AUV水下地形匹配辅助导航技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下地形匹配导航是利用地形匹配技术来实现水下精确定位的自主、全天候的导航方式,对于水下航行器长时间水下航行时的精确定位具有重要的作用。本文以AUV长航时的水下精确导航定位为背景,利用多波束测深仪作为水下地形测量手段,结合真实海上试验数据对水下地形匹配导航定位方法进行了深入的研究。论文的主要成果和工作有:
     (1)研究了水下地形匹配导航的原理、模型以及适用的方法。从理论上探讨了水下地形匹配导航系统的组成,将其分为基本导航单元、水深测量单元以及地形匹配单元三个部分,并以此分析了水下地形匹配导航的原理。分析了水下地形匹配导航的模型,包括状态空间模型以及数字地形模型,由此导出了影响水下地形匹配导航定位性能的因素。在比较了陆地地形匹配导航与水下地形匹配导航的区别基础上,探讨了利用多波束测深进行水下地形匹配导航的优势,并从理论上分析了适用于多波束测深进行水下地形匹配导航的方法。
     (2)研究了局部高精度水下数字地形建模方法。详细介绍了多波束测深系统的组成以及原理,给出了本文中使用到的多波束测深系统的具体参数。在此基础上,分析了多波束测深数据后处理原理,并给出了多波束测深数据后处理的流程。针对多波束测深数据的滤波问题,提出了基于动态聚类的单声脉冲(ping)测深数据滤波方法。对滤波后的多波束测深数据进行了空间归位和网格化处理,建立了基于多波束测深的局部高精度数字地形图。
     (3)研究了实时水下地形特征的提取和匹配单元的构建方法。建立了单波束和多波束测深下的实时海底地形匹配模型,构建了一种多测点下的自适应地形特征的波束选择模式。为了进行地形的插值重构,在分析地形插值模型的基础上,利用分形原理对线性插值进行补偿,提出了一种基于分形补偿的双线性插值方法,对地形特征具有良好的适应能力。为了提高地形的插值精度和效率,提出了一种基于索引的快速插值策略。
     (4)研究了基于相关性的地形匹配定位方法。在相关性原理的基础上,利用多波束测深下的面地形特征,提出了一种基于极大似然估计的水下地形匹配定位方法。建立了极大似然估计的水下地形匹配导航模型。针对地形匹配中的伪波峰问题,提出了基于费希尔判据的去伪方法,对地形匹配中出现的伪波峰进行有效的剔除。利用真实多波束测深数据进行了极大似然估计下的定位试验。
     (5)研究了基于信息融合的AUV水下地形匹配导航。从信息融合的观点出发,将地形匹配定位技术与基本导航系统相结合,建立了地形匹配导航的关联模型,利用最近邻法建立了地形匹配定位的有效性检测流程,提出了一种基于关联可靠性的连续导航定位方式。建立了贝叶斯估计下的水下地形匹配导航模型,利用粒子滤波方法来对贝叶斯估计问题进行近似最优解算,提出了一种基于改进的粒子滤波的水下地形匹配航迹跟踪方法。探讨了影响水下地形匹配导航误差的因素,最后,从模块化设计思想出发,建立了AUV水下地形匹配导航系统结构,针对AUV水下导航,构建了基于双重模式的水下地形匹配导航策略,利用真实多波束测深试验数据进行了仿真研究。
     本文深入研究了AUV水下地形匹配导航的原理、方法以及实施步骤,并进行了真实多波束测深数据的回放式仿真试验。结果表明:本文提出的方法具有较高的精度,对地形特征具有较好的适应能力,可以利用来进行长时间下的水下导航定位修正,具有较高的实际应用价值。
Underwater terrain matching navigation (UTMN) is an independent and all-weathernavigation mode using terrain matching technology to gain precise positioning of underwater,which plays an important role on the navigation of underwater vehicle for long period of timesubmerged. For the precise navigational positioning of Automous underwater vehicle (AUV),with multibeam echo sounder (MBES) as the measuring means, underwater terrain matchingnavigational positioning method is thoroughly investigated with real sea test data. The mainwork is as follows:
     (1) The principle, model and suitable method of UTMN are investigated. Thecomposition of UTMN system is probed into in theory, which is divided into basic navigationunit, depth measuring unit and terrain matching unit. According to which, the principle ofUTMN is analysed. The model of UTMN is analysed, including state space model and digitalterrain model, follow which the factors influence the performance of terrain matchingnavigation are educed. The difference between land and underwater terrain navigation iscompared, from which the advantage of using MBES for UTMN is discussed, and the methodsuitable for UTMN with MBES are analysed in theory.
