南理工大学博十学位论文,2000a,26-30,49-59.
    [223]唐辉,刘小明,贺玉龙.动态交通流建模及协调控制与优化策略[J].控制与决策,2002,17(增刊):823-825,828.
    [224]田晟,许伦辉,廖燃煜.基于需求的城市快速线形路段入口匝道协调控制研究[J].武汉理工大学学报(交通科学与工程版),2009,33(5):1000-1003.
    [225]涂序彦.大系统控制论[M].北京:国防工业出版社,1994,208-218.
    [226]王华,孟祥旭,马军.基于路径的多源多汇最大流问题[J].计算机工程与应用,2005,28:117-120.
    [227]王亮.城市快速路交通流采集与控制相关问题研究[D].天津:天津大学博士学位论文,2005,76-105.
    [228]王炜.道路交通工程系统分析方法[M].北京:人民交通出版社,2005,128-134.
    [229]王亦兵,韩曾晋,史其信.高速公路交通流建模[J].系统工程学报,1998,13(2):83-89.
    [230]王正武,罗大庸,黄中祥.高速公路入口匝道的鲁棒优化控制策略[J].系统工程,2007,25(9):38-41.
    [231]王正武,罗大庸,黄中祥.高速公路主线限速与匝道融合的协调控制[J].控制理论与应用,2007,24(6):973-976.
    [232]温凯歌,曲仕茹,张玉梅.一种基于模糊逻辑的入口匝道自适应控制器[J].计算机工程与应用,2008,44(8):196-199.
    [233]吴海燕,高进博,冷传才.路网容量最大流的一种改进算法[J].交通运输系统工程与信息,2006,6(2):51-56.
    [234]吴义虎,武志平,刘燕妮.基于模型预测的城市快速路匝道流量协同控制[J].长沙交通学院学报,2007,23(4):18-22.
    [235]向红艳,张邻,杨波.基于最大流的路网结构优化[J].西南交通大学学报,2009,44(2):284-288.
    [236]熊列强,王富,李杰.路段交通流的动力学模型及其仿真[J].中国公路学报,2006,19(2):91-94.
    [237]徐建闽,贺敬凯.高速公路入口匝道模糊控制器的设计[J].控制理论与应用,2004,21(4):639-643.
    [238]徐建闽,撒元功.高速公路入口匝道汇合控制下的道路通行能力[J].华南理工大学学报(自然科学报),2002,30(7):66-68.
    [239]许超,刘康生.高速公路分岔入口的密度预报与协调控制[C].22th中国控制会议论文集(下),2003,576-578.
    [240]许伦辉,傅惠.交通信息智能预测理论与方法[M].北京:科学出版社,2009,119-126.
    [241]许伦辉,卢旺仪,周静.高速公路匝道协调控制系统的仿真分析[J].华南理工大学学报(自然科学版),2007,35(7):25-30.
    [242]杨建华,于小宁.高速公路动态交通流支持向量机预测模型[J].西安工业大学学报,2009,29(3):280-284.
    [243]杨少辉.城市快速路系统交通瓶颈形成——扩散特性与控制方法研究[D].长春:吉林大学博士学位论文,2006,98-115.
    [244]杨晓光,杨佩昆,饭田恭敬.关于城市高速道路交通动态控制问题的研究[J].中国公路学报,1998,11(2):74-85.
    [245]杨晓光.城市快速道路交通流仿真方法研究[J].公路交通科技,1999b,16(2):53-58.
    [246]杨晓光.考虑进出口匝道排队约束的城市快速道路交通系统动态控制方法[J].西安公路交通大学学报,1999a,19(2):20-26.
    [247]杨兆升,保丽霞,刘新杰,等.城市快速路匝道调节与动态速度引导的协同策略[J].吉林大 学学报(工学版),2006a,36(增刊):144-147.
    [248]杨兆升,王嫒,管青.基于支持向量机方法的短时交通流量预测方法[J].吉林大学学报(工学版),2006b,36(6):881-884.
    [249]占建云,李志恒,张毅,等.基于改进AMOC的北京快速环路协调控制策略[J].华南理工大学学报(自然科学版),2009,37(11):43-49.
    [250]张海军,杨晓光,张珏.高速道路入口匝道控制方法综述[J].同济大学学报,2005b,33(8):1051-1055.
    [251]张海军.城市高速道路入口匝道动态协调控制方法研究[D].上海:同济大学博士学位论文,2005a,20-25,76-84.
    [252]张俊友.高速公路交通控制与诱导方法的研究[D].北京:中国农业大学博士学位论文,2005,25-28.
    [253]张生瑞,唐国玺.高速公路人口匝道的模糊逻辑控制及辅助方案设计[J].交通运输工程学报,2006,6(4):101-104.
    [254]张枭雄.高速公路入口匝道控制算法的仿真评价与优化[D].长春:吉林大学博士学位论文,2005,64-72.
    [255]张学上.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.
    [256]张洋,田志学,靳引利.基于模糊算法的高速公路匝道控制方法[J].长安大学学报,2002,22(6):65-68.
    [257]张永忠,石宇航,李正熙.一种城市快速路入口匝道控制改进算法[J].北方工业大学学报,2008,20(3):19-26.
    [258]张玉梅,曲仕茹,温凯歌.基于BP神经网络的入口匝道控制算法[J].西北工业大学学报,2007,25(6):820-823.
    [259]张长君,邹开其.恶劣气象条件下高速公路匝道控制的神经网络方法[J].计算机辅助工程,2006,15(3):86-89.
    [260]仉亚男.基于免疫算法的高速公路协调优化控制研究[J].计算机测量与控制,2006,10:1320-1322,1360.
    [261]赵莉,张虹.高速公路入口匝道多维可调模糊控制器设计[J].公路交通科技,2006,23(6):149-151,161.
    [262]赵忠杰,周林英,王英伟.基于免疫算法的多匝道MFAILC控制方法[J].系统仿真技术,2009,5(1):40-44,54.
    [263]智永峰,张骏,史忠科.高速公路加速车道长度设计与车辆汇入模型研究[J].中国公路学报,2009,22(2):93-97,115.
    [264]郑飞,杜豫川,孙立军.基于ALINEA算法快速路入口匝道单点动态控制[J].同济大学学报(自然科学版),2009,37(6):766-771.
    [265]郑建湖,陈洪,董德存.城市快速路入口匝道模糊控制器的设计及仿真研究[J].公路交通科技,2006,23(12):133-136.
    [266]郑建湖,董德存,陈洪.城市快速路入口匝道控制策略比较分析[J].计算机测量与控制,2006,14(2):196-199.
    [267]郑建湖,伍雄斌,文子娟.快速路入口匝道控制对交通系统的影响分析[J].河北工程大学学报,2008,25(2):17-20.
    [268]周小鹏.城市快速路入口匝道控制研究[D].上海:同济大学博士学位论文,2006,11-32,90-98.
    [269]朱从坤,陈洪仁,王野夫,等.高速道路匝道控制对道路通行能力的影响[J].哈尔滨建筑大学学报,1998,31(1):120-123.
    [270]邹国平.基于智能的高速公路交通控制与管理系统研究[D].西安:长安大学博士学位论文,2002,15-25.
    [271]邹开其.匝道测控的模糊设定[J].模糊系统与数学,2004,18(1):103-108.
    [272]邹志军.城市快速路入口匝道控制仿真分析[J].同济大学学报(自然科学版),2009,37(5):621-636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700