     (2) The method for modeling of local high-accuracy underwater digital terrain isinvestigated. The composition and principle of MBES measuring system is introduced andthe parameter of the MBES used in this paper is presentd. The principle of post-processing ofMBES data is analysed and the flow of it is presented. Aim at the filtering of MBES data, asingle ping filtering based on dynamic clustering is proposed. After space homing and gridingare applied to the filtered data, the local high-accuracy underwater digital terrain model(UDTM) is made.
     (3) The real-time characteristics extraction and construction of matching unit ofunderwater are investigated. Real-time underwater terrain matching model of single beamand multibeam are established, and a beam selection mode for multi measuring beams basedon adaptive of terrain characteristic is proposed. For the interpolation of terrain, on theanalysis of terrain interpolation model, a bilinear method based on fractal compensation isproposed, which has good adaptability for different terrain characteristic. For the improvement of interpolation accuracy and efficiency, a method for storage of large terrainbased on mixing resolution is proposed, form which a fast interpolation strategy based onindex is proposed. The interpolation time decreases rapidly.
     (4) The terrain matching positioning method based on correlation is investigated. Basedon the correlation principle and the surface terrain characteristic get by multibeam echosounder, a method based on maximal likelihood estimation (MLE) is proposed for underwaterterrain matching positioning. The UTMN model for MLE is presented, for the false peaks interrain matching, a method based on Fischer criterion is proposed for false peak elimination,which is effective for the false peak elimination appeard in the terrain matching. Positioningtest based on MLE with real MBES data is carried out.
     (5) The UTMN of AUV bsed on information fusion is investigated. From the perspectiveof information fusion, the terrain matching technology is integrated with the basic navigationsystem, the association model of terrain matching navigation and the validity flow of terrainmatching positioning with nearest neighbour (NN) are presented, from which a continuousnavigational positioning mode base on association reliability is proposed. The UTMN modelbased on Bayes estimation is presented and particle filter is used for near optimal resolvationof Bayes estimation problem, and an improved particle filter is proposed for path tracking ofunderwaer terrain matching. The factors that influence the UTMN accuracy are analysed. Atlast, the UTMN system construction of AUV is presented from the modularization view. Forthe UTMN of AUV, a navigation strategy with two models is proposed and simulations arecarried out with MBES data.
     This paper investigated the principle, method and implementation steps of UTMN ofAUV, and the play back mode simulation is carried out with real MBES data. The resultsshow that the method proposed in this paper has good accuracy and adaptability for terraincharacteristic, which can be used for position correction of underwater navigation for longperiod of time submerged. The proposed method is proved effective, reliable and practical.
引文
[1]蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科学技术出版社,2000.
    [2]桑恩方,庞永杰,卞红雨.水下机器人技术[J].机器人技术与应用,2003,3:8-13.
    [3] Per Espen Hagen, ivind Midtgaard, istein Hasvold. Making AUVs TrulyAutonomous[C]. MTS/IEEE Conference, Oceans2007:1-4p.
    [4]李晔,常文田,孙玉山,苏玉民.自治水下机器人的研发现状与展望[J].2007,1:25-31
    [5]张建会,李俊,王涛等.远程AUV组合导航技术研究[J].弹箭与制导学报.2006,26(1):183-188.
    [6]燕奎臣,李一平,袁学庆.远程自治水下机器人研究[J].机器人,2002,24(4):299-303.
    [7] http://baike.baidu.com/view/425408.htm.
    [8] John J. Leonard, Andrew A. Bennett, Christopher M. Smith, etl. AutonomousUnderwater Vehicle Navigation[C]. MIT Marine Robotics Laboratoty TechnicalMemorandum,1998:1-17p.
    [9] Paul Rigby, Oscar Pizarro, Stefan B. Williams. Towards Geo-Referenced AUVNavigation Through Fusion of USBL and DVL Measurements[C]. Proceedings ofOCEANS2006. Boston, MA, United states,2006:1-6p.
    [10] Neil H. Kussat, C. David Chadwell. Absolute Postioning of an AutinomousUnderwater Vehicle Using GPS and Acoustic Measurements. IEEE Journal of coeanicengineering[J].2007, Vol.30, No.1:153-164p.
    [11] Amanda Folk, Benjamin Armstrong, Eric Wolbrecht, etl. Autonomous UnderwaterVehicle Navigaton using Moving Baseline on a Target Ship[C]. OEANS2010:1-7p.
    [12]万磊,李璐,刘建成等.一种基于航位推算的水下机器人导航算法[J].中国造船.2004,45(4):77-82.
    [13] Yushan Sun, Lei Wan, Xiao Liang, etl. Design of the Embeded Navigation System ofAutonomous Underwater Vehicle based on the VxWorks[C]. IEEE InternationalConference on Control and Automation, Guangzhou, China,2007:2919-2924p.
    [14]张强,孙尧,万磊等.低成本GPS/DR容错组合导航系统设计[J].中国惯性技术学报.2010,18(4):455-461.
    [15]冯子龙,刘健,刘开周. AUV自主导航航位推算算法的分析研究[J].海洋技术.2006,25(3):19-22.
    [16] David B. Marco, Anthony J. Healey. Current Development in Underwater VehicleControl and Navigation: The NPS ARIES AUV[C]. Proceedings of MTS/IEEEOCEANS2005:32-39p.
    [17] Rob McEwen, Hans Thomas, Don Weber, etl. Performance of an AUV NavigationSystem at Arctic Latitudes[J]. IEEE Journal of oceanic engineering,2005, Vol.30, No.2:443-445p.
    [18]李硕,曾俊宝,王越超.自治/遥控水下机器人冰下导航[J].机器人,2011,33(4):509-512.
    [19] yvind Hegren s, Einar Berglund. Doppler Water-Track Aided Inertial Navigation forAutonomous Underwater Vehicle[C]. IEEE Bremen: Balancing Technology withFuture Needs, OCEANS2009:1-10p.
    [20] GyungNam Jo, Hang S. Choi. Velocity-Aided Underwater Navigation System UsingReceding Horizon Kalman Filter[J]. IEEE JOURNAL OF OCEANIC ENGINEERING,Vol31, No3,2006:565-573.
    [21]曹洁,刘繁明,陈勤等. AUV中SINS/DVL组合导航技术研究[J].中国航海.2004,2:55-59.
    [22]孙灿龙,张严,李辉.航速惯导组合导航系统在AUV上的应用[J].鱼雷技术.2007,15(6):25-27.
    [23]袁星,石秀华,许晖等.低成本AUV导航系统模型[J].传感技术学报.2005,18(1):136-139.
    [24] Shojiro Ishibashi, Satoshi Tsukioka, Takao Sawa, etl. The Rotation Control System toImprove the Accuracy of an Inertial Navigation Systen Installed in an AutonomousUnderwater Vehicle[C]. International Symposium on Underwater Technology, UT2007-International Workshop on Scientific Use of Submarine Cables and RelatedTechnologies2007:495-498p.
    [25]朱海,莫军.水下导航信息融合技术[J].北京:国防工业出版社,2002.
    [26] MO Jun, WANG Guohui, ZHAO Haijun. Application of Kalman filter with coeandatabase in underwater navigation[J]. SHIP SCIENCE AND TECHNOLOGY.2010,32(4):51-56p.
    [27] Pan-Mool Lee, Bong-Huan Jun, Hyun Taek, etl. An Integrated Navigation Systems forUnderwater Vehicles Based on Inertial Sensors and Pseudo LBL AcousticTransponders[C]. Proceedings of MTS/IEEE OCEANS,2005:1-8p.
    [28] Are B. Willumsen, Oddvar Hallingstad, Bj rn Jalving. Integration of Range, Bearingand Doppler Measurements from Transponders into Underwater Vehicle NavigationSystems[C]. OCEANS2006:1-6p.
    [29] Alain H. Carof. Acoustic Differectial Delay&Doppler Tracking System for LongRange AUV Positioning and Guidance[J]. IEEE Sympsium on AutonomousUnderwater Vehicle Technology,1994:370-375p.
    [30] S. Holtzhausen, O. Matsebe, N.S. Tlale, etl. Autonomous Underwater Vehicle MotionTracking using a Kalman Filter for Sensor Fusion[C].15th international conference onmechatronics and machine vision in practice,2008:103-108p.
    [31]宋振华,战兴群,张炎华.基于多传感器融合的水下机器人导航系统[J].机器人技术,2008,24(1-2):240-242.
    [32] Bjorn Jalving, Kenneth Gade, Kristian Svartveit. DVL Velocity Aiding in the HUGIN1000Integrated Inertial Navigation System[J]. Modeling, Identification and Control,Vol.25, No.4,2004:223-235p.
    [33] Bj rn Jalving, Kenneth Gade, Ove Kent Hagen. A Toolbox of Aiding Techniques forthe HUGIN AUV Integrated Inertial Navigation System. MTS/IEEE, San Diego, CA,USA, Oceans2003:1-8p.
    [34] Karstein Vestgard, Roar Hansen, Bjorn Jalving, etl. The HUGIN3000Survey AUV–Design and Field Results[C]. Proceedings of the International Offshore and PolarEngineering Conference, v4,2001:679-684p.
    [35] McTrusty, Tim John Dudinsky, John David. REMUS UUV navigation accuracytesting[C]. Oceans Conference Record (IEEE),2003, v3:1424p,
    [36] McPhail, S.D. Pebody, M. Autosub-1, A distributed approach to navigation andcontrol of an autonomous underwater vehicle[C]. Proceedings of the19977thInternational Conference on Electronic Engineering in Oceanography-Technologytransfer from research to industry,1997:16-22p.
    [37] Donovan, Glenn T.. Position error correction for an autonomous underwater vehicleinertial navigation system (INS) using a particle filter[J]. IEEE Journal of OceanicEngineering.2012, Vol.37, No.3:431-445p.
    [38] Johan Carlstr m, Ingemar Nygren. Terrain Navigation of the Swedish AUV62FVehicle[C].//http://www.google.com.hk/url?sa=t&rct=j&q=Terrain+Navigation+of+the+SwedishAUV62&source=web&cd=1&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.ee.kth.se%2Fphp%2Fmodules%2Fpublications%2Freports%2F2005%2FIR-S3-SB-0560.pdf&ei=5bx_UK-qD8qXiAfqkYEg&usg=AFQjCNHLkMtD_ygEi-GjsmjxCJV5TMzaDg&cad=rjt.
    [39] Kjetil Bergh nonsen, Ove Kent Hagen. An Analysisi of Real-Time Terrain AidedNavigation Results from HUGIN AUV[C]. OCEANS2010:1-9p.
    [40] Takeshi Nakatani, Tamaki Ura etl. Terrain based localization for pinpoint observationof deep seafloors[C]. IEEE Bremen: Balancing Technology with Future Needs,OCEANS2009:1-6p.
    [41] Sebastian Carre o, Philip Wilson, Pere Ridao, etl. A Survey on Terrain BasedNavigation for AUVs. MTS/IEEE Seattle, OCEANS2010:1-7p.
    [42]冯庆堂.地形匹配新方法及环境适应性研究[D].长沙:国防科学技术大学,2004.
    [43] Zhang, Hua Hu, Xiulin. A height-measuring algorithm applied to TERCOM radaraltimeter. ICACTE2010-20103rd International Conference on Advanced ComputerTheory and Engineering, Proceedings.2010:543-546p.
    [44] Lu, Shoulei Zhao, Long Zhang, Changyun. Improved Tercom based on fading factor.2011International Conference on Electrical Information and Mechatronics,ICEIM2011.2012:770-774p.
    [45] Uijt De Haag, MaartenVadlamani, Ananth. Flight test evaluation of various terrainreferenced navigation techniques for aircraft approach guidance. IEEE/ION Position,Location, and Navigation Symposium.2006:440-449p.
    [46]刘承香.水下潜器的地形匹配辅助定位技术研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2003.
    [47]刘承香,刘繁明,刘柱等.快速ICCP算法实现地形匹配技术研究[J].船舶工程,2003,25(3):54-56.
    [48] Behzad Kamgar-Parsi, Behrooz Kamgar-Parsi. Matching sets of3D line segments withapplication to polygonal are matching. IEEE Transactions on Pattern Analysis andMachine Intelligence,1997, Vol.19, No.10:1090-1099p.
    [49]郑彤,边少锋,王志刚.基于ICCP匹配算法的海底地形匹配辅助导航[J].海洋测绘,2008,28(2):21-23.
    [50]吴宏悦.基于地形熵和ICCP算法的水下辅助导航组合方法研究[J].舰船科学技术.2011,增刊:54-57.
    [51]杨绘弘.基于ICCP的水下潜器地形辅助导航方法研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2009.
    [52] Jiang Fan, Wu Yimeng. Combinational Seabed Terrain Matching Algorithm Based onProbability Data Associate Filtering and Iterative Closest Contour Point[C].2009Second International Conference on Intelligent Computation Technology andAutomation,2009,245-249p.
    [53] Gannan Yuan, Hongwei Zhang, Kefei Yuan, etl. A Combinational Underwater AidedNavigation Algorithm Based on TERCOM/ICCP and Kalman Filter[C].2011ForthInternational Joint Conference on Computational Sciences and Optimizaton:852-955p.
    [54] Hollowell, Jeff. Heli/SITAN: A terrain referenced navigation algorithm for helicopters.IEEE PLANS '90-Position Location and Navigation Symposium.1990,616-625p.
    [55] Baird, Charles A. Snyder, Franklin B. Beierle, Mark. Terrain-aided altitudecomputations on the AFTI/F-16. IEEE PLANS '90-Position Location and NavigationSymposium.1990:474-481p.
    [56]王涛.桑迪亚惯性地形辅助导航算法及应用研究[D].西安:西北工业大学硕士学位论文,2006.
    [57] LI Heng, ZHANG Jingyuan, SHEN Jian. Error Estimation Method of SINS Based onUKF in Terrain Aided Navigation[C]. International Conference on MechatronicScience,Electric Engineering and Computer.2011:2498-2501p.
    [58] Peijuan LI, Xiaofei Zhang, Xiaosu Xu. Novel Terrain Integrated Navigation Systemusing Neural Nerwork aided Kalman Filter[C].2010, Sixth International Conference onNatural Computation.(ICNC2010):445-448p.
    [59] Xie Jianhun, Zhao Rongchun, Xia Yong. Combined Terrain Aided Navigation based onCorrelation Method and Parallel Kalman Filters[C]. The eighth internationalconference on electronic measurement and instruments,2007:1145-1150p.
    [60] Fellerhoff, J.R. SITAN IMPLEMENTATION IN THE SAINT SYSTEM[C]. IEEEPLANS1986: Position Location and Navigation Symposium-Record.1986:89-95p.
    [61] Ingemar Nygren. Terrain Navigation for Underwater Vehicles[D]. PhD Thesis of RoyalInstitute of Technology,2005.
    [62] Ingemar Nygren, Magnus Jansson. Terrain Navigation for Underwater Vehicles Usingthe Correlator Method. IEEE JOURNAL OF OCEAN ENGINEERING, Vol.29,No.3,2004,906-915.
    [63] Kjetil Bergh nonsen. Bayesian Terrain-Based Underwater Navigation Using anImprovd State-Space Model[C].2007,499-505.
    [64] http://125.223.122.13:81/1Q2W3E4R5T6Y7U8I9O0P1Z2X3C4V5B/www.navlab.net/Publications/Terrain_Aided_AUV_Navigation_A_Comparison_of_the_Point_Mass_Filter_and_the_Terrain_Contour_Matching_Algorithms.pdf.
    [65] Rickard Karlsson, Fredrik Gustafsson. Bayesian Surface and UnderwaterNavigation[C]. IEEE TRANSACTIONS ON SIGNAL PROCESSING..2006,Vol.54,No.11:4204-4213p.
    [66] http://125.223.122.13:81/1Q2W3E4R5T6Y7U8I9O0P1Z2X3C4V5B/www.control.isy.liu.se/research/reports/2003/2530.pdf
    [67] Severin Stalder, Hannes Bleuler, Tamaki Ura. Terrain-based Navigation forUnderwater Vehicles Using Side Scan Sonar Images[C]. OCEANS2008,2008,1-3.
    [68] J. Guo,W. H Wang etl. Map Uncertainties for Unmanned Underwater VehicleNavigation Using Sidescan Sonar[C], OCEANS2010:1-10p.
    [69] Ryan Eustice, Richard Camilli, Hanumant Siggh. Towards Bathumetry-OptimizedDoppler Re-navigaton for AUVs[C]. Proceedings of MTS/IEEE, OCEANS2005:1430-1436p.
    [70] P. Oliveira. MMAE Terrain Reference Navigation for Underwater Vehicles using EigenAnalysis[C]. Proceedings of the44th IEEE Conference on Decision and Control, andthe European Control Conference2005:5468-5473p.
    [71] R. Garcia, J. Puig, P. Ridao, etl. Augmented State Kalman Filtering for AUVNavigation. International Conference on Robotics and Automation.2002:4010-4015p.
    [72] Ronen Lerner, Ehud Rivlin. Direct Method for Video-Based Navigation Using aDigital Terrain Map[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS ANDMACHINE INTELLIGENCE,2011, Vol.33, No.2:406-411p.
    [73] Stefan B. Williams, Paul Newman, Julio Rosenblatt, etl. Autonomous underwaervehicle navigation and control[J]. Robotica,2001:481-496p.
    [74] Kjetil Bergh nonsen, Oddvar Hallingstad. Terrain Aided Underwater NavigationUsing Point Mass and Particle Filters[C]. Position, Location, And NavigationSymposium,2006IEEE/ION,2006:1027–1035p.
    [75] Ove Kent Hagen, Kjetil Bergh nonsen, Magne Mandt. The HUGIN Real-TimeTerrain Navigation System[C]. OCEANS2010:1-7p.
    [76] Kjetil Bergh nonsen, Ove Kent Hagen. Terraom Aided Underwaer Navigation UsingPockmarks[C]. OCEANS2009, MTS/IEEE Biloxi-Marine Technology for Our Future:Global and Local Challenges2009:1-6p.
    [77] Ove Kent Hagen. TerrLab-a generic simulation and post-processing tool for terrainreferenced navigation[C]. OCEANS2006:1-7p.
    [78] Bjorn J, M M, Ove K H. Terrain Referenced Navigation of AUVs and SubmarinesUsing Multibeam Echo Sounders[C]//Proc. UDT Europe2004, Nice, France,2004:1-10p.
    [79] Johan Carlstr m, Ingemar Nygren. Terrain Navigation of the Swedish AUV62FVehicle[C].http://125.223.122.11:81/1Q2W3E4R5T6Y7U8I9O0P1Z2X3C4V5B/www.ee.kth.se/php/modules/publications/reports/2005/IR-S3-SB-0560.pdf
    [80] Ingemar Nygren. Robust and Efficient Terrain Navigation of Underwater Vehicles[C].Position, Location and Navigation Symposium,2008IEEE/ION,923-932p.
    [81] Ingemar Nygren. A Method for Terrain Navigation of an AUV[C].OCEANS,2001.MTS/IEEE Conference and Exhibition, Vol.3:1766-1774p.
    [82] Deborah K. Meduna, Stephen M. Rock, Robert S. McEwen. Closed-Loop TerrainRelative Navigation for AUVs with Non-Inertial Grade NavigationSensors[C].Autonomous Underwater Vehicles (AUV),2010IEEE/OES,1-8p.
    [83] Deborah K. Meduna, Stephen M. Rock, Robert S. McEwen. Low-Cost TerrainRelative Navigation for Long-Range AUVs[C]. OCEANS2008:1-7p.
    [84] Colin Morice, Sandor Veres, Spephen McPhail. Terrain Referencing for AutonomousNavigation of Underwater Vehicles[C]. OCEANS2009:1-7p.
    [85] Takeshi Nakatani, Tamaki Ura etl. AUV TUNA-SAND and its Exploration ofhydrothermal vents at Kagoshima Bay[C]. MTS/IEEE Kobe Techno-Ocean, OCEANS2008:1-5p.
    [86] Takeshi Nakatani, Tamaki Ura etl. Terrain based localization method for wreckobservation AUV[C]. Proceedings of OCEANS2006MTS/IEEE Boston,2006,1-6p.
    [87] Peter Kimball, Stephen Tock. Sonar-based iceberg-relative navigation for autonomousundetwater vehicles[J]. IEEE/OES, Autonomous Underwater Vehicles,2008:1-6p.
    [88]张飞舟,侣文芳,晏磊等.水下无源导航系统仿真匹配算法研究[J].武汉大学学报(信息科学版).2003,28(2):153-157.
    [89]于家城,晏磊,邓嵬等.海底地形辅助导航SITAN算法中二次搜索技术[J].电子学报,2007,35(3):474-477.
    [90]严明.水下地形辅助导航系统中的地形匹配算法设计与仿真研究[D].北京:北京大学硕士学位论文,2004.
    [91]田峰敏.基于先验地形数据处理的水下潜器地形辅助导航方法研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2007.
    [92]张红伟.基于ICCP算法的水下潜器地形辅助定位改进方法研究[D].哈尔滨:哈尔滨工程大学硕士学位论文,2010.
    [93] http://baike.baidu.com/view/1574404.htm.
    [94]孙玉山,万磊,庞永杰.潜水器导航技术研究现状与展望[J].机器人技术与应用,2010,1:31-42.
    [95]孙玉山,王建国,万磊等.基于vxworks的水下机器人嵌入式导航系统的研究[J].应用基础与工程科学学报,2009,17(6):899-909.
    [96]刘晓建.单波束及浅地层剖面测量技术的应用[J].上海煤气,2010,2:20-24.
    [97]翟宗武.便携式单频测深仪系统设计[D].哈尔滨:哈尔滨工程大学硕士学位论文,2010.
    [98]李军.浅海多波束测深回波信号建模及波达时间研究[D].南京:南京航空航天大学硕士学位论文,2006.
    [99]由林.小型测深仪发射机和接收机的设计与实现[D].哈尔滨:哈尔滨工程大学硕士学位论文,2009.
    [100]黄谟涛,翟国君,欧阳永忠等.海洋测量误差处理技术研究[J].海洋测绘,2003,23(3):57-62.
    [101]刘经南,赵建虎.多波束测深系统的现状和发展趋势[J].海洋测绘,2002,22(5):3-6.
    [102]游鹏飞.大规模地形组织及遥感图像纹理校正与映射[D].长沙:国防科学技术大学硕士学位论文,2006.
    [103]罗深荣.侧扫声纳和多波束测深系统在海洋调查中的综合应用[J].海洋测绘,2003,23(1):22-24.
    [104]胡银丰,朱辉庆,夏铁坚.现代深水多波束测深系统简介[J].声学与电子工程,2008,1:46-48.
    [105]刘承香,阮双琛,伍小芹.基于Kriging插值的数字地图生成算法研究[J].深圳大学学报理工版,2004,21(4),295-300.
    [106]赵建虎,刘经南.多波束测深及图像数据处理,武汉:武汉大学出版社,2008.
    [107]崔平远,杨涤,吴瑶华等.极大似然法及在有控飞行器气动参数辨识中的应用[J].航空学报,1991,12(11),644-649.
    [108]高立平,黄海宁,徐德民.极大似然估计的信息融合方法及其在水下航行器制导中的应用[J].西北工业大学学报,1999,17(2):306-310.
    [109] Creel, Earl E, Fellerhoff, John R. DATA COMPRESSION TECHNIQUES FOR USEWITH THE SITAN ALGORITHM.[C]. IEEE PLANS, Position Location andNavigation Symposium,1986:309-315p.
    [110] Niclas Bergman, Lennart Ljung, Fredrik Gustafsson. Terrain Navigation UsingBayesian Statistics[J]. Control Systems,1999:19(3):33-39.
    [111] Niclas Bergman. Deterministic and stochastic Bayesian methods in terrainnavigation[C]. Proceedings of the IEEE Conference on Decision and Control,1998, v1,227-232p.
    [112] Bergman, Niclas. Deterministic and stochastic Bayesian methods in terrainnavigation[C]. Proceedings of the IEEE Conference on Decision and Control,1998, v1,227-232p.
    [113] El Baraka, Nordine, Le Gland, Fran ois. Bayesian terrain-aided inertial navigationusing airborne laser scanner[C]. Institute of Navigation-International TechnicalMeeting2010, ITM2010, v1,281-286p.
    [114]阳凡林.多波束和侧扫声纳数据融合及其在海底底质分类中的应用[D].武汉:武汉大学博士学位论文,2003.
    [115]黄谟涛,翟国君,欧阳永忠等.海洋测量技术的研究进展与展望[J].海洋测绘,2008,28(5):77-82.
    [116]毕永良,孙毅,黄谟涛等.海洋测量技术研究进展与展望[J].海洋测绘,2004,24(3):65-70.
    [117]李家彪等著.多波束勘测原理技术与方法[M].北京:海洋出版社.1999.
    [118] GeoAcoustics Limited. GeoSwath Plus Operation Manual [CD].2007:15-24p.
    [119]吴英姿.多波束测深系统地形跟踪与数据处理技术研究[D].哈尔滨:哈尔滨工程大学博士学位论文,2001.
    [120]郭松林,范东华,高莹.在疏浚工程检测中的多波束数据后处理方法研究[J].2007,27(2):30-33.
    [121]王海栋,柴洪洲,王敏.多波束测深数据的抗差Kriging拟合[J].测绘学报.2011,40(2):238-242.
    [122]胡光海,周兴华.海洋测绘中水深数据异常值的检测[C].海南:中国科协2004年学术年会,海洋开发与可持续发展.2004:26-31.
    [123]阳凡林,刘经南,赵建虎.多波束测深数据的异常检测和滤波[J].武汉大学学报(信息科学版).2004,29(1):80-83.
    [124]邵杰,叶宁,容亦夏.基于SVM的多波束测深数据滤波[C].北京:第二十九届中国控制会议.2010:2370-2374.
    [125]邢玉清,刘铮,郑红波.相干声纳多波束与传统型多波束测深系统综合对比与实验分析[J].热带海洋学报,2011,30(6):64-69.
    [126]尚俊平.基于距离的聚类和孤立点检测算法研究[D],郑州:郑州大学硕士学位论文,2005.
    [127]朱国红.基于特征点选择的聚类算法研究与应用[D].烟台:山东大学硕士学位论文,2010.
    [128]孙志伟.一种能发现自然聚类的聚类算法[J].计算机应用研究,2009,26(8):2871-2873.
    [129]田勋,肖付民,朱小辰等.多波束测深系统各误差的传播影响规律分析[J].海洋测绘,2011,31(1):23-27.
    [130]程永寿.大洋矿产资源信息系统关键技术研究[D].天津:天津大学硕士学位论文,2006.
    [131]白世彪,陈晔,王建.等值线绘制软件SURFER7.0中九种插值法介绍[J].物探化探计算技术,2002,24(2):157-162.
    [132]戴前伟,彭振斌,何继善.基于FBM的分形插值方法[J].中国有色金属学报,1998,8(4):719-722.
    [133]刘承香,阮双琛,伍小芹.基于Kriging插值的数字地图生成算法研究[J].深圳大学学报理工版.2004,21(4):295-300.
    [134]彭嘉雄,张天序.地形的统计模型研究[J].宇航学报.1984,3:14-21.
    [135]卢兴华,刘学军.基于随机过程的格网DEM精度场模型[J].测绘学报.2012,41(2):273-277.
    [136]方凯,李德华,金良海,等.一种基于矢量方法的彩色图像双线性插值算法[J].计算机与数字工程,2007,35(10):100-103.
    [137]张继贤,柳健.地形数学模型建立的新方法[J].信号处理,1997,13(4):369-373.
    [138]李才伟.地学数据的分形插值与成图[J].地球科学——中国地质大学学报,1995,20(2):191-198.
    [139]谢和平,孙洪泉.分形插值曲面理论及其应用[J].应用数学和力学,1998,19(4):297-306.
    [140]廖熠.基于分形的地形图像表面重建研究[D].西安:西北工业大学博士学位论文,2006.
    [141]海道测量规范[S](Specificaton for hydrographic survey),中华人民共和国国家标准(GB-12327-1998),1999.
    [142]张立立.一种基于混合结构的地形快速绘制算法[J].计算机应用与软件,2010,27(12):280-283.
    [143]陆艳青.海量地形数据实时绘制的技术研究[D].杭州:浙江大学博士学位论文,2003.
    [144]王华,晏磊,钱旭等.基于地形熵和地形差异熵的综合地形匹配算法[J].计算机技术与发展,2007,17(9),25-27.
    [145]刘建成,刘学敏,徐玉如.极大似然法在水下机器人系统辨识中的应用[J].哈尔滨工程大学学报,2001,22(5):1-4.
    [146] Steven M. Kay,罗鹏飞等译.统计信号处理基础[M].北京:电子工业出版社,2003.
    [147]陈小龙,庞永杰,李晔,陈鹏云.基于极大似然估计的AUV水下地形匹配定位方法[J].机器人,2012,34(5):559-565.
    [148]王学民.应用多元分析[M].上海:上海财经大学出版社,2004.
    [149]李雄伟,刘建业,康国华.熵的地形信息分析在高程匹配中的应用[J].应用科学学报.2006,24(6):608-612.
    [150]韩崇昭,朱红艳,段战胜等.多源信息融合[M].北京:清华大学出版社,2006.
    [151]权太范.目标跟踪新理论与技术[M].北京:国防工业出版社,2009.
    [152]唐现国,何祖军.一种基于正则粒子滤波器的目标跟踪算法[J].舰船科学技术,2008,30(4):134-137.
    [153]袁广林,薛模根,谢恺等.基于核函数粒子滤波和多特征自适应融合的目标跟踪[J].计算机辅助设计与图形学学报,2009,21(12):1774-1784.
    [154]牛长锋,陈登峰,刘玉树.基于SIFT特征和粒子滤波的目标跟踪方法[J].机器人,2010,32(2):241-247.
    [155]张琪,胡昌华,乔玉坤.基于权值选择的粒子滤波算法研究[J].控制与决策,2008,23(1):117-120.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700